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Abstract
The Lotka-Volterra (LV) model is a simple, robust, and versatile model used to describelarge interacting systems such as food webs or microbiomes. The model consists of ncoupled differential equations linking the abundances of n different species. We con-sider a large random interaction matrix with independent entries and a block varianceprofile. The ith diagonal block represents the intra-community interaction in communityi, while the off-diagonal blocks represent the inter-community interactions. The varianceremains constant within each block, but may vary across blocks. We investigate the im-portant case of two communities of interacting species, study how interactions affecttheir respective equilibrium. We also describe equilibrium with feasibility (i.e., whetherthere exists an equilibrium with all species at non-zero abundances) and the existenceof an attrition phenomenon (some species may vanish) within each community. Informa-tion about the general case of b communities (b > 2) is provided in the appendix
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1. Introduction
Motivations. Understanding large ecosystems and the underlying mechanisms that support high
species diversity is amajor challenge in theoretical ecology. Since the 1950’s, understanding how
species can stably coexist has been the focus of both theoretical (Hanski, 1983; Levin, 1970;
MacArthur, 1955; Margalef, 1963; Roberts, 1974) and empirical studies (Leibold et al., 2017;
Saavedra et al., 2016; Soliveres et al., 2015). Motivated by the seminal work of May, 1972, the
introduction of randommatrices has been a keymathematical step inmodeling high-dimensional
ecosystems (Akjouj et al., 2024; Allesina and Tang, 2012; Stone, 2018). These tools have ex-
panded our ability to understand the nature of interactions and how food webs can recover
after small perturbations (stability) (Allesina and Tang, 2012; Tang et al., 2014). In the course of
the debate on the theory of species stable coexistence, a number of questions have emerged, in-
cluding the following: What are the conditions which enable many species to coexist, especially
regarding the structure of their interaction matrix?

Differential equations are frequently used in ecology to describe a system of interacting
species. One of themost commonmodels is the Lotka-Volterra (LV) model (Lotka, 1925; Volterra,
1926), which has been the subject of research in both ecology (Jansen, 1987; Law and Blackford,
1992; Wangersky, 1978) and mathematics (Goh, 1977; Goh and Jennings, 1977; Hofbauer and
Sigmund, 1998; Takeuchi, 1996; Taylor, 1988). Certain properties of this model, such as its stabil-
ity (Gibbs et al., 2018), have raised much interest. The conditions under which all species survive,
referred to as feasibility, have also motivated many works (Bizeul and Najim, 2021; Grilli et al.,
2017; Stone, 2018).

In nature, ecological networks are rather structured, and many studies have investigated the
network structures that contribute to the stability of a given community (Allesina et al., 2015;
Thébault and Fontaine, 2010). One common network structure is food web compartmentaliza-
tion, also known as modularity. The underlying concept is that the network is structured in the
form of groups of nodes that interact more strongly within their group andmoreweakly between
groups. Amathematical formulation of modularity was defined byNewman, 2006. Subsequently,
modularity has been of great importance in ecology (Guimerà et al., 2010), in complex networks
(Variano et al., 2004), and in community detection (for a complete review, see Fortunato, 2010).

May had already mentioned that a multi-community structure should improve stability (May,
1972), a hypothesis later investigated by Pimm, 1979. In the same framework as May, Grilli et al.,
2016 studied the effect of modularity on the stability of the Jacobian of a system, the so-called
“community matrix". However, studies show that modularity improves the persistence (:= non-
extinction of species, generally related to their resistance to external perturbations) of species
in the dynamical system (Stouffer and Bascompte, 2011).

In this article, we study the Lotka-Volterra model where we consider a block structure net-
work representing the inter- and intra-community interactions. Of particular interest are the
interactions between the communities that affect their respective equilibrium and stability.

Each block is identified by its interaction strength, which is the standard deviation of the
random part of the interactions. The idea that interaction strength plays a key role in the stability
of ecosystems was introduced by May, 1972. For the sake of mathematical simplicity, we limit
our model to two communities, although we can extend the model to more complex food webs
and multi-community frameworks.
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We study the existence and stability of an equilibrium, together with its properties. When an
attrition phenomenon occurs (some species may vanish), we describe the proportion of surviving
species and their distribution. We also provide conditions for which the equilibrium is feasible
(i.e., whether there exists an equilibrium with all species at non-zero abundances).
Known results. Building upon the insights gained from the model of May, 1972, an understand-
ing of the Lotka-Volterra model provides a foundation for in-depth analysis of the impact of
interactions on community dynamics. Scientists from diverse disciplinary backgrounds, includ-
ing mathematics, physics, and ecology, sought to investigate the intricacies of this complex or-
dinary differential equations system. The study of the stability of the Lotka-Volterra model has
constituted a central focus of research, as evidenced by the works of Stone, 2018 and Gibbs
et al., 2018, which have been complemented by Clenet et al., 2023 where they investigated the
properties of a stable equilibrium.

In fact, beyond the stability of the equilibria, the properties of these equilibria have been
the subject of central interest (Pettersson et al., 2020a,b; Serván et al., 2018), e.g. deriving the
number of surviving species. Moreover, the existence of a feasible equilibrium and its stability
have been demonstrated by Bizeul and Najim, 2021 where they establish that a threshold of
interaction strength exists beyond which equilibrium of the system is almost certainly feasible.
The methodology was further refined in the case of sparse interactions (Akjouj and Najim, 2022)
and a correlation profile (Clenet et al., 2022). In order to gain a more comprehensive understand-
ing of the LV model, Akjouj et al., 2024 conducted a comprehensive mathematical review of the
subject.

Lotka-Volterra model provides an interesting diversity of dynamical behaviors, with partial
mathematical knowledge. This is supplemented by methods from physics to improve the under-
standing on these various dynamical behaviors (properties of the equilibrium, out-of equilibrium
dynamics, model sophistication). Bunin, 2016 (Bunin, 2017) used the cavity methods to derive
the properties of the surviving species and the multiple attractors phase. Barbier et al., 2018
exhibits generic behaviors in complex communities.

Generating functional techniques for deriving similar mean-field equations to study the equi-
librium phase in the LV system was used by Galla, 2018 and extended by Poley et al., 2023 to
study the LV model in the case of a cascade interaction matrix.
Model and assumptions. The LV model is a standard model in ecology to study the dynamics of
a community of species over time. It is defined by a system of n differential equations
(1) dxk

dt
(t) = xk(t)


rk − xk(t) +

∑

ℓ∈[n]

Bkℓxℓ(t)


 , k ∈ [n] = {1, · · · , n} .

The abundance of species k at time t is represented by xk(t) with x = (x1, · · · , xn) the vector
of abundances. Parameter rk corresponds to the growth rate of species k . The intraspecific pa-
rameter has been set to 1 in accordance with the computations that were conducted in order to
obtain a dimensionless LV model (for further details, please refer to Remark 2.1 in Akjouj et al.,
2024). The coefficient Bkℓ represents the impact of species ℓ on species k . The n × n matrix
B = (Bkℓ), which represents the interaction network, is decomposed into a block structure. This
structure differentiates various groups of species in the form of communities that interact with
each other. On the one hand, the diagonal blocks of B correspond to interactions within each
community, each with its own interaction strength. On the other hand, the off-diagonal blocks
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correspond to the impact of the communities on each other. Analytically and within the frame-
work of two communities, the matrix B = (Bkℓ)n,n is defined by blocks using random matrices
Aij and interaction strengths sij :
(2) B =

1√
n

(
s11A11 s12A12

s21A21 s22A22

)
,

where the random matrix Aij is non-Hermitian of size |Ii | × |Ij | with standard Gaussian entries
i.e. N (0, 1). Here I1 = [n1] (resp. I2 = {n1 + 1, · · · , n}), the subset of [n] of size |I1| = n1 (resp
|I2| = n2 - here and below n = n1 + n2) matching the index of species belonging to community
1 (resp community 2). We define
(3) β = (β1,β2) where β1 =

n1
n

and β2 = 1 − β1 =
n2
n

.

The Gaussianity assumption simplifies the explanations, but can be relaxed under certain circum-
stances (see the series of remarks, specifically Remarks 2, 5 and 6, which can be found in their
respective sections for further details).

Notice a normalization parameter 1/
√
n in the matrix B . This enables the interaction matrix

B to have a macroscopic effect on system (1). By macroscopic effect, we mean that even if the
number of species n grows to infinity, the effect of matrix B in Eq. (1) remains noticeable (it does
not vanish, nor does it explode). This can be illustrated by the following asymptotic properties
of B (hereafter ∥ · ∥ stands for the spectral norm):

∥B∥ ∼ O(1) ; E


∑

ℓ∈[n]

Bkℓxℓ(t)


 ∼ O(1) ; Var


∑

ℓ∈[n]

Bkℓxℓ(t)


 ∼ O(1)

as n → ∞. These approximations are highly non trivial. The first one for instance is a general-
ization of the evaluation of the singular value of a matrix with i.i.d. entries and can be found in
(Ajanki et al., 2019). From an ecological perspective, this normalization has the following con-
sequence: an increase in the number of species does not yield a corresponding increase in the
overall strength of interactions between one species and all others, which order of magnitude
remains similar.

The relative strength of interactions within and between blocks is controlled by the four sijcoefficients, which can be grouped together in a matrix s:
s =

(
s11 s12

s21 s22

)
.

The diagonal terms (s11, s22) represent the interaction strength in each community. The off-
diagonal term s12 (resp. s21) represents the interaction strength of the impact of community 2

on community 1 (resp. community 1 on community 2). The lower the value of sij , the lower the
rates of interaction between species. Note that in the case of a unique community, s is the inter-
action strength coefficient, i.e. the standard deviation of the interspecific coefficients of the LV
model.
Remark 1. For the sake of simplicity, the results are presented in the case of two interacting
communities but can be extended to the case of b communities, see Appendix E.

There are two scenarios of interest: Let us consider two separate groups of species that
follow the dynamics described in model (1). The matrices Aij are each sampled once. In the first
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scenario, we consider a very weak interaction between the two communities
s =

(
1/2 ε

ε 1/2

)
, ε > 0 ,

and the intra-communities interactions were selected to be relatively small (Fig. 1a) in order to
observe that both communities’ dynamics converge to a feasible equilibrium, in which all species
survive (Fig. 1b). In the second scenario, we increase the interactions between the communities
(Fig. 2a), i.e. the standard deviation matrix is defined by

s =

(
1/2 1

1 1/2

)
.

In the case of a given inter-communities interaction realization, such as the one shown in Fig.
2, it is no longer possible for both communities to maintain the feasibility of all species. Some
species are likely to disappear (Fig. 2b).

(a) Interaction matrix (b) Abundance dynamics of two communities of five species
Figure 1 – Dynamics of the model (1) with 2 distinct communities of 5 species each andinteraction matrix given by (2). The two communities converge to their feasible equilib-rium point and do not interact. In Fig. (a), a heat map illustrates the interaction matrix(2). Figure (b) shows the dynamics where the species of each community reach a feasibleequilibrium.

Properties of the dynamical system. We are interested in the effect of a block structure on the
food web, limit our study to the 2-blocks case (2) and focus on the model with constant growth
rate1 rk = 1:
(4) dxk

dt
= xk (1 − xk + (Bx)k) , k ∈ [n] .

Ofmajor interest is the existence and uniqueness of an equilibrium x∗ = (x∗
k )k∈[n]. The LV system

is an autonomous differential system. If the initial conditions are positive i.e. x(0) > 0 (compo-
nentwise), it implies x(t) > 0 for every t > 0. However, some of the components xk(t) may
converge to zero if the equilibrium x∗ has components equal to zero. An equilibrium to the LV
1The simplifying assumption rk = 1 allows tractable computations and could be extended to rk = c with c > 0.However, if the growth rate is different for each species, the mathematical development and result may be stronglyaffected and will be discussed in a series of remarks, see Remarks 2, 5 and 6.
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(a) Interaction matrix (b) Abundance dynamics of two communities of five species
Figure 2 – Dynamics of Model (1) with 2 distinct communities of 5 species each withinteractionmatrix given by (2). In Fig. (a), representation of the interactionmatrix (2) whenthe interactions between the communities are strong. Fig. (b) shows the dynamics wherethe species of each community reach an equilibrium. Notice that there are vanishingspecies in each community.

system should hence satisfy the following set of constraints:
(5)





x∗
k (1 − x∗

k + (Bx∗)k) = 0 , ∀k ∈ [n] ,

x∗
k ≥ 0 .

Two substantially different situations arise, that we will study hereafter.
First, if x∗ has vanishing components, the equilibrium equations are cast into a nonlinear

optimization problem, which has been studied by Clenet et al., 2023 in the case of a single
community.

If the equilibrium is feasible, that is x∗ > 0, then the equilibrium set of equations becomes a
linear equation:
(6) x∗ = 1+ Bx∗ .

In the context of a single community, the existence of a positive solution has been studied by
Bizeul and Najim, 2021 and extended for more complex food webs in (Akjouj and Najim, 2022;
Clenet et al., 2022; Liu et al., 2023).

A further consideration which will be addressed is whether the equilibrium x∗ is asymptot-
ically globally stable, i.e. if for every initial vector x0 > 0 the solution of (4), which starts at
x(0) = x0, satisfies

x(t) −−−→
t→∞

x∗ .

In the sequel, the term “stability" will refer to “asymptotic stability".
Outline of the article. In Section 2,we describe sufficient conditions for the existence and unique-
ness of a stable equilibrium in the model (4), see Theorem 2.3. Section 3 is devoted to the study
of the properties of the species that survive in each of the communities described by two heuris-
tics. Heuristics 1 specify the properties of the surviving species and Heuristics 2 define the dis-
tribution of the surviving species. Finally, in Section 4 we provide conditions under which the
equilibrium is feasible, see Theorem 4.1.
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2. Existence of a unique equilibrium
In Figures 1 and 2, we notice that for different interaction coefficients s, the system con-

verges to an equilibrium (with or without vanishing species). Theorem 2.3 below will provide the
adequate theoretical framework.
2.1. Theoretical background
Non-invadability condition. The research of equilibrium points of (4) is equivalent to the identi-
fication of solutions of system (5). However, the number of potential solutions can be extremely
large. In order for the equilibrium x∗ to be stable, there exists a necessary condition, known in
ecology as the non-invadability condition (Law and Morton, 1996), namely that
(7) 1 − x∗

k + (Bx∗)k ≤ 0 , ∀k ∈ [n].

In model (4), the non-invadability condition for a given species whose values at equilibrium is
x∗
k = 0 is equivalent to
(8) (

1

xk

dxk
dt

)

xk→0+
≤ 0 .

Condition (8) describes the fact that if we add a species to the system at a very low abundance,
it will not be able to invade the system. As a consequence, the number of possible solutions
should solve the following set of constraints:
(9)





x∗
k (1 − x∗

k + (Bx∗)k) = 0 for k ∈ [n] ,

1 − x∗
k + (Bx∗)k ≤ 0 for k ∈ [n] ,

x∗ ≥ 0 componentwise .

This casts the search of a nonnegative equilibrium problem into the class of linear comple-
mentarity problems (LCP). For a reminder of the definition of an LCP problem, see for instance
(Clenet et al., 2023). In the following, we recall the main Theorem for proving the existence and
uniqueness of a single equilibrium.
The equilibrium x∗ and its stability. Let X⊤ be the transpose of the matrix X .
Definition 2.1 (Lyapunov diagonal stability). A matrix M is called Lyapunov diagonally stable,
denoted byM ∈ D, if and only if there exists a diagonal matrixD with positive diagonal elements
such that DM +M⊤D is negative definite, i.e. all eigenvalues are negative.

This class of matrix was already mentioned in Volterra’s historical paper (Volterra, 1931) and
in Logofet’s book (Logofet, 1993, Chap. 4), in relation with the stability of LV models.

Recall System (1) with different growth rates for each species and consider matrix B is arbi-
trary,
(10) d yk

dt
= yk(rk + ((−I + B)y)k) , k ∈ [n] .

The LCP associated with (10) is as follows
(11)





y∗
k (rk − y∗

k + (By∗)k) = 0 for k ∈ [n] ,

rk − y∗
k + (By∗)k ≤ 0 for k ∈ [n] ,

y∗ ≥ 0 componentwise .

Takeuchi, 1996, Th. 3.2.1 establish a criterion for the existence of a unique globally stable
equilibrium y∗ of (10).
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Theorem 2.2 (Takeuchi and Adachi, 1980). If −I + B ∈ D (see definition 2.1), then System (11)
admits a unique solution. In particular, for every r ∈ Rn, there is a unique equilibrium y∗ to (10), which
is globally stable in the sense that for every y0 > 0, the solution to (10) which starts at y(0) = y0satisfies: y(t) −−−→

t→∞
y∗.

2.2. Sufficient condition for the existence of an equilibrium in model (4)
As we rely on Theorem 2.2 to assert the existence of a unique equilibrium, we need to un-

derstand the asymptotic behaviour of the largest eigenvalue of matrix H = B+B⊤. In this quest,
the Stieltjes transform gµ of a probability measure µ on the real line

gµ(z) =

∫
dµ(λ)

λ − z
, z ∈ C+ = {z ∈ C, im(z) > 0}

is a well-known device in RandomMatrix Theory since Marchenko and Pastur’s groundbreaking
paper (Marčenko and Pastur, 1967). A key feature of the Stieltjes transform is that one can re-
construct probability measure µ knowing gµ, see Proposition 4.We recall some of the properties
of the Stieltjes transform in Appendix A (for more details, see (Bai and Silverstein, 2010)).

In the proof of Theorem 2.3, we shall use the fact, established in (Ajanki et al., 2019), that
the empirical measure of the eigenvalues of matrix H :

1

n

n∑

i=1

δλi (H)

is well approximated by a fully deterministic distributionwhose Stieltjes transformm(z) = 1
n

∑n
i=1mi (z)is defined via the vectorm(z) = (mi (z)) which is the unique solution of the equation

− 1

m(z)
= z + Sm(z) ,

carefully defined in the proof of Theorem 2.3 hereafter, see Eq. (12).
For a wide range of parameters (β, s) associated to matrix model B , we aim to ensure the

existence of a globally stable equilibrium x∗ of (4) associated to LCP (9). Denote by ∥x∥∞ the sup
norm of a vector and by ∥X∥∞ its induced operator norm, i.e.

∥x∥∞ = max
k∈[n]

|xk | and ∥X∥∞ = max
k∈[n]

n∑

ℓ=1

|Xkℓ| .

Let X ,Y be matrices of the same size, then X ◦Y is their Hadamard product i.e. (X ◦Y )ij = XijYijand consider
s ◦ s =

(
s211 s212
s221 s222

)
.

Theorem 2.3. Recall the definition of B in (2) and β in (3) and assume that
∥∥∥diag(β)

(
(s ◦ s) + (s ◦ s)⊤

)∥∥∥
∞

< 1 ,

then a.s. matrix (I − B) + (I − B)⊤ is eventually positive definite: with probability one, there exists
N depending on matrix B ’s realization such that for n ≥ N , (I − B) + (I − B)⊤ is positive definite.
In particular, −I + B ∈ D. There exists a unique vector solution to the LCP (9). This vector x∗ is the
unique (random) globally stable equilibrium of (4).
Remark 2. Theorem 2.3 can be extended in two directions. The Gaussianity assumption can be
relaxed to any reasonable distribution with finite second moment, and growth rates different
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from one i.e. rk ̸= 1 can be considered (see for instance Bizeul and Najim, 2021, Sections 4.2
and 4.3 in the context of a single community).

Sketch of proof. From Theorem 2.2, we need to verify the Lyapunov diagonally stable condition
of the matrix (−I + B) by analyzing its largest eigenvalue

(−I + B) + (−I + B⊤) = −2I +
1√
n

(
s11(A11 + A⊤

11) s12A12 + s21A
⊤
21

s21A21 + s12A
⊤
12 s22(A22 + A⊤

22)

)
.

Denote by H the symmetric matrix
H =

1√
n

(
H11 H12

H21 H22

)
=

1√
n

(
s11(A11 + A⊤

11) s12A12 + s21A
⊤
21

s21A21 + s12A
⊤
12 s22(A22 + A⊤

22)

)
,

whereHij is a matrix of size |Ii |×|Ij | and each off-diagonal entries follow a Gaussian distribution
N
(
0, s2ij + s2ji

) for all i , j ∈ {1, 2}.
A matrix is negative definite if and only if all its eigenvalues are negative. Note here that

−2I + H is negative definite if and only if the upper eigenvalue of H is less than 2. The goal of
the proof is to give a condition on the parameter s such that

λmax (H) < 2 .

Matrix H has a variance profile and such a model has been studied in great details by Erdös
et al. in (Ajanki et al., 2019; Ajanki et al., 2017). In particular many properties of its spectrum are
associated to properties of deterministic equations named Quadratic Vector Equations (QVE)
involving Stieltjes transforms associated to the empirical distribution of the eigenvalues of H .
These equations have n unknown quantities depending on z ∈ C+, stacked into a vector

m(z) = (m1(z), · · · ,mn(z)) ,

and related by the following system of equations (QVE):
k ∈ I1 , − 1

mk(z)
= z +

∑

ℓ∈I1

2s211
n

mℓ(z) +
∑

ℓ∈I2

1

n

(
s212 + s221

)
mℓ(z) ,

k ∈ I2 , − 1

mk(z)
= z +

∑

ℓ∈I1

1

n

(
s212 + s221

)
mℓ(z) +

∑

ℓ∈I2

2s222
n

mℓ(z) .

Denote by 1/m(z) = (1/m1(z), · · · , 1/mn(z))
⊤, 1Ii

a vector whose entries are 1’s of size |Ii | and
S =

1

n

(
2s2111I11

⊤
I1

(s212 + s221)1I11
⊤
I2

(s212 + s221)1I21
⊤
I1

2s2221I21
⊤
I2

)
,

the QVE equations can be written in the more compact form
(12) − 1

m(z)
= z + Sm(z) .

Following Theorem 2.1 in Ajanki et al., 2019, for all z ∈ C+, Equation (12) has a unique solution
m = m(z) and

1

n

n∑

i=1

mi (z)

is the Stieltjes transform of a probability measure, the support of which is included in [−Σ,Σ],
where Σ = 2 ∥S∥1/2

∞ .
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This information gives an asymptotic bound on the support of the matrix H associated with
(12), i.e. asymptotically ∀ ε > 0 there exists N depending on matrix B ’s realization, such that for
n ≥ N

λmax (H) ≤ 2 ∥S∥1/2
∞ + ε .

Recall that −2I + H is negative definite iff λmax (H) < 2. This condition is fulfilled if
2 ∥S∥1/2

∞ < 2 ,

or equivalently
∥S∥∞ < 1 .

Note that this condition is sufficient but not necessary. Given the particular shape of the matrix
S , computing its norm is equivalent to computing the norm of a matrix of size 2 × 2

∥S∥∞ =
∥∥∥diag(β)

(
(s ◦ s) + (s ◦ s)⊤

)∥∥∥
∞

=

∥∥∥∥∥

(
β1 0

0 β2

)(
2s211 s212 + s221

s212 + s221 2s222

)∥∥∥∥∥
∞

,

which completes the proof. We can then rely on Theorem 2.2 to conclude. □
Remark 3.

(1) In the context of a unique community, suppose that s = s11⊤, then the previous condi-
tion takes the simpler form s < 1/

√
2, a condition already mentionned in (Clenet et al.,

2023). Indeed, starting from the condition of Theorem 2.3, the condition on the matrix
is

∥∥∥∥∥∥

(
1/2 0

0 1/2

)1/2(
2s2 2s2

2s2 2s2

)(
1/2 0

0 1/2

)1/2
∥∥∥∥∥∥

∞

=

∥∥∥∥∥

(
1s2 1s2

1s2 1s2

)∥∥∥∥∥
∞

= 2s2 ,

The same sufficient condition is obtained 2s2 < 1 ⇔ s < 1/
√
2.

(2) The condition given in Theorem 2.3 is sufficient to guarantee a stable unique solution to
LCP (9) but not necessary. Even in the single community case, finding optimal thresholds
remains an open question (see Akjouj et al., 2024, Table 1).

3. Surviving species
In Section 2, we have given conditions on matrix s and on β = (β1,β2) for the existence of aglobally stable equilibrium x∗ to (4) under the non-invadability condition. The equilibrium vector

x∗ is random and depends on the realization of matrix B . Moreover since s has fixed components
and does not depend on n, the equilibrium x∗ will feature vanishing components (see the original
argument for a unique community in Dougoud et al., 2018 and the discussion in Bizeul andNajim,
2021). In an ecological context, we differentiate two kind of components in vector x∗, the non-
vanishing components x∗

k > 0 corresponding to surviving species and the vanishing ones x∗
k = 0

corresponding to the species going to extinction:
xk(t) −−−→

t→∞
0 .

Hereafter, we describe heuristics of the statistical properties of x∗: the proportion of surviving
species in each community, the distribution of the corresponding abundances, which turns out
to be a truncated Gaussian, etc.
3.1. Heuristics for the properties of surviving species

Starting from the model (4), the set of surviving species in community i ∈ {1, 2} is defined as
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S1 = {k ∈ I1, x
∗
k > 0} ; I1 = [1,β1n] ,

S2 = {k ∈ I2, x
∗
k > 0} ; I2 = [β1n + 1, n] .

Given the random equilibrium x∗, we introduce the following quantities for each community
i ∈ {1, 2}

p̂i =
|Si |
|Ii |

, m̂i =
1

|Si |
∑

k∈Ii

x∗
k , σ̂2

i =
1

|Si |
∑

k∈Ii

(x∗
k )

2 .

Quantity p̂i represents the proportion of surviving species in community i , m̂i the empirical mean
of the abundances of the surviving species in community i and σ̂2

i , the empirical mean square of
the surviving species in community i .

Denote by Z ∼ N (0, 1) a standard Gaussian random variable and byΦ the cumulative Gauss-
ian distribution function:

Φ(x) =

∫ x

−∞

e− u2

2√
2π

du .

In Heuristic 1, we derive the properties of surviving species, specifically the proportion of
surviving species and the mean square of surviving species. The presentation of these proper-
ties is illustrated in Fig. 3 through the use of numerical simulations to support this heuristic. In
addition, the technical details of how to obtain the heuristic are presented in the subsequent
paragraphs.

Heuristics 1. Let s be the 2 × 2 matrix of interaction strengths and assume that the condition of
Theorem 2.3 holds, then the following system of four equations and four unknowns (p1, p2,σ1,σ2)

p1 = 1 − Φ(δ1) ,(13)
p2 = 1 − Φ(δ2) ,(14)

(σ1)
2 = 1 + 2∆1E(Z |Z > δ1) + ∆2

1E(Z 2|Z > δ1) ,(15)
(σ2)

2 = 1 + 2∆2E(Z |Z > δ2) + ∆2
2E(Z 2|Z > δ2) ,(16)

where
(17) ∆i =

√
p1(σ1)2β1s2i1 + p2(σ2)2β2s2i2 and δi =

−1

∆i
,

admits a unique solution (p∗
1 , p

∗
2 ,σ

∗
1,σ

∗
2) and for i ∈ {1, 2}

(18) p̂i
a.s.−−−→

n→∞ p∗
i and σ̂i

a.s.−−−→
n→∞ σ∗

i .

In the sequel, denote by∆∗
i =

√
p∗
1(σ

∗
1)

2β1s2i1 + p∗
2(σ

∗
2)

2β2s2i2 and δ∗
i = −1/∆∗

i .

Remark 4. In Section 3.2, we explain how to establish Eq. (13)-(16). Both convergences in (18)
are part of the statement of the Heuristics and are justified by the fact that the starting points
to establish Eq. (13)-(16) are the empirical quantities p̂i and σ̂i .

There is a strong matching between the solutions obtained by solving (13)-(16) and their
empirical counterparts obtained by Monte-Carlo simulations. This is illustrated in Fig. 3.
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(a) Parameters (p∗
1 ,σ

∗
1 ) versus (s21, s12). (b) Parameters (p∗

2 ,σ
∗
2 ) versus (s21, s12).

Figure 3 – Comparison between the theoretical solutions (p∗
1 , p

∗
2 ,σ

∗
1 ,σ

∗
2 ) of (13)-(16) andtheir empirical Monte Carlo counterpart (the star marker) as functions of the off-diagonalblock interaction strength (s12, s21). The left column is associated to the properties ofcommunity 1. The right column is associated to the properties of community 2. Matrix Bhas size n = 500 and the number of Monte Carlo experiments is 500. The parameters are

s =

(
1/3 s12
s21 1/

√
2

)
, β =

(
1
2 ,

1
2

)
. When off-diagonal block interactions s12, s21 increase,

the proportion of surviving species p∗ decreases but the root mean square of their equi-librium abundances σ∗ increases. For any numerical details, please refer to Appendix B.1.

3.2. Construction of the heuristics
Obtaining information about the fixed point is equivalent to solving the LCP problem

x∗
k

(
1 − x∗

k +
n∑

ℓ=1

Bkℓx
∗
ℓ

)
= 0 , ∀k ∈ [n] .

Consider the random variables:
∀k ∈ [n], Žk =

∑

ℓ∈S1∪S2

Bkℓx
∗
ℓ .

Weassume that asymptotically the x∗
ℓ ’s are independent from theBkℓ’s, an assumption supported

by the chaos hypothesis, see for instance Geman and Hwang, 1982.
Denote by Ex∗ = E( · | x∗) the conditional expectation with respect to x∗. Notice that con-

ditionally to x∗, the Žk ’s are independent Gaussian random variables, whose first two moments
can easily be computed, see Appendix C for the details:

∀k ∈ Ii , Varx∗(Žk) ≃ p̂1σ̂
2
1β1s

2
i1 + p̂2σ̂

2
2β2s

2
i2 .

Notice that the fact that Varx∗(Žk) only depends on p̂1, p̂2, σ̂1, σ̂2. It is assumed that the esti-
mators, namely, p̂1, p̂2, σ̂1, σ̂2, are converging quantities when n → ∞ to their respective limits,
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p∗
1 , p

∗
2 ,σ

∗
1,σ

∗
2 . This assumption is consistent with the chaos hypothesis and is fundamental to the

derivation of the heuristics.
Recall that

∆∗
i =

√
p∗
1(σ

∗
1)

2β1s2i1 + p∗
2(σ

∗
2)

2β2s2i2 and δ∗
i =

−1

∆∗
i

.

Then the convergence of p̂1, p̂2, σ̂1, σ̂2 supports the idea that Žk is unconditionally a Gaussian
random variable with second moment:

Var(Žk) = (∆∗
i )

2 ,

where ∆∗
i corresponds to the average variance of the interactions on community i which de-

pends on four parameters p∗
1 , p

∗
2 ,σ

∗
1, σ∗

2 . We can introduce two families of standard Gaussian
random variables (Zk)k∈I1 and (Zk)k∈I2 :

∀k ∈ Ii , Zk =
Žk√

Var(Žk)
=

Žk

∆∗
i

.

Consider the equilibrium x∗ = (x∗
k )k∈[n], the definition of the LCP equilibrium implies if k ∈

S1 ∪ S2:
x∗
k (1 − x∗

k + (Bx∗)k) = 0 and 1 + (Bx∗)k = 1 + Žk > 0 .

We finally obtain the following relationship for the surviving species:
(19) x∗

k = 1 +∆∗
i Zk for k ∈ Si .

Note that ∆∗
i corresponds to the average variance of the interactions on community i .

Heuristics (13)-(14). We can write the first two equations:
P(x∗

k > 0 | k ∈ I1) = P(Zk > δ∗
1 | k ∈ I1) = 1 − Φ(δ∗

1) ,

P(x∗
k > 0 | k ∈ I2) = P(Zk > δ∗

2 | k ∈ I2) = 1 − Φ(δ∗
2) ,

and finally obtain (13) and (14):
p∗
1 = 1 − Φ(δ∗

1) and p∗
2 = 1 − Φ(δ∗

2) .

Heuristics (15)-(16). Our starting point is the following generic representation of an abundance
at equilibrium (either of a surviving or vanishing species) in the case k ∈ Si :

x∗
k = (1 +∆∗

i Zk) 1{Zk>δ∗
i } = 1{Zk>δ∗

i } + (∆∗
i Zk) 1{Zk>δ∗

i } .

Taking the square, we get:
(x∗

k )
2 = (1 +∆∗

i Zk)
2 1{Zk>δ∗

i } = 1{Zk>δ∗
i } + 2∆∗

i Zk1{Zk>δ∗
i } +

(
(∆∗

i )
2Z 2

k

)
1{Zk>δ∗

i } .

Summing over Si and normalizing, we get
1

|Si |
∑

k∈Si

(x∗
k )

2 =
1

|Si |
∑

k∈Si

1{Zk>−δ∗
i } + 2∆∗

i

1

|Si |
∑

k∈Si

Zk1{Zk>−δ∗
i } + (∆∗

i )
2 1

|Si |
∑

k∈Si

Z 2
k 1{Zk>δ∗

i } ,

σ̂2
i

(a)
= 1 + 2∆∗

i

|Ii |
|Si |

1

|Ii |
∑

k∈Ii

Zk1{Zk>δ∗
i } + (∆∗

i )
2 |Ii |
|Si |

1

|Ii |
∑

k∈Ii

Z 2
k 1{Zk>δ∗

i },

σ̂2
i

(b)≃ 1 + 2∆∗
i

1

P(Z > δ∗
i )
E(Z1{Z>δ∗

i }) + (∆∗
i )

2 1

P(Z > δ∗
i )
E(Z 21{Z>δ∗

i }),

σ̂2
i ≃ 1 + 2∆∗

i E(Z | Z > δ∗
i ) + (∆∗

i )
2E(Z 2 | Z > δ∗

i ).
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where (a) follows from the fact that |Si | =
∑

k∈Si
1{Zk>δ∗

i } (by definition of Si ), (b) from the law
of large numbers 1

|Ii |
∑

k∈Ii
Z j
k1{Zk>δi} −−−→

n→∞ EZ j1{Z>δ∗
i }, j = 1, 2 and |Si |

|Ii | −−−→
n→∞ P(Z > δ∗

i )with Z ∼ N (0, 1). It remains to replace σ̂i by its limit σ∗
i to obtain (15)-(16). We finally obtain the

third and fourth equations:

(σ∗
1)

2 = (1 + λ∗
1)

2 + 2(1 + λ∗
1)∆

∗
1E(Z | Z > δ∗

1) + (∆∗
1)

2E(Z 2 | Z > δ∗
1) ,

(σ∗
2)

2 = (1 + λ∗
2)

2 + 2(1 + λ∗
2)∆

∗
2E(Z | Z > δ∗

2) + (∆∗
2)

2E(Z 2 | Z > δ∗
2) .

3.3. General properties of the ecosystem
The properties at equilibrium, such as the proportion and mean square of the abundance of

surviving species, can be computed for each community by solving the system of equations in
Heuristics 1. An additional property, the mean abundance of the surviving species at equilibrium
for each community (m∗

1,m
∗
2), can be calculated using a method similar to the mean square of

the abundances (see Appendix C.2 for the details of the computations).
m∗

1 = 1 +∆∗
1E(Z |Z > δ∗

1) ,(20)
m∗

2 = 1 +∆∗
2E(Z |Z > δ∗

2) .(21)
The two equations are not necessary for solving Heuristics 1, but they provide new information.
In particular, strong inter- or intra-community interactions increase the mean abundance of the
surviving species (see Fig. 4).

Conditional on each community, one can easily extend the properties of each community to
the whole ecosystem. We denote by p∗ the proportion, (σ∗)2 the mean square andm∗ the mean
of surviving species. We observe the linear effect of community size β on general properties:

(1) Proportion of surviving species.
P(x∗

k > 0) = P(x∗
k > 0 | k ∈ I1)P(k ∈ I1) + P(x∗

k > 0 | k ∈ I2)P(k ∈ I2) ,

p∗ = p∗
1β1 + p∗

2β2 .

(2) Mean square of the abundance of the surviving species.
E((x∗

k )
2) = E((x∗

k )
2 | k ∈ I1)P(k ∈ I1) + E((x∗

k )
2 | k ∈ I2)P(k ∈ I2) ,

(σ∗)2 = (σ∗
1)

2β1 + (σ∗
2)

2β2 .

(3) Mean of the abundance of the surviving species
E(x∗

k ) = E(x∗
k | k ∈ I1)P(k ∈ I1) + E(x∗

k | k ∈ I2)P(k ∈ I2) ,

m∗ = m∗
1β1 +m∗

2β2 .

This linear relationship illustrates that the impact of an ecological community on the benefits
of the entire ecosystem is directly proportional to its size. In other words, a larger ecological
community will have a greater influence on the ecosystem than a smaller ecological community.
3.4. Distribution of the surviving species

Wemay recall the following representation of the abundance x∗
k of a surviving species when

k ∈ Si :
x∗
k = 1 +∆∗

i Zk if k ∈ Si ,
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where Zk ∼ N (0, 1) and Zk > δ∗
i = δi (p

∗
i ,σ

∗
i ) defined in (19). This representation allows to

characterize the distribution of x∗
k of each community. It turns out that the surviving species of

each community follow a truncated Gaussian distribution.
Heuristics 2. Let s be the 2 × 2 matrix of interaction strengths and assume that the condition of
Theorem 2.3 holds and let (p∗

1 , p
∗
2 ,σ

∗
1,σ

∗
2) be the solution of the system (13)-(16). Recall the definition

(17) of ∆i and δi and denote by δ∗
i = δi (p

∗
i ,σ

∗
i ) and ∆∗

i = ∆i (p
∗
i ,σ

∗
i ). Let x∗

k > 0 be a positive
component of x∗ belonging to the community i , then the law of x∗

k is
L(x∗

k ) −−−→
n→∞ L (1 + ∆∗

i Z | Z > δ∗
i ) ,

where Z ∼ N (0, 1). Otherwise stated, asymptotically for k ∈ Si , x
∗
k admits the following density

(22) fk(y) =
1{y>0}
Φ(−δ∗

i )

1

∆∗
i

√
2π

exp



−1

2

(
y

∆∗
i

+ δ∗
i

)2


 .

The heuristics are derived from the fact that, from equation (19), if x∗
k is a surviving species

and k ∈ Si then
x∗
k = 1 +∆∗

i Zk ,

conditionally on the fact that the right-hand side of the equation is positive, that is Zk > δ∗
i . Asimple change of variable yields the density - details are provided in Appendix C.

Fig. 4 illustrates the matching between the theoretical distribution obtained by equation (22)
and a histogram obtained by generating the interaction matrix for 2 communities. In Fig. 5, the
validity of heuristics in the case of non-Gaussian entries is illustrated.
Remark 5. The proof relies on the Gaussianity assumption, but we are convinced that it could
be extended beyond. In particular, in Figure 5, non-Gaussian entries centered E(Bkℓ) = 0 with
variance one E(|Bkℓ|2) = 1 are considered. The distribution of surviving species still fits the
truncated Gaussian in this case.

4. Feasibility
Recall s the interaction parameter in the case of a unique community. According to the work

of Dougoud et al., 2018, if s is fixed (i.e. does not depend on n) then there can be no feasible
equilibrium at large n. Following this work, Bizeul and Najim, 2021 provided the appropriate nor-
malization of s to have a feasible equilibrium. The threshold corresponds to s ∼ 1/

√
2 log(n). The

equilibrium is feasible almost surely when s is less than this threshold value, i.e. when elements
of randommatrixB are divided by√2n log(n) or a larger factor. Some extensions of these results
have been made in the sparse case (Akjouj and Najim, 2022) and with a mean and pairwise cor-
related entries (Clenet et al., 2022). In this section, conditions are given on the matrices s to get
a feasible equilibrium in each community, called co-feasibility. We then provide some ecological
interpretations.
4.1. Theoretical analysis of the threshold

Recall the notation x = (xk)k∈[n] and denote by ∥x∥∞ = max
k∈[n]

|xk |. We are interested in the
existence of a feasible solution of the fixed point problem associated with the model (4). To
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Figure 4 – Distribution of surviving species in each community. The x-axis representsthe value of the abundances and the histogram is built upon the positive componentsof equilibrium x∗ associated to each community. The blue-solid line (resp. red-solid line)represents the theoretical distribution of community 1 (resp. community 2) for parame-ters s as given by Heuristics 2. The blue-dashed vertical line (resp. red-dashed verticalline) corresponds to the mean abundance of community 1 (resp. community 2) given byequations (20)-(21). All the matrix entries Aij ’s are independent Gaussian N (0, 1); the pa-
rameters are set to n = 2000, β = (0.75, 0.25) and s =

(
1/2 1/

√
2

1/5 1/9

)
.

consider this problem, we extend the computations of Bizeul and Najim in the framework of a
block structure network. Consider s such that I − B is invertible. The problem is defined by
(23) x∗ = 1+ Bx∗ ⇔ x∗ = (I − B)−11 ,

The problem (23) admits a unique solution.We consider amatrix swhich depends on n, i.e. s = snsuch that:
sn −−−→

n→∞ 0 ⇔ ∀ i , j ∈ {1, 2} , sij −−−→
n→∞ 0 .

Note that for sufficiently large n, the problem satisfies the sufficient condition of Theorem 2.3
to have a unique globally stable equilibrium, which in this case is a feasible equilibrium.

Let matrix Bn depending on the interaction matrix sn defined by
(24) Bn = V snV

⊤ ◦ 1√
n

(
A11 A12

A21 A22

)
,

where
V ∈ Mn×2, V =

(
1I1 0

0 1I2

)
.

The spectral radius of 1√
n

(
A11 A12

A21 A22

)
a.s. converges to 1 due to the circular law (Tao et al., 2010).

So as long as sn is close to zero, the matrix I − Bn is eventually (for large enough values of n)
invertible.
Theorem 4.1 (Co-feasibility for the 2-blocks model). Assume that matrix Bn is defined by the 2-
blocks model (24). Let β = (β1,β2), β1 + β2 = 1 represents the proportion of each community. Let
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Figure 5 – Distribution of surviving species in each community with non-Gaussian en-tries. The x-axis represents the value of the abundances. The histogram is built uponthe positive components of equilibrium x∗ associated to each community. (blue for com-munity 1, red for community 2). The solid lines represent the theoretical distributionsassociated to parameters s as given by Heuristics 2. The blue-dashed vertical line (resp.red-dashed vertical line) corresponds to the mean abundance of community 1 (resp. com-munity 2). The entries of the Aij matrices are uniform U(−
√
3,

√
3) with variance 1 and

the parameters are set to n = 2000, β = (0.5, 0.5) and s =

(
1/2 2/3
1/3 1/4

)
. Notice in particu-

lar that the histogram is well predicted by the theoretical distributions even if the entriesare non-Gaussian.

sn −−−→
n→∞ 0 and denote by s∗

n = 1/
√
2 log n the critical threshold. Let xn = (xk)k∈[n] be the solution of(23).

(1) If there exists ε > 0 such that eventually ∥∥∥(sn ◦ sn)β
⊤
∥∥∥

∞
≥ (1 + ε)(s∗

n)
2 then

P
{
min
k∈[n]

xk > 0

}
−−−→
n→∞ 0 .

(2) If there exists ε > 0 such that eventually ∥∥∥(sn ◦ sn)β
⊤
∥∥∥

∞
≤ (1 − ε)(s∗

n)
2 then

P
{
min
k∈[n]

xk > 0

}
−−−→
n→∞ 1 .

Following and adapting the ideas developed in Bizeul and Najim, 2021, this theorem could
be proved mathematically in full detail. We rather focus on the main ideas and provide a sketch
of proof in Appendix D. The extension to the b-blocks case can be found in Appendix E.
Remark 6. Proof of Theorem 4.1 strongly depends on the assumption of Gaussianity and equal
growth rates of each species. However, according to the approach of Bizeul and Najim, 2021,
these assumptions could be relaxed. In particular, the phenomenon seems to be universal, i.e.
the feasibility threshold works for a wide range of distribution choices.
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In the critical regime s ∝ 1/
√
log(n) or equivalently s−1 ∝

√
log(n). We thus introduce matrix

κ defined by
κ =

1√
log(n)

(
s−1
11 s−1

12

s−1
21 s−1

22

)
.

Notice that at criticality κ will be of order O(1). This will be convenient for ecological interpre-
tations. Using the inequality of Theorem 4.1, the co-feasibility condition on κ writes
(25) ∥∥∥(sn ◦ sn)β

⊤
∥∥∥

∞
< (s∗

n)
2 ⇔ max

(
2β1

κ2
11

+
2β2

κ2
12

,
2β1

κ2
21

+
2β2

κ2
22

)
< 1 .

If for i = 1, 2, βi = 1
2 and the entry of the matrix κ are equal, then condition (25) gives the

threshold κij >
√
2, and we recover the same critical threshold√2 log(n) as in Bizeul and Najim,

2021.

Remark 7. Assume κ11 = κ22 = ν1 and κ12 = κ21 = ν2, condition (25) is reformulated as:
max

(
2β1

ν2
1

+
2β2

ν2
2

,
2β1

ν2
2

+
2β2

ν2
1

)
< 1 .

If β1,β2 and ν2 are fixed, then the phase transition on the intra-community interactions occurs
at

ν1 > min



√√√√ β1

1
2 − β2

ν2
2

,

√√√√ β2

1
2 − β1

ν2
2


 .

In Fig. 6, the phase transition is represented for a selected set of parameters. Note that the
transition is rather smooth. The threshold depends on ν2. Increasing ν2 (decreasing the inter-
block interactions) lowers the co-feasibility threshold to at least 1 (for communities of the same
size).
4.2. Preservation of co-feasibility

Equation (25) defines a “co-feasibility domain" and gives a constraint in five dimensions. Re-
call that β1 = 1 − β2, the two communities of species can be studied independently i.e. the two
components of equation (25) respectively give the feasibility condition for each community:





If 2β1

κ2
11

+ 2β2

κ2
12

< 1, then community 1 is feasible.
If 2β1

κ2
21

+ 2β2

κ2
22

< 1, then community 2 is feasible.
The first community (resp. the second one) will be affected by changing κ11, κ12 (resp. κ21, κ22). Ingeneral, increasing the inter- or intra- interaction strength will decrease the probability of having
a co-feasible equilibrium.

If κ12 = κ21 = ∞, then condition (25) gives the co-feasibility conditions for each community:
s11 <

1√
2β1 log(n)

and s22 <
1√

2β2 log(n)
.

For the same s , it means
s <

1√
2 log(n)max(β1,β2)

.

As an example of application, suppose we start with co-feasible communities of equal size
(β1 = β2 = 0.5) and add interactions between these two groups, co-feasibility may be dropped
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Figure 6 – Transition towards co-feasibility for the 2-blocks model (2). For each value ν1on the x-axis, we simulate 500 matrices B of size n = 5000 with two communities of thesame size (β1 = β2 = 0.5) with the inter-block interactions fixed at s21(ν2) = s21(ν2) =

1/2
√

log(n) and compute the solution x of Theorem 4.1 at the scaling for the intra-blockinteractions s11(ν1) = s22(ν1) = 1/ν1
√
log(n). The curve represents the proportion offeasible solutions x obtained for the 500 simulations. The dotdashed vertical line corre-sponds to ν1 =

√
β1

1
2 − β2

ν2
2

= 2/
√
3.

(see Fig. 2). The co-feasibility domain is illustrated in Fig. 7. It shows a threshold where the co-
feasibility property is satisfied above the curve. This means that the lower the values of κ11 and
κ22, i.e. the stronger the interactions within the groups, themore likely the co-feasibility property
is lost. We can conclude that an independent group structure is more likely to be co-feasible and
therefore stable, which supports previous work on compartmentalization models (Stouffer and
Bascompte, 2011).
4.3. Impact of the community size

For a fixed matrix κ, the condition to have a co-feasible fixed point can be computed as a
function of the size of each community i.e. the pair β = (β1,β2). Starting from the co-feasibility
inequality (25):

max

(
2β1

κ2
11

+
2β2

κ2
12

,
2β1

κ2
21

+
2β2

κ2
22

)
< 1 ,

the two components are studied independently,
2β1

κ2
11

+
2(1 − β1)

κ2
12

< 1 ⇔ β1

(
2

κ2
11

− 2

κ2
12

)
< 1− 2

κ2
12

⇒ β1 <
1 − 2

κ2
12(

2
κ2
11

− 2
κ2
12

) if κ11 < κ12 .

Similarly, one has
√

2β1

κ2
21

+
2(1 − β1)

κ2
22

< 1 ⇒ β1 >
1 − 2

κ2
22(

2
κ2
21

− 2
κ2
22

) if κ22 < κ21 .
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Figure 7 – Representation of the co-feasibility phase diagram. The co-feasible domain isabove the surface. The z-axis (resp x-axis) is the strength of interactionwithin community1 - κ11 (resp community 2 - κ22). The y-axis is the inter-community interactions κ12 = κ21.The colored area, where the gradient of color represents the strength of inter-communityinteractions (same values of the y-axis), illustrates the threshold between the co-feasibleand non-co-feasible domains in the system (4).

In the casewhere the intra-community interactions (κ11 , κ22) are smaller than the inter-community
interactions (κ12 , κ21), we obtain an upper and a lower bound for the admissible size of each
community β1,β2 to have a co-feasible equilibrium. In Fig. 8, different cases of the co-feasibility
zone are represented according to the inter-community interactions (κ12 , κ21). If the intra-community
interactions are different, the community with the lowest interaction κii is advantaged i.e. the
size of the community can be larger.

Remark 8. If (κ11,κ22) are greater than (κ12,κ21), there may be different situations depending
on the value of (κ11,κ22), i.e. if (κ11,κ22) >

√
2 are large, we can have co-feasibility (see Fig.9a),

whereas if (κ11,κ22) are small, we may not have co-feasibility (see Fig. 9b). From a biological
perspective, we believe that the case (κ11,κ22) smaller than (κ12,κ21) is more significant because
the interactions within each community are stronger than those between communities.
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(a) κ11 = 1.2, κ22 = 1.2 (b) κ11 = 1.2, κ22 = 1.4 (c) κ11 = 1.4, κ22 = 0.9

Figure 8 – Representation of the co-feasibility domain depending on the fixed intra-community interaction. In (a), (b), (c), a different scenario of intra-community interactionis presented. Each panel represents the upper-bound (blue curve) and the lower-bound(red curve) of the size of community 1 as a function of the interaction between two com-munities (κ12,κ21). The blue area is the admissible zone to have a co-feasible fixed pointin (4). The size of community 2 is equal to β2 = 1 − β1.

(a) κ11 = 2, κ22 = 2 (b) κ11 = 1.2, κ22 = 1.2

Figure 9 – Representation of the co-feasibility domain depending on the fixed intra-community interaction in the case where (κ11,κ22) can be smaller than (κ12,κ21). Eachpanel represents the upper-bound (blue curve) and the lower-bound (red curve) of thesize of community 1 as a function of the interaction between two communities (κ12,κ21).The blue area is the admissible zone to have a co-feasible fixed point in (4). The dashedline represents the threshold value of (κ11,κ22). The size of community 2 is equal to
β2 = 1 − β1. In (a), we present a scenario of intra-community interaction where the val-ues of (κ11,κ22) = 2 are large. In (b), we present a scenario of intra-community interactionwhere the values of (κ11,κ22) = 1.2 are small.

4.4. Connection increases co-feasibility
In Section 4.2, we analyzed the co-feasibility condition for a scenario involving two commu-

nities. We presented a co-feasibility domain defined by
∥∥∥(sn ◦ sn)β

⊤
∥∥∥

∞
<

1

2 log(n)
:= (s∗

n)
2 ,

⇔ max
(
β1s

2
11 + β2s

2
12,β1s

2
21 + β2s

2
22

)
<

1

2 log(n)
,

⇔ β1s
2
11 + β2s

2
12 <

1

2 log(n)
and β1s

2
21 + β2s

2
22 <

1

2 log(n)
.(26)

These two distinct conditions within the communities have led us to the conclusion that com-
munity isolation is beneficial for coexistence. However, general constraints that affect all inter-
actions could be considered at the ecosystem scale. To this end, we introduce a complementary
condition: the global variance of the interaction coefficients in the ecosystem remains invariant,
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i.e.
β1s

2
11 + β2s

2
12 + β1s

2
21 + β2s

2
22 = Γ ,

with Γ > 0.
In order to remove the n dependency, we define γ2

ij = s2ij log(n) and Γn = Γ log(n) (note that
the γ coefficients are defined differently from the κ coefficients). Combined with condition (26),
we get the following system of equations:

(27)




β1γ
2
11 + β2γ

2
12 + β1γ

2
21 + β2γ

2
22 = Γn ,

2β1γ
2
11 + 2β2γ

2
12 < 1, (feasibility condition for community 1) ,

2β1γ
2
21 + 2β2γ

2
22 < 1, (feasibility condition for community 2) .

Assuming the fixed intra-community variances γ11 and γ22, we seek to determine the co-feasibility
conditions for the inter-community variances γ12 and γ21. In this case, the constraint on the totalvariance corresponds to the equation of an ellipse in the (γ12, γ21) plane:

β1γ
2
11 + β2γ

2
12 + β1γ

2
21 + β2γ

2
22 = Γn ,

⇔
(

β2

Γn − β1γ2
11 − β2γ2

22

)
γ2
12 +

(
β1

Γn − β1γ2
11 − β2γ2

22

)
γ2
21 = 1 ,

The equations below provide the values for the semi-major axis a and the semi-minor axis b of
the ellipse:

a =

√
Γn − β1γ2

11 − β2γ2
22

β2
, b =

√
Γn − β1γ2

11 − β2γ2
22

β1
.

Note that if both communities are of equal size (β1 = β2), a circle with radius a is obtained.
From a visual standpoint, the conditions (27) are depicted in Figure 10. Since the coefficients

(γ12, γ21) are non-negative, we are only interested in the positive orthant. The feasibility condi-
tion for community 1 is given by the horizontal axis defined by

2β1γ
2
11 + 2β2γ

2
12 < 1 ⇔ γ12 <

√
1 − 2β1γ2

11

2β2
,

and the one of community 2 is given by the vertical axis defined by
2β1γ

2
21 + 2β2γ

2
22 < 1 ⇔ γ21 <

√
1 − 2β2γ2

22

2β1
.

The intersection between the vertical (resp. horizontal) line and the ellipse occurs when the
semi-major axis (resp. semi-minor axis) exceeds the vertical condition a >

√
(1 − 2β1γ2

11)/(2β2)

(resp. horizontal condition b >
√
(1 − 2β2γ2

22)/(2β1)).
Remark 9. By replacing the feasibility condition of γ21 in the equation of the ellipse, we can
derive the intersection between the vertical axis and the ellipse as follows:

γ2
21 =

Γn − β2γ
2
22 − 1/2

β1
,

equivalent to the feasibility condition of γ12 (by replacing Γn):
γ12 <

√
1 − 2β1γ2

11

2β2
.
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We identify the range of co-feasibility between the two groups for γ21

Γn − β2γ
2
22 − 1/2

β1
< γ2

21 <
1 − 2β2γ

2
22

2β1
.

This simple framework allows for testing different scenarios. Figure 10a is the reference fig-
ure. It represents a situation where all the potential interactions between communities lead to
co-feasibility. In Figure 10b, the total system variance is increased, which results in a reduction of
co-feasibility options: the interactions between the two communities must be high γ12, γ21 ≫ 0.
When the intra-community variances are increased as shown in Figure 10c, the ellipse shrinks,
and the set of inter-community interaction variances is reduced. This observation reinforces
the findings of Section 4.2 where large interaction between communities enables co-feasibility
through community isolation. In the concluding example in Figure 10d, we reduce only the γ11 in-teraction in community 1. We observe that the impact of community 1 on 2 γ21 must be weaker,
but the impact of community 2 on 1 γ12 can no longer be weak. Weaker interactions within
community 1 imply a stronger connection between the communities for co-feasibility.

(a) γ11 = γ22 = 0.5, Γn = 0.6. (b) γ11 = γ22 = 0.5, Γn = 0.8.

(c) γ11 = γ22 = 0.7, Γn = 0.6. (d) γ11 = 0.2, γ22 = 0.5, Γn = 0.6.
Figure 10 – Graphical representation of equation system (27). The solid line circle con-strains the total variance of the system (equation 1 in (27)), while the dashed and dottedlines correspond to feasibility conditions for community 1 (equation 2 in (27)) and 2 (equa-tion 3 in (27)), respectively. In each figure, two communities of equal size are consideredwith β1 = β2 = 1/2, creating the solid line circle (rather than an ellipse) in this particu-lar case. Each figure illustrates a distinct interaction situation between two communitiesoutlined in the caption. Figure (a) serves as the reference against which the other figures(b)-(c)-(d) are compared. The co-feasibility arises only for the values of (γ12, γ21) on theline found within the inner square at the bottom left-hand corner of the figure. Whenvalues of (γ12, γ21) on the line are outside this inner square, then one or the other com-munity is not feasible anymore.

Maxime Clenet et al. 23

Peer Community Journal, Vol. 4 (2024), article e86 https://doi.org/10.24072/pcjournal.460

https://doi.org/10.24072/pcjournal.460


5. Discussion and perspectives
In this paper, we described a model of the dynamics of species abundances when the inter-

action among species is structured in multiple communities. The main interest is to outline the
effect of a block structure on the stability and persistence of species. We defined an interac-
tion matrix per block which has several characteristics such as the strength of the interactions
s and the size of the community β. Specifically, we described the dynamics and properties of
each community in the system (feasibility, proportion of surviving species, mean and root mean
square of the abundances of surviving species) and their effect on each other. In this context, we
focused most of our analysis on the case of two interacting communities. However, our results
can be extended to more than 2 communities (see Appendix E).

First, theoretical conditions were given for a unique globally stable equilibrium in the model
(4) with surviving and vanishing species. This follows from Lyapunov conditions related to a result
of Takeuchi and Adachi, 1980 and random matrix theory. These stability results had been found
in the case of a single community byClenet et al., 2023. This complements the stability properties
in the Lotka-Volterra system studied by Stone, 2018 and Gibbs et al., 2018. Recent random
matrix methods allow us to describe the spectrum of a block matrix and plot it numerically. For
a detailed discussion of random matrices in the Lotka-Volterra model, see Akjouj et al., 2024.

Subsequently, we gave heuristics on the surviving species (proportion, mean and root mean
square of their abundances). These heuristics have also been found in the case of a single commu-
nity by Clenet et al., 2023. From a physicist’s point of view and using themethods of Bunin, 2017
and Galla, 2018, Barbier et al., 2018 and Poley et al., 2023 have extended the heuristics in the
block and cascade model. Previously, obtaining properties on surviving species in the LV model
(not normalized by √

n) was already done by Serván et al., 2018 where they consider a different
growth rate for each species. The study of the stability and properties of surviving species in the
LV system has also been carried out by Pettersson et al., 2020a,b. From an ecological point of
view, heuristics are derived from the properties of interactions between multiple communities.

In a third part, we studied the condition under which the feasibility threshold exists where all
species coexist.We extend the feasibility results found by Bizeul andNajim, 2021 in the case of a
block structure. A co-feasibility thresholdwas found in the form of an inequality thatmust be ver-
ified to have a feasible community set. This complements the recent results on interactions with
a sparse structure (Akjouj and Najim, 2022) and interactions with a correlation profile (Clenet et
al., 2022). We notice that to maximize the probability of co-feasibility, we need to minimize the
interactions between the communities. Additionally, a community with weaker interactions can
exhibit a larger total abundance in the ecosystem while maintaining the co-feasibility threshold.
At the ecosystem level, when a generic constraint that affects all interactions is added, weaker
interactions within one of the communities suggest a stronger connection between the commu-
nities for co-feasibility.

There are still many mathematical and ecological questions that remain unanswered in this
type of model.

First, a rigorous mathematical proof of the heuristics presented here would be of interest,
although the LCP procedure induces an a priori statistical bias that is difficult to handle. This issue
is still pending in the single community case (Clenet et al., 2023) and appears to be challenging
to address. Recently, Akjouj et al., 2023 provided a rigorous proof using an approximate message
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passing (AMP) approach in the single community model with an interaction matrix taken from
the Gaussian Orthogonal Ensemble (GOE). Their approach was based on work by Hachem, 2024.

Second, we could extend the heuristics for two different scenarios. On the one hand, it would
be interesting to add pairwise correlations between species coefficients Aij . This has alreadybeen done by physicists, see Barbier et al., 2018; Poley et al., 2023. In the study of feasibility,
it was shown that a correlation profile does not change the feasibility threshold (Clenet et al.,
2022). On the other hand, for the sake of simplicity, we have chosen to set the growth rates
equal to the same value rk = 1 for k ∈ [n]. It would be relevant to control the distribution of the
growth rate as in Serván et al., 2018 or to consider structural stability as in Saavedra et al., 2017,
i.e. how much can the growth rates be perturbed (initially all equal to 1) without changing the
type of equilibrium x∗ obtained.

There are many applications of this kind of models in ecology. We could consider a spatial
structure that accounts for spatial proximity in the sense that two nearby communities tend
to be more strongly connected. For example, in an aquatic environment, we could imagine the
existence of an up/down gradient in a water column. Fig. 11 illustrates a situation where three
communities are involved.

(a) (b)
Figure 11 – In (a), a representation of the gradient of interaction between three communi-ties in a water column is represented. The blue arrows correspond to strong interactionstrength due to their spatial proximity. On the opposite, the communities 1 and 3 areseparated, the green arrow represents a weaker interaction. In (b), the block matrix asso-ciated with this type of model is displayed. The colors of the blocks corresponds to thecolors of the arrows. The red colored block corresponds to intra-community interactions.

Originally introduced by Paine, 1966, 1969, the concept of keystone species is widely used
in ecology i.e. one species controls the coexistence of the others and species are lost after the
removal of this keystone species. Mouquet et al., 2013 suggested extending the concept of
keystone species to communities. In the block system, one could analyze the existence of a key-
stone community that would have disproportionately large effect on other communities. In a
metacommunity dynamic, Resetarits et al., 2018 have explored the concept of keystone com-
munities, where some patches have stronger effect on others.

One could imagine that the same species is present several times in the system, but in differ-
ent blocks, see Gravel et al., 2016. In this case, the inter-blocks represent interactions between
spatially isolated communities (so should be less strong). If each diagonal or non-diagonal block
is a copy of the same interaction pattern (possibly slightly perturbed) and we can add linear ef-
fects to the system to represent emigration and immigration, then we could study the feasibility
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properties of this system. In Gravel et al., 2016, they found that stability is most likely when
dispersal (which controls off-diagonal blocks) is intermediate.

Last but not least, it would be relevant to compare the patterns obtainedwith data in ecology,
as in the recent article by Hu et al., 2022 in the case of a single community.
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