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Abstract
Reproductive mode, i.e., the proportion of individuals produced by clonality, selfing and outcrossing in
populations, determines how hereditary material is transmitted through generations. It shapes genetic
diversity and its structure over time and space, which can be used to infer reproductive modes. Ludwigia
grandiflora subsp.hexapetala (Lgh) is a partially clonal, polyploid, hermaphroditic, and heteromorphic
plant that recently colonized multiple countries worldwide. In western Europe, individuals are either
self-incompatible caused by a late-acting self-incompatibility (LSI) system developing long-styled flow-
ers, or self-compatible (SC), with short-styled flowers. In this study, we genotyped 53 long- and short-
styled populations newly colonizing France and northern Spain using SNPs to estimate rates of clonality,
selfing and outcrossing. We found that populations reproduced mainly clonally but with a high diver-
sity of genotypes along with rates of sexuality ranging from 10% up to 40%. We also found evidence
for local admixture between long- and short-styled populations in a background of genetic structure
between floral morphs that was twice the level found within morphs. Long- and short-styled popula-
tions showed similar rates of clonality, but short-styled populations presented significantly higher rates
of selfing, as expected considering their breeding system and despite the small rates of failure of the
LSI system. Within the 53 studied populations, the 13 short-styled populations had fewer effective
alleles, lower observed heterozygosity, and higher inbreeding coefficients, linkage disequilibrium and
estimates of selfing thanwhat was found in long-styled populations. These results emphasize the neces-
sity to consider the variation of reproductive modes when managing invasive plant species. The overall
maintenance of higher genetic diversity with the possibility of maintaining populations clonally in the
absence of compatible partners may explain why long-styled individuals seem to be more prevalent
in all newly expanding populations worldwide. Beyond Lgh, our methodological approach may inspire
future studies to assess the reproductive modes in other autopolyploid populations.
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Introduction 

Plants reproduce using different mechanisms (i.e., breeding system), including clonality and 
different types of sexuality (i.e., mating system, including allogamy and selfing; Holsinger, 2000). 
Reproductive mode corresponds to the actual balance between sexual and clonal reproduction, 
measured by the rate of clonality (De Meeûs et al., 2007; Stoeckel et al., 2021a), and, within the 
proportion of offspring produced by sexuality, the balance between autogamy and geitonogamy 
(hereafter selfing), and allogamy (outcrossing), measured by the rate of selfing (Bürkli et al., 2017). 
Reproductive mode is one of the main drivers of genetic diversity in populations and species 
(Duminil et al., 2007; Ellegren & Galtier, 2016; Glémin et al., 2019). It determines the way 
hereditary material is transmitted over generations, and thus constrains the range of genetic 
diversity that can evolve within populations and species (De Meeûs et al., 2007; Fehrer, 2010; 
Stoeckel & Masson, 2014; Rouger et al., 2016). Its genetic consequences are deep enough to be 
discernible even in the presence of other affecting factors (Charlesworth, 2003). Considering its 
influence on population genetic diversity and structure, reproductive mode is one of the major 
biological traits to decipher before interpreting other biological and ecological forces using 
molecular data (Duminil et al., 2007; Reichel et al., 2016; Bürkli et al., 2017; Orive & Krueger-
Hadfield, 2021). Given an adequate theoretical framework, population geneticists can use 
genotypic data to infer reproductive modes in populations (Halkett et al., 2005; Arnaud-Haond et 
al., 2007; Hardy, 2016; Bürkli et al., 2017; Stoeckel et al., 2021a). 

Many plant species reproduce using different breeding systems they adapt to different 
ecological contexts resulting into different reproductive modes (Richards, 1997; Charlesworth, 
2006). Uniparental reproduction, including clonality and selfing, may help plants to spread into new 
areas (Baker’s conjecture: Barrett et al., 2008; Pannell et al., 2015). Clonality consists of a parent 
producing a new descendant that is a genetic copy of itself with the exception of rare somatic 
mutations and mitotic recombinations (De Meeûs et al., 2007). It results into an average excess of 
heterozygotes compared to Hardy-Weinberg expectations (i.e., negative FIS), large variance of FIS 
along the genome and a small excess of linkage disequilibrium, increasing with decreasing 
population size (Navascués et al., 2010; Stoeckel & Masson, 2014; Stoeckel et al., 2021a). When 
parents can yield multiple descendants by clonality, it may generate repeated genotypes in 
populations (Arnaud-Haond et al., 2007). These effects vary with the rates of clonality and, which 
in turn, can be used to infer these rates within populations (De Meeûs et al., 2006; Becheler et al., 
2017; Becheler et al., 2020; Arnaud-Haond et al., 2020). Hermaphroditic plants have the possibility 
to sexually reproduce with themselves (selfing). Selfing decreases effective population sizes and 
gene diversity resulting into high probability of allele fixing (Wright et al., 2008; Roze, 2016; Glémin 
et al., 2019). Selfing also prohibits genetic mixing between different ancestral lineages, which 
decreases heterozygosity within individuals (David et al., 2007; Hardy, 2016) and strongly 
increases linkage disequilibrium between genes along genomes (Golding & Strobeck, 1980; 
Nordborg, 2000; Lucek & Willi, 2021). Around half of hermaphrodite plants restrict self-fertilization 
using a variety of molecular mechanisms grouped under the term “self-incompatibility (SI) systems” 
which favour outcrossing within populations (De Nettancourt, 2001; Castric & Vekemans, 2004; 
Gibbs, 2014; Steinecke et al., 2022). Outcrossing is overall expected to increase genetic diversity, 
to limit allele fixation and to reduce linkage disequilibrium when compared to selfing, but only if 
linked to the genes involved in self-recognition (Glémin et al., 2001; Stoeckel et al., 2006; 
Navascués et al., 2010). Within the different identified SI systems (Charlesworth et al., 2005; 
Franklin-Tong, 2008), the late-acting SI system (hereafter LSI) is still poorly studied despite being 
identified in multiple taxonomic groups in angiosperms (De Nettancourt, 1997; Gibbs, 2014). In LSI 
systems, self-pollen tubes grow and are only blocked shortly before penetrating the ovule. Such 
species may present reduced female fertility due to self-pollen disabling ovules, favouring the 
clonal regeneration of populations (Vaughton et al., 2010). LSI systems are also characterized by 
low but recurrent failures of the self-recognition system due to its late mechanism, leading to the 
production of a low amount of selfed seeds in populations (Seavey & Bawa 1986; Chen et al., 
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2012; Hao et al., 2012; Gibbs, 2014). In contrast, gametophytic and sporophytic self-recognition 
occurring very early in the pistil drastically limit self-pollination and thus selfed seeds (Lawrence et 
al., 1985; Gibbs, 2014). However, we do not know yet if these rare selfed seeds contribute to the 
dynamics of genetic diversity of LSI populations and species, especially in peripatric conditions or 
in any situation when compatible partners may lack. Due to these selfed seeds, LSI system may 
be relatively ineffective at driving genetic diversity within populations, contrary to gametophytic and 
sporophytic SI systems (Brennan et al., 2002; Stoeckel et al., 2006; Stoeckel et al., 2008; Koelling 
et al., 2011; Busch & Urban, 2011). In such situations, the emergence and maintenance of LSI 
systems appear as new evolutionary puzzles among the reproductive systems.  

Water primrose, Ludwigia grandiflora subsp. hexapetala (Hook. & Arn.) Nesom & Kartesz 
(2000), hereafter Lgh, is an insect pollinated, partially clonal, hermaphroditic and heteromorphic 
plant supposed to be native from central and south America. This species is one of the most 
invasive aquatic plants in the world (Thouvenot et al., 2013). Lgh is a decaploid species 
(2n=10x=80 chromosomes), resulting from hybridization of different ancestral diploid species, 
some of which are represented more than once in the total genome of Lgh, which belongs to the 
genus Ludwigia L. section Jussiaea (Hoch et al., 2015; Barloy et al., 2024). Interestingly, Lgh 
includes an autotetraploid set of chromosomes, shared with L. peploides subsp. montevidensis 
(2n=2x=16), hereafter Lpm, that is clearly distinct from the other ancestral part of the Lgh genome 
(Barloy et al., 2024). Lpm is a self-compatible-only diploid species with only one common floral 
morphology (Estes & Thorp, 1974; Grewell et al., 2016). Lgh presents heteromorphic flowers 
corresponding to two floral morphs: L-morph individuals develop long-styled flowers and S-morph 
individuals develop short-styled flowers, that cross and result into 100% viable and fertile F1 and 
F2 descendants (Portillo Lemus, 2021; Portillo Lemus et al., 2021) while inter-species crosses only 
result in a low number of chlorotic and unfertile descendants (Barloy et al., 2024). 

All tested L-morph flowers expressed an active LSI in western European populations, with only 
one self-incompatible type detected so far (Portillo Lemus et al., 2022). During the core flowering 
season (summer), in experimental greenhouse conditions, L-morph individuals show a stable 
seemingly insignificant rate of autogamy (around 0.2‰ of the available ovules) that increases at 
the end of the flowering season, during autumn, to 1‰, which is common in LSI systems (Gibbs, 
2014). Due to the massive blossoming of this species, growing in very dense populations, these 
selfed seeds would add up yearly in field populations to a hundred seeds per square meter (Portillo 
Lemus et al., 2022). This pattern of low rates of autogamy, that increases at the end of the flowering 
season, may provide the advantage of reproductive assurance (Goodwillie & Weber, 2018). In 
contrast, all tested S-morph individuals were self-compatible (SC) in western European 
populations but in their pistils, pollen tubes of the L-morph growed significantly faster and were 
thus advantaged to fertilize ovules when in competition with self-pollen (Portillo Lemus et al., 2022). 
In addition, peripatric Lgh populations, including European populations, were previously reported 
as exclusively clonal with few clonal lines (Dandelot, 2004; Okada et al., 2009). Recently 
established populations in France and northern Spain mostly present only one of the two 
compatibility modes locally, sometimes with a population of the other type a few to tens of 
kilometers away, which may result in effective allogamy (Portillo Lemus et al., 2021; 2022). All 
these different breeding systems make possible very different reproductive modes in populations, 
comprising all possible quantitative combinations of mainly clonal, autogamous and allogamous 
modes.  

Here, we assessed the reproductive modes of 53 invasive Lgh populations across western 
Europe. Considering the complex case of Lgh in western European populations, we hypothesized 
that L-morph populations supposed to express a LSI should present typical genetic footprints of 
dominant outcrossing, or alternatively higher rates of clonality due to the local lack of compatible 
partners and self-pollen interferences, while S-morph populations supposed to be SC should 
present higher rates of sexuality prevailed by selfing. To understand the genetic impacts of 
reproductive modes, we also quantified the covariations of genetic indices and their importance to 
define the genetic diversity within the 53 genotyped populations, and compared these observations 
to the theoretical expectations obtained from a Wright-Fisher-like model extended to 
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autotetraploids (Stoeckel et al., 2024a). Finally, we took advantage from the fact that recent local 
populations in France and northern Spain still present only one of the two compatibility modes to 
compare and interpret the genetic differences found within and between L-morph (LSI) and S-
morph (SC) populations, with the aim to assess the influence of LSI on genetic diversity, as 
similarly tackled in sporophytic self-incompatible and SC Brassicaceae species previously 
(Koelling et al., 2011). 

Materials and methods 

Sampling strategy and floral morphology of populations 

We collected 795 stems of Lgh from 53 locations (52 locations in France and one in Catalonia, 
Spain), corresponding to an area that spans 580 kilometres east-to-west and 1,100 kilometres 
north-to-south (Figure SI1). At each location, we collected 15 stems (hereafter, ‘individuals’) along 
a linear transect of 40 meters. Along each transect, we randomly collected three stems at 
coordinates X1 = 0m; X2 = 10m; X3 = 20m; X4 = 30m and X5 = 40m within a one meter-square 
quadrat. The young leaves of each sampled individual were stored after lyophilization until DNA 
extraction.  

We visually identified floral morphologies of flowers found along each transect within the 
sampled Lgh populations. In a previous study on seven populations among the 53 studied here 
(underlined population names in Figure SI1), one hundred and five sampled individuals resulted to 
identify a binary distribution of floral morphology with formally-identified self-incompatibility types: 
all L-morph individuals were LSI typed and all S-morph individuals were SC typed (Portillo Lemus 
et al., 2021) while all these individuals succeeded to cross and give viable and fertile plants. 
Interestingly, these two types of populations spatially distribute in monomorphic populations along 
different rivers. We supposed for this study the LSI versus SC status of individuals and populations 
using their floral morphologies: L-morph individuals were supposed to develop a LSI system with 
only one self-incompatible type found so far and S-morph individuals being SC. To support this 
conjecture, as done in Portillo Lemus et al. (2021), we checked the fruitset in each of the 53 
sampled and genotyped populations: A low fruitset, or even no fruit at all were found in L-morph 
individuals and populations, while full fruitsets were found in S-morph individuals and populations, 
in agreement with our conjecture.  

In addition to the crossbreeding results in which all L- and S-morph individuals succeeded to 
cross, giving full fruit set and 100% viable first- and second-generation descendants (Portillo 
Lemus et al., 2021), we here counted the chromosome numbers on karyotypes of S-morph 
individuals sampled in two fruitful populations and of L-morph individuals sampled in five fruitless 
populations to validate that L- and S-morph individuals belong to Lgh. Between 50 to 150 
kilometers separated two consecutive samples (populations underlined Figure SI1). To prepare 
the karyotypes, we used the method detailed in Barloy et al. (2024) that already karyotyped a S-
morph individual sampled near the French Atlantic coast. The same method was used in Bou 
Manobens et al. (2019) to karyotype a L-morph individual sampled in Catalunya.  

Definition of the autotetraploid SNP marker set 

As no molecular markers suitable for clonal discrimination were yet available for Lgh and Lpm, 
we generated an original set of SNP markers via RAD-Seq (Baird et al., 2008) using two pools of 
15 individuals each, respectively sampled across five Lgh and three Lpm western European 
populations. RAD DNA library generation, sequencing and the analysis pipeline to identify Lgh 
SNP markers were carried out as described in Delord et al. (2018). In brief, DNA of Lgh and Lpm 
were digested by Sbfl restriction enzyme and used to prepare DNA libraries that were then 
sequenced using an Illumina HiSeq3000 (150bp paired-end reads). A total of 14,233 and 34,287 
RAD-Seq-determined SNPs were filtered to yield 340 and 326 SNPs, one per aligned sequence, 
for Lpm and Lgh, respectively. Design of primers compatible with Hi-Plex multiplexing was carried 
out by Melbourne Bioinformatics. Finally, sixty and fifty SNP markers matched the quality criteria 
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to design a Hi-Plex set of SNPs for Lpm and Lgh, respectively (Hammet et al., 2019). In our study, 
we only considered polymorphic SNPs that were shared between Lgh and Lpm to be sure they 
belong to the tetraploid part of Lgh genome derived from Lpm (Barloy et al., 2024). We finally kept 
this set of 36 polymorphic and stable SNP markers to genotype Lgh samples and analyze genetic 
diversity in each sampled population (primer sequences are openly listed in Stoeckel et al., 2023).  

To verify that this set of SNPs was really tetraploid, we computed the Akaike’s information 
criterion from the maximum likelihood of the best genotype considering the distribution of 
sequenced allele countings among individuals and markers as a function of the ploidy level, using 
a similar approach to that proposed by Burnham & Anderson (2002). 

(1) 𝐴𝐼𝐶(𝑝𝑙𝑜𝑖𝑑𝑦) = ∑ ∑ −2 log ℒ 4𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒!,#9𝑝𝑙𝑜𝑖𝑑𝑦, 𝑑𝑎𝑡𝑎!,#< + 2𝐾!$%&'
!$(

#$)*
#$(  

where 𝑑𝑎𝑡𝑎!,# is the distribution of sequenced alleles among A, C, G and T within individual 𝑖 at 
locus 𝑙, and K is the number of possible genotypes given the ploidy and the four possible alleles 
(A, C, G and T). The likelihood of the possible genotypes ℒ4𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒!,#9𝑝𝑙𝑜𝑖𝑑𝑦, 𝑑𝑎𝑡𝑎!,#< follows a 
multinomial distribution of the sequenced allele countings distributed between the four different 
possible nucleobases (A, C, G and T). 

DNA extraction, SNP marker production and genotyping 

To genotype the 795 individually-tagged samples with these 36 SNPs, we extracted DNA from 
25 to 30 mg of dried young leaf tissues. The DNA extractions were performed using the NucleoSpin 
Plant II from MACHEREY-NAGEL kit, following the manufacturer’s recommendations. We used L1 
buffer as lysis buffer. All individuals were genotyped from a solution of 20ng/µl of Lgh DNA, using 
a modified version of the Hi-Plex protocol (Hammet et al., 2019; Besnard et al., 2023). Hi-Plex is 
an amplicon sequencing technique (sensu Meek & Larson, 2019) in which all SNPs are co-
amplified in a multiplex reaction before Illumina or Ion-Torrent sequencing. Here, we used Illumina. 
Intermediate steps include dual indexing of individual samples used for demultiplexing. Reads 
were then assigned to loci by aligning them to reference sequences with BWA-MEM 0.7.15-r1140 
(Li & Durbin, 2010) and alleles were counted with Samtools 1.9 (Danecek et al., 2021).  

Allele dosage 

The posterior probabilities of each single SNP genotype within each individual (hereafter single 
SNP genotype) were computed using the likelihood of all possible genotypes considering a 
multinomial distribution of the number of times each nucleobase was genotyped at one SNP 
marker within one individual. In order to obtain the most confident dataset possible, we only 
assigned a genotype when its posterior probability of allele dosage exceeded 70%. When one 
SNP within one individual presented a posterior probability of allele dosage equal or lower than 
70%, we assigned and analysed it afterward as a missing genotype.  

Genotypic and genetic descriptors 

We expected that populations reproducing clonally may yield repeated multi-locus genotypes 
(MLGs, i.e., the same genotype at all the 36 SNPs found in multiple individuals). By possibly 
producing these repeated genotypes and by varying the relative distribution of the number of 
samples of each of these distinct genotypes, rates of clonality impact genotypic richness and 
evenness in populations (Halkett et al., 2005; Arnaud-Haond et al., 2007). 

We measured genotypic richness using the R index (Dorken & Eckert, 2001; Arnaud-Haond et 
al., 2005), which is defined as 𝑅 = +,(

-!,(
 where G is the number of distinct genotypes (genets) and 

Ng is the number of genotyped individuals. We also measured genotypic evenness as the 
parameter β of the Pareto distribution, which describes the slope of the power-law inverse 
cumulative distribution of the size of MLGs (Arnaud-Haond et al., 2007): 𝑁./ = 𝑎𝑋,0  
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where 𝑁./ is the number of ramets in genets containing 𝑋 or more ramets in the sampled 
population, and the parameters a and β are fitted by regression analysis. Low β-values indicate 
the dominance of one or few clonal lineages. Pareto β is less biased by the sampling effort than 
clonal richness R (Stoeckel et al., 2021a). In our sample of 15 individuals, we expected a 
population with only one repeated MLG to present a Pareto β value of 0.03 and a value of 3 in 
samples with no repeated genotypes. β < 2 indicates a population reproducing with high rates of 
clonality (greater than 0.8 to 0.9). For a sample size of 15 individuals, 2 < β < 3 indicates 
intermediate to low rates of clonality (0.6 to 0.8). A β at 3, its maximum value, is indicative of a 
mainly sexual population, with rates of clonality ranging from zero to 0.6, depending on the other 
genetic indices. 
Rates of clonality and selfing confer different effects on the range of within-population genetic 
polymorphism as well as on probabilities of genetic identities within individuals. We thus also 
estimated expected and observed heterozygosity HE and HO, allelic richness AE, inbreeding 
coefficient FIS, and linkage disequilibrium within each sampled population.  

The inbreeding coefficient FIS (Wright 1931, 1949) accounts for intraindividual genetic variation 
at one locus as a departure from Hardy-Weinberg assumptions of the genotyped populations. We 
computed one FIS value per locus per population. We then reported the mean values of FIS (MFIS) 
and the inter-locus variance of FIS (VarFIS) for each population. Both MFIS and VarFIS are very 
informative about the underlying reproductive systems (Stoeckel et al., 2006; David et al., 2007). 
Clonality makes the MFIS values tend toward -1 along with high interlocus variance (Stoeckel & 
Masson, 2014; Stoeckel et al., 2021a). A moderate amount of sexual reproduction results in MFIS 
values around 0 (Balloux et al., 2003). VarFIS varies with rates of clonality, from very limited 
variance expected in sexual populations to high variance in very clonal populations (Stoeckel & 
Masson, 2014; Stoeckel et al., 2021a). Positive MFIS values are expected in populations 
reproducing using consanguinity and selfing (Castric et al., 2002; David et al., 2007). All sexual 
reproductive modes, allogamous and autogamous, result in low VarFIS within a population as 
massive recombination tends to homogenize intra-individual genetic identities along the genomes 
(Stoeckel et al., 2021a).  

We measured linkage disequilibrium over all markers using the unbiased multilocus linkage 
disequilibrium index, 𝑟̅1 (Agapow & Burt, 2001). This mean correlation coefficient (r) of genetic 
distances (d) between unordered alleles at n loci ranges from 0 to 1. This metric has the advantage 
of limiting the dependency of the correlation coefficient on the number of alleles and loci, and it is 
well suited to measure linkage disequilibrium in partially clonal populations (De Meeûs & Balloux, 
2004; De Meeûs et al., 2006). In general, LD is only slightly affected by clonality, except when 
clonality is high (c > 0.9) and/or when genetic drift dominates over mutation rate (e.g., when 
population sizes are small N<50 compared to u=0.001; Navascués et al., 2010; Stoeckel et al., 
2021a). In contrast, inbreeding and selfing are efficient processes for quickly generating strong 
LD, after only few generations. Finally, we measured genetic differentiation between populations 
of LSI, between populations of SC and between LSI and SC populations using ρST, an index 
adapted to study autopolyploid populations (Ronfort et al., 1998). All these indices were computed 
using Genapopop (Stoeckel et al., 2024a), a software dedicated to analysing genetic diversity and 
differentiation in autopolyploid populations genotyped with confident allele dosage and reproducing 
through all possible rates of clonality and selfing.  

We also used Spagedi (v1.5, Hardy & Vekemans, 2002) to estimate rates of selfing within 
autopolyploid populations genotyped with confident allele dosage. This approach infers rate of 
selfing (Sg) from identity disequilibrium coefficients (g2z estimator), assuming that populations 
reproduce by self-fertilization and random mating and are at inbreeding equilibrium (David et al., 
2007 for diploids; Hardy, 2016 for autopolyploids). Identity disequilibrium coefficients are measured 
as the correlation in heterozygosity of distinct loci within the genome, and present the advantage 
of being more robust to null alleles and genotyping errors than raw FIS (David et al., 2007). The 
effect of partial clonality on g2z estimator is not yet defined. We thus considered for this study that 
clonality would only marginally impact identity disequilibrium coefficients, the possibility to be at 
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the inbreeding equilibrium and the corresponding estimates of selfing. A synthesis of all these 
hypotheses based on previous knowledge is provided in Table SI1. 

Ranking populations by clonality and selfing  

We proposed and computed a synthesis index (Σclon) calculated from Pareto β and VarFIS to 
rank the studied populations from the less to the more clonal. These two population genetic indices 
are known to vary with rates of clonality being unbiased in samples (Stoeckel et al., 2021a). To 
avoid issues of scaling as the range of values of these descriptors are different by several orders 
of magnitude, Σclon is computed in each population 𝑖 as the sum of Pareto β(𝑖) and VarFIS(𝑖) 
values that were previously normalized over the whole dataset, respectively 𝑧2(𝑖) and 𝑧345678(𝑖). 

(2) 𝑧2(𝑖) = 1 − 2(!),;!<	(>)
;?@	(>),;!<	(>)

 

(3) 𝑧345678(𝑖) =
345678(!),;!<	(36)
;?@	(36),;!<	(36)

 

(4) Σclon(𝑖) = 1
2P Q𝑧2(𝑖) + 𝑧345678(𝑖)R 

where β(𝑖) and VarFIS(𝑖) are the measured Pareto β and variance of FIS over loci in the 
population 𝑖, and where Β = {𝛽(1), 𝛽(2), … , 𝛽(55)} and 𝑉𝐹 = {VarFIS(1), VarFIS(2), … , VarFIS(55)} 
are the respective sets of Pareto β and VarFIS over loci in the 53 populations used to obtain their 
minimum (𝑚𝑖𝑛) and maximum (𝑚𝑎𝑥) values.  

Using the same approach as for Σclon, we computed a synthesis index (Σself) calculated from 
𝑟̅1, MFIS and Sg to rank the studied populations from the less to the more selfed.  

(5) Σself(𝑖) = 1
3P Q𝑧A̅"(𝑖) + 𝑧C678(𝑖) + 𝑧8D(𝑖)R 

Statistical data analysis 

First, to better understand the correlation between population genetic indices and estimates of 
reproductive modes from a large field dataset and to compare with the theoretical correlations 
obtained from simulations (Stoeckel et al., 2024a), we computed a Principal Component Analysis 
(PCA) to comprehend the covariations of genetic indices, the correlations and the redundancies 
between the 17 genetic diversity indices (described above: G, R, D, Pareto	𝛽, 𝑟̅1, Ae, varAe, He, 
varHe, Ho, varHo, MFIS, varFIS, PIDsib, PIDu, Sg, SE.Sg) measured among the 53 sampled 
populations, and their link with reproductive modes including self-compatibility. We reported the 
amount of variation retained by the first two principal components and the correlation circle on 
which we plotted predictions of Σclon and Σself as supplementary variables. We also reported the 
score plot to visualize how L-morph (LSI) and S-morph (SC) populations distribute along the 
principal components of population genetic diversity. To avoid scaling issues, all descriptors were 
normalized before analysis.  

We then analyzed the relationship between genetic diversity indices and their relationships with 
Σclon and Σself measured in the 53 sampled populations using Kendal partial rank-order correlation 
tests. We reported the corresponding matrices of correlation. 

To detect differences in distribution of population genetic indices, Σclon and Σself, among floral 
morphs, we computed non-parametric Kruskal-Wallis tests that do not make any assumptions 
about the type of distribution and about homogeneity of variances between the tested distributions. 
When needed, we used post-hoc pairwise tests for multiple comparisons of mean rank sums 
(Nemenyi’s test). 

All statistical tests were computed using Python 3.11, Scipy.stats 1.9.3 (Virtanen et al., 2020) 
and scikit-posthocs (Terpilowski, 2019), except the PCA that was performed using R v4.2.2 and 
the library FactomineR (Lê et al., 2008).  

All data and analysis results are openly available on Zenodo (Stoeckel et al., 2023; 
https://doi.org/10.5281/zenodo.12760022).  
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Results 

Among the 53 populations, we found 40 populations with only L-morph individuals and 13 
populations with only S-morph individuals (Table SI2, Figure SI1). Karyotypes of L-morph plants 
from two populations and of S-morph plants from five populations all presented the same number 
of chromosomes (2n=80, Figure SI2) confirming that L and S-morph individuals in France and L-
morph individuals in northern Spain (Bou Manobens et al., 2019) belong to L. grandiflora subsp. 
hexapetala (2n=10X=80, Barloy et al., 2024). Akaike's information criterion on the distribution of 
allele counting over all our data supported tetraploidy as the best ploidy level for this set of 36 
SNPs (Figure SI3), as expected from Barloy et al. (2024).  

Allele dosage and missing genotypes 

Within the 795 individuals genotyped at 36 SNPs (resulting in a total of 28,620 single-SNP 
genotypes), 99.97% (28,612) of SNPs were genotyped with posterior probability of allele dosage 
superior to 70% (Table SI3). In total, 785 individuals were genotyped with a full set of 36 SNPs 
with posterior probabilities of allele dosage higher than 70%. Ten individuals distributed in nine 
populations showed one of their SNP markers with posterior probabilities of allele dosage equal or 
lower than 70%, that we assigned therefore as missing genotypes. 

Statistical power of the developed SNP marker set 

Over the 36 polymorphic SNPs, we found an effective number of alleles (AE) of 1.36 per SNP 
over all populations (Table SI2). Among populations, mean AE values over the 36 SNPs were 
homogenous, ranging from 1.22 to 1.55 (median=1.34). We, however, found large standard 
deviation of AE between SNPs within populations, ranging from 1.6 to 2.3 (median=2.1). Some 
SNPs were apparently fixed in some populations while polymorphic at the scale of the whole 
dataset. When not fixed, gene diversity HE in polymorphic SNPs ranged from 0.14 to 0.33 
(median=0.2).  
These 36 SNPs in the autotetraploid part of Lgh would theoretically allow 436=4.7×1021 different 
possible MLGs considering the four possible nucleobases and 236=6.9×1010 different possible 
MLGs assuming two possible nucleobases per locus. Considering allele frequencies in the 
sampled populations, the probabilities of identities under panmixia ranged from 8.5×10-12 to 
5.2×10-5 (median=2.1×10-7) and the unbiased probabilities of identity between sibs PID-SIB ranged 
from 4.2×10-6 to 8.3×10-3 (median=5.6×10-4; Table SI2). We then considered that the SNP set we 
used to genotype the 795 sampled individuals via Hi-Plex method showed sufficient statistical 
power to distinguish between true MLGs, and that individuals with identical MLGs were true 
repeated genotypes (ramets) of a clonal lineage (a genet). 

Genetic and genotypic diversity 

Across populations, we identified a total of 462 distinct MLGs (genets) within the 795 sampled 
individuals genotyped. Among them, we found 404 genets (88%) with a single ramet and only 58 
genets (12%) with more than two ramets (Figure 1, see supporting data, tab MLGs). Forty-eight 
genets had two to seven ramets distributed over one to six populations (median=2), seven genets 
with 10 to 33 ramets distributed over two to 17 populations (median=9), and one large genet of 99 
ramets distributed over 24 populations (Figure 1). 
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Figure 1 - Distributions of Multi-Locus Genotypes (MLGs, we consider as genet) 
among LSI and SC Lgh populations in western Europe. The y-axis represents the 
distribution of the genotyped samples (ramets) with the different following 
categories: In black, the number of unique MLGs (MLGs that were found only once 
over all populations); In grey, the number of MLGs with less than 7 ramets over all 
populations; In color, MLGs with more than 10 ramets found in multiple populations 
(one color per different genet, identifying the same genet across all populations). 
Proportions of each types of MLGs over all the populations (795 genotyped 
individuals) are plotted in the last right bar (All). More than half the samples are 
unique genotypes (black bar). 

Within populations, we found from three to 15 different genets (median=12) per population 
among the 15 sampled individuals, implying the clear occurrence of repeated genotypes but also 
a wide diversity of genets within most populations (Figure 1). Accordingly, genotypic richness (R) 
ranged from 0.14 to 1 (median=0.79). The genotypic evenness, Pareto β, ranged from 0.056 to 3 
(median=1.478, Table SI2).  

Observed heterozygosity HO was also high in most populations, slightly above expected 
heterozygosity, ranging from 0.13 to 0.38 (median=0.26). The mean standard inbreeding 
coefficients (MFIS) averaged over all genotyped loci within populations were negative in all 53 
populations and ranged from -0.33 to -0.126 with a very negative median of -0.274 (Table SI2). 
Variances of FIS between loci within population were very high, ranging from 1.75 to 36.60 
(median=27.57). All these measures argued for reproductive modes implying high rates of 
clonality.  
Estimates of selfing (Sg) were overall low with a handful of high values, ranging from 0 to 0.61 
(median=0.06). Fifteen populations (28%) were estimated with no selfing. Nineteen populations 
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(36%) showed non-zero estimates under 0.1, 13 populations (25%) between 0.1 and 0.29, and six 
populations (11%) with estimates between 0.42 and 0.61.  

Finally, linkage disequilibria within populations between genotyped SNPs were overall low, with 
rd values ranging from 0 to 0.51 with a median value of 0.12. Forty-two populations (79%) were 
under 0.25, and only eight populations (21%) showed linkage disequilibrium between 0.25 and 
0.51. 

  

Figure 2 - Correlations between ΣCLON and ΣSELF found in 13 SC populations (light 
grey points and regression line) and 40 LSI populations (black points and regression 
line). 95% confidence intervals are given for LSI and SC populations in dark grey 
and light grey, respectively. Spearman rank-order correlation coefficients (rs) and 
probabilities that ΣCLON and ΣSELF would not be correlated (p) are reported for LSI and 
SC populations. 

Analyses of covariations between population genetic indices 

The first two components of the principal component analysis on the values of genetic diversity 
found in the 53 genotyped populations accounted for 70.6% of the total variance between 
populations (Figure SI4). Non-parametric Kendall partial rank-order correlations between genetic 
indices (Table SI4) and correlations on the first two principal components from the 17 population 
genetic indices measured showed three non-collinear groups of associated genetic indices (Figure 
SI4.A) that are very similar to the theoretical groups of population genetic indices expected to 
covary with different rates of clonality, selfing and outcrossing in autopolyploids (Stoeckel et al., 
2024a). A first cluster regrouped G, D*, R, Pareto β and VarFIS, indices that are known to be 
sensitive to clonality (Stoeckel et al., 2021a) but also VarHe, VarHo, and VarAe. This cluster largely 
explains the first dimension (47.7% of the total variance) of the PCA and was collinear to ΣCLON 
(also see Figure SI4.B). As expected under partial clonality, VarFIS was negatively correlated to 
genotypic diversity indices (R and β; Figure SI5). The second cluster regrouped PID-SIB, PID-u, HE, 
AE and HO, indices that are linked to the general genetic diversity of populations (Figure SI4.A). 
The third cluster regrouped Sg, SE.Sg, MFIS and rD, indices that are usually used to identify, rank 
and estimate rates of selfing versus outcrossing in sexual populations (Castric et al., 2002; Bürkli 
et al., 2017). The second dimension of the PCA (22.9% of the total variance) was mostly correlated 
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to Ho, Sg, He and rD which was collinear to ΣSELF (Figure SI4.C). The clusters of genetic indices 
were corroborated by the correlation between ΣCLON and genetic indices (Figure SI5) and ΣSELF and 
genetic indices (Figure SI6).  

The correlation across populations between ΣCLON and ΣSELF was negative and highly significant 
(rs = -0.66; p < 0.001; Figure 2). This correlation within LSI populations was negative and highly 
significant (rs = -0.65; p < 0.001) while it was no significant in SC populations (rs = -0.32; p =0.289). 

  

Figure 3 - Violin plots comparing distributions of genetic indices in LSI (L, grey) 
versus SC (S, white) populations. Violin plots are cut for their minimum and 
maximum values. Kruskall-Wallis tests are reported as H-statistics as well as the 
probability that LSI and SC population would present the same distribution of genetic 
indices.  

Differences in genetic diversity and structure between L- and S-morph populations 

The number of ramets per genet was similar in L-morph (LSI) and S-morph (SC) populations 
(H=1.85, p=0.173, Figure 1 & SI7), as were their genotypic richness (R, H=1.23, p=0.267) and 
evenness (Pareto’s β, H=1.60, p=0.206; Table SI2). The distributions of other population genetic 
indices related to clonality were also not significantly different between in L-morph (LSI) and S-
morph (SC) populations (VarFIS: H=2.94, p=0.086; PID-SIB: H=1.98, p=0.160 and ΣCLON H=2.28, 
p=0.131; Figure 3).  

Mean observed heterozygosity (Ho, H=5.27, p=0.022) and their variances (VarHo, H=13.85, 
p<0.001), mean effective number of alleles per locus (Ae, H=5.13, p=0.024) and its variance over 
locus (VarAe, H=9.49, p=0.002), MFIS (H=11.85, p<0.001), linkage disequilibrium (rD, H=5.55, 
p=0.018), estimate of selfing rates (Sg, H=12.39, p<0.001) and its standard error over loci (SESg, 
H=9.58, p=0.002) significantly differed between in L-morph (LSI) and S-morph (SC) populations. 
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S-morph (SC) populations, compared to L-morph (LSI), showed lower mean observed 
heterozygosity (medians, L-morph: 0.262, S-morph: 0.210) and less variance between loci 
(medians, L-morph: 2.400, S-morph: 1.859), lower effective number of alleles (medians, L-morph: 
1.341, S-morph: 1.283) and less variance between loci (medians, L-morph: 4.419, S-morph: 
3.580), higher linkage disequilibrium (medians, L-morph: 0.113, S-morph: 0.152), higher estimates 
of selfing rate (medians, L-morph: 0.045, S-morph: 0.175) even if with higher standard error 
between loci (medians, L-morph: 0.058, S-morph: 0.156) and higher ΣSELF (medians, L-morph: 
0.222, S-morph: 0.495). 

  

Figure 4 - Distributions of pairwise rhost within pairs of SC populations (white violin 
plot), pairs of LSI populations (light grey violin plot) and between pairs of LSI and 
SC populations (dark grey violin plot). Probabilities that pair of non-parametric 
distributions are equal are reported. 

 
Genetic differentiation (ρST) among pairs of S-morph (SC) populations (median value of 

ρST=0.27) was comparable to the genetic differentiation found among pairs of L-morph (LSI) 
populations (median value of ρST=0.26; H=319.37, post-hoc p=0.322; Figure 4). The median of ρST 
between pairs of L-morph (LSI) and S-morph (SC) populations reached 0.65. The distribution of 
inter-morph ρST values differed both from the distribution of pairs of intra-L-morph (LSI) ρST values 
(post-hoc p<0.001) and from the distribution of pairs of intra-S-morph (SC) ρST values (post-hoc 
p<0.001).  

The minimum spanning tree of genetic distances between individuals computed with 
GenAPoPop showed quite clustered distributions of L-morph (LSI) and S-morph (SC) individuals 
but also with clear evidence of admixtures between their lineages (Figure 5). 
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Figure 5 - Minimum spanning tree of the genetic distances (number of different 
alleles) between L-morph (LSI, grey points) and S-morph (SC, white points) 
individuals. Arrows indicate some of the evidences of admixture between LSI and 
SC lineages. 

Discussion 

We used population genetics on autotetraploid SNPs with allele dosage to assess the rate of 
clonality, of selfing and of outcrossing (i.e., reproductive mode) of 53 populations of Ludwigia 
hexapetala subsp. grandiflora (Lgh) recently colonizing western European watersheds.  

To achieve this goal, we developed reproducible codominant molecular markers (SNPs) that 
enabled allele dosage-based genotyping of sampled individuals. We then used tailored 
computational analyses to perform confident population genetic analyses in autopolyploids. These 
two methodological steps allowed solving the remaining challenges to perform population genetic 
analyses in autopolyploids (Dufresne et al., 2014), including Lgh. The resulting framework can be 
applied to any autopolyploid species.  

Lgh develops two floral morphs respectively associated with a Late-acting self-incompatible 
system (L-morph) and a self-compatible system (S-morph, Portillo Lemus et al., 2021; 2022). 
Interestingly, the sampled populations in western Europe showed either L- or S-morph resulting in 
two groups of sampled populations: one group of 40 L-morph (LSI) populations and one group of 
13 S-morph (SC) populations. They live in similar ecological conditions (Portillo Lemus et al., 2021) 
which thereby provides a rare opportunity to characterize the genetic consequences of an LSI 
system compared to a group of SC populations in the same species and ecological context. 

Five L-morph and two S-morph water primrose populations separated by 50 to 150 km from 
one to the other in France we karyotyped, all had 80 chromosomes corresponding unequivocally 
to the species Ludwigia grandiflora subsp. hexapetala and thus didn’t find any individual with 48 
chromosomes corresponding to Ludwigia grandiflora subsp. grandiflora. These results agree with 
previous observations of Dandelot et al. (2005) and Barloy et al. (2024) in France, Bou Manobens 
et al. (2019) in northern Spain and Armitage et al. (2013) in Great Britain. 
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Most of the genetic variance explained by clonality and selfing among Lgh populations 

The correlations of population genetics indices on the 53 genotyped Lgh populations (Figure 
SI4) were congruent with previous theoretical predictions on the variations of genetic indices with 
different rates of clonality and selfing for autopolyploid populations (Stoeckel et al., 2024a). 
Identical covariations were already predicted by Wright-Fisher-like models adapted for diploid 
(Stoeckel et al., 2021a) and haplodiplontic life-cycles (Stoeckel et al., 2021b), and validated 
respectively using multiple field populations of marine phanerogams for diploids (Arnaud-Haond et 
al., 2020) and of brown, green, red algae and mosses for haplodiplontics (Krueger-Hadfield et al., 
2021). All these predictions and observations argue for the primary importance of reproductive 
mode, especially of high clonality, to drive variation in genetic diversity within populations (Duminil 
et al., 2007). They support the methodological importance of accurate assessment of rates of 
clonality and of selfing before starting to interpret genetic diversity. 

Dominant clonality within the western European Lgh populations 

Previous field and lab observations of peripatric Lgh populations reported massive production 
of dispersing vegetative propagules, rapid expansions of patches, and an important capacity for 
spontaneous cutting-planting (Dandelot et al., 2005; Thouvenot et al., 2013; Grewell et al., 2016; 
Skaer Thomason et al., 2018a,b). Okada et al. (2009) genotyped around 800 individuals sampled 
in 27 Lgh populations in Californian wetlands using a set of eight AFLP markers and reported an 
extremely reduced clonal diversity: 95% of the samples had the same genotype and 18 populations 
over 27 (67%) supported a single AFLP-genotype. All over the UK, only two haplotypes on 14 
sampled stems were found using chloroplast sequences (Armitage et al., 2013). These haplotypes 
were even shared with some Lgh samples invading California. With no measure of the probability 
of identity to assess the marker set, these results could be due to the lack of resolution of the 
markers used resulting in an artificially elevated measure of clonality (Waits et al., 2001; Villate et 
al., 2010). In any case, all these studies concluded that invasive populations of Lgh in Europe and 
in USA reproduce by exclusive clonality, with a very narrow base of ancestral clones or being 
monoclonal (Dandelot et al., 2005; Okada et al., 2009; Thouvenot et al., 2013; Grewell et al., 2016). 

In our study, we chose to develop and use SNPs rather than AFLP markers. The latter can be 
challenging in terms of precisely sizing fragments, leading to suboptimal reproducibility, particularly 
across different platforms (Fry et al., 2009). The 36 SNPs we developed are easily reproducible, 
accurate enough to distinguish between offspring of sibling mating as evidenced by the 
probabilities of identity we obtained, and less expensive.  

With these SNPs, we found typical genetic signatures of high clonality, including clear 
occurrence of replicated genotypes and mean negative FIS values with high interlocus variances, 
in all the 53 western European populations we genotyped. Globally, gene diversities measured in 
these invasive Lgh populations were in the higher range of values commonly found for SNPs 
(Fischer et al., 2017; Schmidt et al., 2021). Such levels of gene diversity are in line with strong 
rates of clonality that buffer the loss of alleles due to genetic drift (Reichel et al., 2016; Stoeckel et 
al., 2021b). Among the 58 MLGs with replicates, seven MLGs were found in a single population 
and 51 MLGs were found in multiple sites. Clonal propagules of Lgh are known to disperse carried 
by river current and by birds (zoochory: seedlings have the ability to stick to feathers; Grewell et 
al., 2016). Clonal reproduction by rhizomes at the local scale and by the dispersal of clonal 
propagules would thus be the main source of population growth and invasive spread of Lgh in 
western Europe.  

Our results also report a previously-underestimated genotype diversity in the invasive 
populations in western Europe. We found 462 distinct MLGs (genets) out of 795 individuals within 
these populations and the large majority of these MLGs (404, thus 88%) were only sampled once 
in the 53 populations. Our results are still congruent with Dandelot (2004) unpublished measures 
obtained in three Mediterranean populations using inter-simple sequence repeats (ISSRs). This 
data reports three and seven genotypes over 11 sampling units within two Lgh populations and 
two genotypes over nine sampling units in a third population, all sampled in the south-east of 
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France. These results could reveal contrasted situations between Lgh populations introduced in 
the USA and continental Europe. 

Between 10 and 40% of sexual reproduction in Lgh populations in western Europe 

Beyond the qualitative indication of dominant clonality, we then aimed at estimating the rates 
of sexuality in each of these 53 populations. All showed small to medium values of linkage 
disequilibrium between SNPs. Such values are expected in highly but non-exclusive clonal 
populations with large population sizes (Navascués et al., 2010; Stoeckel et al., 2021a). Thirty-two 
populations showed Pareto β values of their distributions of clonal sizes under 2, which are only 
found in theoretical populations with rates of clonality higher than 0.8 (Stoeckel et al., 2024a). All 
53 populations showed mean negative FIS with high interlocus variance, with values observed in 
theoretical populations with rates of clonality higher than 0.6 but under 0.9 (Balloux et al., 2003; 
Stoeckel & Masson, 2014; Reichel et al., 2016; Stoeckel et al., 2024a). All these values of 
population genetic indices were consistent with the interpretation that Lgh populations in western 
Europe must reproduce with effective rates of clonality between 60% and 90%, thus with 10% to 
40% sexuality (De Meeûs et al., 2006; Arnaud-Haond et al., 2020; Stoeckel et al., 2024a). These 
estimates were also supported by the local evidence of recombination between clonal lineages, 
and even between L-morph (LSI) and S-morph (SC) lineages at the scale of a watershed (Figure 
5). The diversity of genotypes detected in western Europe is thus indicative of rare but significant 
local sexual events rather than of a large clonal diversity that would have maintain and propagate 
by exclusive clonality since its introduction. Our results newly advocate that sexual reproduction 
should not, therefore, be overlooked in these invasive populations, especially in management 
plans.  

Genetic consequences of LSI compared to self-compatible populations 

The late-acting SI system remains one of the less studied breeding systems among the 
mechanisms favouring outcrossing in plants (Gibbs, 2014). Its efficiency to favour outcrossing and 
its consequences on genetic diversity within populations, especially considering its low but 
common failures, were not yet deciphered and not yet compared to SC populations in the same 
ecological conditions, as already previously explored for gametophytic and sporophyte SI systems 
(Busch, 2005; Koelling et al., 2011).  

The maintenance of SI systems is one of the most intriguing evolutionary puzzles (Porcher & 
Lande, 2005; Igic et al., 2008). Indeed, SI systems are fated to breakdown because SC individuals 
present the advantage of reproductive assurance when compatible partners are limited, especially 
in peripatric conditions (Eckert et al., 2006). This advantage is even absolute when no compatible 
partners are available within pollination range, as we commonly found in Lgh populations in 
western Europe (Figure SI1). Conversely, outcrossing imposed by SI systems decreases the 
probability of expressing deleterious mutations in descendants as compared to selfing with the 
same genetic background (Rice, 2004; Navascués et al., 2010).  

We found that the 40 populations with L-morph individuals (LSI) had a higher number of 
effective alleles, higher gene diversity, higher observed heterozygosity and less linkage 
disequilibrium than the 13 populations with S-morph individuals (SC; Figure 3).  

These genetic differences are very unlikely to directly result from the consequences of the LSI 
system hitchhiked to the whole genome in L-morph individuals and populations. Indeed, it would 
imply either that all the 36 SNPs would be physically linked to the genes under negative frequency-
dependent selection coding for the LSI or that Lgh outcrossed for many generations in small 
population sizes (Glémin et al., 2001; Navascués et al., 2010). Lgh in western Europe develops 
including far more than thousands of stems per local population (Portillo Lemus et al., 2021) and 
the linkage disequilibrium values also argued for large effective population sizes. We found similar 
estimated rates of sexuality and of clonality between L-morph and S-morph populations, using 
ΣCLON and all indices sensible to clonality (R, Pareto β and VarFis; Figure 3). We however found 
significant difference in estimates of selfing between L-morph (LSI) and S-morph (SC) populations, 
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and in ΣSELF and in all indices sensible to selfing (Ae, linkage disequilibrium, Ho, mean Fis) 
revealing typical signatures of higher selfing rates in S-morph populations. Hardy (2016) method 
estimated a median selfing rate (Sg) of 0.18 in S-morph populations versus 0.05 in L-morph 
populations. Consequently, the genetic differences we found between S-morph and L-morph 
populations may thus rather be due to the effects of selfing impacting S-morph (SC) populations 
than due to outcrossing protecting the loss of genetic diversity or rates of clonality in L-morph (LSI) 
populations. 

Advantages of dominant clonality with preferential allogamy in invasive Lgh populations 

Uniparental clonal reproduction (including clonality and selfing) may help the demographical 
maintenance of plants spreading out of their native range with limited or even without compatible 
or less related sexual partner at pollination distance (Baker’s conjecture: Barrett et al., 2008; 
Pannell et al., 2015). If they rather reproduce using selfing, their descendants increase the 
probability to express inbreeding depression and to lose heterozygosity. Some invasive 
populations develop with low genetic diversity (He et al., 2024), questioning on the biological and 
environmental factors that may explain their success (i.e., the genetic paradox of invasions, 
Allendorf & Lundquist, 2003). But many other plants spread out of their native ranges with 
substantial genetic diversity and using reproductive modes that favour outcrossing (Roman & 
Darling, 2007; Forsman, 2014), like Lgh populations in western Europe, mostly when developing 
in harsh and stressful conditions (Fox & Reed, 2011) or when the costs of inbreeding depression 
expressed by selfing are superior to the benefits of reproductive assurance (Layman et al., 2017).  

Peripatric populations of Lgh in western Europe seem to solve all these problems and paradox 
by mixing clonality with preferential allogamy: clonality allows the local maintenance and spreading 
of population without losing heterozygosity and genetic diversity, and subtle but significant 
sexuality with preferential allogamy, favoured by LSI and faster growth of crossed-pollen tubes, 
enables recombination between lineages favouring the emergence of locally adapted genomes 
with potential higher vigour and fertility (heterosis: Darwin, 1876; Lippman & Zamir, 2007; Birchler 
et al., 2010).  

This reproductive mode, i.e. dominant clonality with preferential allogamy, is common in plants 
(Vallejo-Marín et al., 2010). The micro-physiological mechanism(s) slowing down the growth of 
self-pollen tubes, rather than blocking them, in simultaneous monoecious and hermaphrodite SC 
species and resulting to favour allogamy when compatible pollen is available may also be common 
in plant, although potentially overlooked (Glover, 2007; Nasrallah, 2017). In such peripatric 
conditions, selfing would thus only present the limited or transient advantage to produce seeds 
that can maintain in local seed banks and with different dispersal properties compared to clonal 
propagules. The limited benefit of selfing in this species may explain why, based on photos 
collected on the web, L-morph (LSI) individuals seem more frequent in peripatric than in native 
populations, and why in western Europe, around 76% of the populations are L-morph (LSI) against 
24% of S-morph (SC; Portillo Lemus et al., 2021). Our results thus call for measuring the true 
proportions of LSI and SC in invasive versus native worldwide Lgh populations with estimation of 
their rates of clonality and of selfing. 

Unusual selfing syndrome in Lgh populations 

Highly selfed populations of different plant species tend to share similar morphology and 
functions resulting in a set of traits called selfing syndrome, including reduced flower size (Darwin, 
1876; Tsuchimatsu & Fujii, 2022). Selfing syndrome, including reduced flower size, seems to 
evolve rapidly, as observed for example in five generations in Mimulus guttatus (Bodbyl Roels & 
Kelly, 2011), in four generations in Silene latifolia (Delph et al., 2004), in three generations in Phlox 
drummondii (Lendvai & Levin, 2003) and after only two generations in Eichhornia paniculata 
(Worley & Barrett, 2000). 

On the contrary, S-morph (SC) individuals in Lgh develop larger flowers than allogamous L-
morphs (Portillo Lemus et al., 2021). However, S-morph (SC) individuals and populations 
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dominantly reproduced using clonality and produced selfed offspring only when lacking crossed 
pollen. Both clonality and faster growth of crossed-pollen tubes may delay or even compromise 
the emergence of the first steps of a selfing syndrome. These two traits may call for further studies 
on the emergence of selfing syndrome in partially clonal and selfed populations.  

Conclusion 

We found that peripatric populations of Lgh in western Europe reproduced using dominant 
clonality with limited but stable significant sexuality with preferential outcrossing, in nearly all 
populations, within a large clonal diversity. Lgh is one of the most invasive aquatic plants in the 
world, and considerable efforts are made to limit its deleterious effects in the newly colonized 
ecosystems (Thouvenot et al., 2013; Grewell et al., 2016; Portillo Lemus et al., 2021). The rare 
sexual events, allogamous when possible, occurring in invasive peripatric populations of Lgh may 
favour the emergence of new genotypes, more adapted to local conditions. Managers should thus 
chiefly concentrate their actions on the most sexual populations, and on the contact zones between 
S- and L-morph populations in France. We also found variations of the rates of clonality and of 
selfing among Lgh populations. Considering the importance of reproductive modes on the 
dynamics and evolution of populations (Duminil et al., 2007; Ellegren & Galtier, 2016; Glémin et 
al., 2019), our results advocate that management actions should consider the local effective 
reproductive modes to control Lgh population by population. Finally, knowing the reproductive 
modes of populations, the distribution of clones and the self-compatibility across western European 
populations now allow deciphering and interpreting their population structure, identifying their 
origin and routes, and predicting their possible short-term dynamics. 

Data and Supplementary Information 

Supplementary information can be downloaded at https://doi.org/10.5281/zenodo.13610355. 
(Stoeckel et al., 2024b). Supporting data can be downloaded at 
https://doi.org/10.5281/zenodo.12760022 (Stoeckel et al., 2023).  
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