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Abstract
Stochastic cellular automata (SCA) are models that describe spatial dynamics using a grid of
cells that switch between discrete states over time. They are widely used to understand how
small-scale processes scale up to affect ecological dynamics at larger spatial scales, and have
been applied to a wide diversity of theoretical and applied problems in all systems, such as arid
ecosystems, coral reefs, forests, bacteria, or urban growth. Despite their wide applications, SCA
implementations are often ad-hoc, lacking performance, guarantees of correctness and poorly
reproducible. De novo implementation of SCA for each specific system and application also rep-
resents a major barrier for many practitioners. To provide a unifying, well-tested technical basis
to this class of models and facilitate their implementation, we built chouca, an R package that
translates definitions of SCA models into compiled code, and runs simulations in an efficient
way. chouca supports SCA based on rectangular grids where transition probabilities are defined
for each cell, with performance typically two to three orders of magnitude above typical imple-
mentations in interpreted languages (e.g. R, Python), all while maintaining an intuitive interface
in the R environment. Exact and mean-field simulations can be run, and both numerical and
graphical results can be easily exported. Besides providing better reproducibility and accessibil-
ity, a fast engine for SCA unlocks novel, computationally intensive statistical approaches, such
as simulation-based inference of ecological interactions from field data, which represents by it-
self an important avenue for research. By providing an easy and efficient entry point to SCAs,
chouca lowers the bar to the use of this class of models for ecologists, managers and general
practitioners, providing a leveled-off reproducible platformwhile opening novel methodological
approaches.
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Introduction 

The analysis of spatial patterns has proven essential to understand ecological system dynamics, and 

various modelling approaches have helped ground empirical patterns into ecological theory. Among 

such approaches, models based on Stochastic Cellular Automata (hereafter SCA), also called 

Probabilistic or Random Cellular Automata, or Locally-interacting Markov Chains, have been a 

particularly useful, heuristic and widely used approach (Wolfram, 1984; Louis & Nardi, 2018). Cellular 

automata are based on a grid of cells that switch over time between a finite number of states. Most often, 

SCA are considered over a rectangular grid, though other geometries can exist (van Baalen, M., 2000). A 

famous deterministic cellular automaton (CA) is Conway’s game of life, which is defined by two discrete 

states (“dead” and “alive”) and a set of deterministic rules to make cells switch between them (Gardner, 

1970; Bays, 2010). Stochastic cellular automata follow the same principles, but state transitions occur 

with a given probability instead of being based on deterministic rules. The probabilities of a cell 

switching from one state to another is assumed to depend on model parameters, the global state of the 

system (the proportion of cells in each state), and the local neighborhood of the focal cell. In all cases, 

the system future dynamics is probabilistically defined by its current state, i.e. dynamics are 

memoryless.  

The use of SCA in ecology is widespread, as they have been used to describe the dynamics of a large 

array of ecosystems, including mussel beds (Guichard et al., 2003), arid ecosystems (Kéfi et al., 2007), 

forests (Heinonen & Pukkala, 2007), rocky shores (Wootton, 2001), coral reefs (Muthukrishnan et al., 

2016; Génin et al., 2024) and plant communities (Lanzer & Pillar, 2002). SCA are often used to understand 

how local processes can scale up to affect landscape-wide properties, such as the persistence or 

extinction of a given species, the type of spatial patterns arising at the scale of a landscape (Pascual et 

al., 2002), or the spread of fire or epidemics. The latter case is a classical application of SCA in applied 

ecology, where data on local processes affecting forest stands can be coupled with GIS data to provide 

guidance on forest fire sensitivity (Yassemi et al., 2008). Though common in ecosystem modelling, and 

the primary purpose for this package, SCA are useful beyond this sole discipline, and are for example 

also used to describe epidemics (Yakowitz et al., 1990; Keeling, 2000), tumor growth (Moreira & Deutsch, 

2002) or organism development (Manukyan et al., 2017).  

The popularity of SCA is probably rooted in their relatively light need for formal mathematics 

compared to other approaches modelling spatial processes (e.g. partial derivative equations): only the 

probabilities of transitions between states need to be defined. The drawback of this simplicity is that the 

numerical simulation of SCA is typically computationally-intensive. Current approaches to do so 

efficiently rely on approximations, either assuming no spatial structure (mean field approximation), or 

using approximations to obtain analytical results, such as spatial moment equations (Lion, 2016; of 

which pair approximation is a specific case; Matsuda et al., 1992; Iwasa, 2000). However, these 

approximations are inappropriate when long-range correlations occur within a landscape (Iwasa, 2000), 

or when the full simulated landscape is needed as a model output, for example to compute spatial 

metrics (Génin et al., 2018). In many cases, the explicit numerical simulation must be run, which is often 

done on grids that may not be large enough to fully capture emergent spatial patterns (van de Koppel et 

al., 2011; Majumder et al., 2021). On top of these performance issues, most ecological studies based on 

SCA come with their own implementation. This opens the possibility of errors in code and often makes 

it difficult to reproduce model simulations. We aim at alleviating these issues with chouca, which 

provides a unifying and well-tested technical basis to SCA. Our goal is to improve the performance and 

accessibility of this class of models, and ultimately allow ecologists to spend more time exploring the 

behavior of their models, rather than on their implementation. 
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Supported models 

The R package chouca works with 2-dimensional rectangular grids of cells (a “landscape”). Each cell 

can be in one of a finite set 𝑆 of 𝑛 elementary states 𝑆1 … 𝑆𝑛. Probabilities of transition are assumed to 

depend only on (i) the proportion of neighbors in each state, captured by the vector 𝒒 = (𝑞1, . . . , 𝑞𝑛), (ii) 

the proportion of cells in a given state in the whole landscape, 𝒑 = (𝑝1, . . . , 𝑝𝑛), and (iii) a set of constant 

model parameters 𝜽.  

chouca has been primarily designed for modeling the dynamics of sessile organisms over space, 

which do not move and reproduce through the dispersal of propagules (e.g. gap-models; Shugart & West, 

1981). This includes a wide range of organisms, ranging from forests, herbaceous plants or coral reefs, 

but the supported models may also be useful to describe other ecological situations. For the moment, 

the types of models that can be implemented exclude cellular automata in which an intermediate 

distance of interaction is considered (e.g. through a dispersion kernel; Muthukrishnan et al., 2016), or 

those in which a preferential direction exists (e.g. modeling water redistribution on a slope; Mayor et al., 

2013), though these limitations are planned to be lifted in later versions. More importantly, SCA that are 

based on the dynamics of pairs of cells, for instance in which two cells swap their respective state, cannot 

be implemented directly. This is typical when representing the movements of an organism in a 

landscape (Pascual et al., 2002), and we provide links to alternative software at the end of the article for 

these models.  

In the package, the probabilities of transition of a cell from state 𝑖 to 𝑗, 𝑃(𝑆𝑖 → 𝑆𝑗), can be any 

function of 𝒑, 𝒒, and 𝜽 – however, it will work best and without approximation if it has the following 

form: 

(1) 𝑃(𝑆𝑖 → 𝑆𝑗) = 𝑎0 + 𝑔1(𝑞1) + ⋯ + 𝑔𝑛(𝑞𝑛) + 𝜁(𝒒, 𝒒) + 𝜁(𝒒, 𝒑) + 𝜁(𝒑, 𝒑)  

where, for any transition 𝑆𝑖 → 𝑆𝑗, 𝑎0 is a constant, 𝑔𝑠 is any univariate function of 𝑞𝑠, and 𝜁(𝒙, 𝒚) is 

the sum, defined for two vectors 𝒙 = (𝑥1, . . . , 𝑥𝑛) and 𝒚 = (𝑦1, . . . , 𝑦𝑛) as  

(2) 𝜁(𝒙, 𝒚) = 𝑎1𝑥1
𝛼1𝑦1

𝛽1 + 𝑎2𝑥1
𝛼2𝑦2

𝛽2 + 𝑎3𝑥2
𝛼3𝑦1

𝛽3 + ⋯ + 𝑎𝐾𝑥𝑛
𝛼𝐾𝑦𝑛

𝛽𝐾  

in which the (𝑎𝑖)𝑖∈[1:𝐾], (𝛼𝑖)𝑖∈[1:𝐾] and (𝛽𝑖)𝑖∈[1:𝐾] are constants and 𝐾 is the total number of terms of 

the sum. In practice, this functional form is flexible enough to approximate the probabilities of transition 

of many ecological models. 

Implementing and working with an SCA in chouca typically consists in four steps, in which the user 

(1) defines the model states and the transitions between them, (2) creates an initial landscape (grid of 

cells), (3) runs the model, and (4) displays or extracts the results (Figure 1). We detail in this paper this 

workflow (Figure 1) – documentation is available throughout the package, individually for each function, 

or as a whole in an R “vignette”, accessible with the command vignette(“chouca-package”). 

 

 

Figure 1 - Main tasks (boxes) of the chouca package, and their associated sets of 

functions 
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Example applications 

A simple model of mussel bed 

To illustrate how a stochastic cellular automaton can be defined with chouca, we use the model of 

Guichard et al. (2003), which describes the dynamics of mussels colonizing rocks exposed to waves. This 

model has three cell states (i) “disturbed”, (ii) “empty” and (iii) “occupied” (by mussels). During a single 

time-step, a disturbed cell becomes an empty cell with probability 1. Such transition can be defined by 

using a call to the R function transition(): 

transition(from = "disturbed", to = "empty", ~ 1) 

This statement declares a transition from a “disturbed” state to an “empty” state, with the last 

argument being a symbolic expression starting with “~”, that describes how to compute the probability, 

here being simply equal to the constant “1”. 

The model assumes that the establishment of new individuals always occurs next to existing 

mussels. In other words, for a focal cell in the “bare” state, its probability of switching to the “mussel” 

state is not constant, but given by 𝛼𝑞𝑚𝑢𝑠𝑠𝑒𝑙 , where 𝛼 is a productivity rate, and 𝑞𝑚𝑢𝑠𝑠𝑒𝑙  is the proportion 

of cell neighbors in the mussel state. Such transition is defined by the following call in R: 

transition(from = "empty", to = "mussel", ~ alpha * q["mussel"]) 

Here, q["mussel"] is used to refer to the proportion of cell neighbors in the “mussel” state, a 

continuous number between 0 and 1. Similarly, p["mussel"] can be used to refer to the global 

proportion of cells in the landscape in the "mussel" state. 

Mussels can be perturbed by incoming waves, which dislodge them and turn them into "disturbed" 

cells. In this model, the probability of a mussel cell to become disturbed is the sum of a baseline term 𝛿, 

and an additional term 𝑑, which is non-zero only if the mussel cell has one or more disturbed neighbors: 

transition(from = "mussel", to = "disturbed", ~ delta + d * ( q["disturbed"] > 0 )) 

The original model considers that cells are neighbors when they share an edge (current options 

include a 4-way or von-Neumann neighborhood, the other option being a Moore or 8-way 

neighborhood), and uses a toric space for simulations, meaning that the up/leftmost cells of the grid are 

neighbors of the bottom/rightmost cells. Putting everything together, this model can be defined using 

the following syntax: 

musselbed_mod <- camodel( 
  transition(from = "disturbed", to = "empty",  ~ 1), 
  transition(from = "empty", to = "mussel",     ~ alpha * q["mussel"]), 
  transition(from = "mussel", to = "disturbed", ~ delta + d * ( q["disturbed"] > 0 )), 
  parms = list(alpha = 1, delta = 0.2, d = 1), # parameters 
  wrap = TRUE, # toric space 
  neighbors = 4 # 4-way neighborhood 
) 

The call to the camodel() function above estimates the constants in the functional form described 

in equation 1 to match the parameters of the model. If this process yields large residual error, for 

example because the transition probabilities do not correspond to the functional form in equation 1, a 

warning is produced. The structure of the model can be displayed on the R console using print(), or as 

a graph using the generic function plot() (Figure 2).  

> print(musselbed_mod) 
Stochastic Cellular Automaton 
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States: disturbed empty mussel 
 
Transition: disturbed -> empty 
  ~   1 
Transition: empty -> mussel 
  ~   alpha * q["mussel"] 
Transition: mussel -> disturbed 
  ~   delta + d * (q["disturbed"] > 0) 
 
Neighborhood: 4x4 
Wrap: TRUE 
Max error: 0 (OK) 
Max rel error: 0 (OK)   

 

Figure 2 - Structure of the mussel bed model displayed as a graph using 

plot(musselbed_mod), in which nodes are states, and arrows represent the possible 

transitions, with the expression used to compute their probabilities 

Once the model is created, an initial landscape can be defined with a given number of rows and 

columns using generate_initmat(), which creates a landscape with randomly-distributed cell states 

in space, but following the specified initial covers: 

init_landscape <- generate_initmat(musselbed_mod, 
                                   pvec = c(disturbed = 0.1, empty = 0.1, mussel = 0.8), 
                                   nrow = 64, ncol = 64) 

The model can then be simulated for a given number of time steps, below from 0 to 50, using 

run_camodel(). Standard methods such as plot() or image() can be used to display the global covers 

after the model has run, or the resulting landscapes: 

output <- run_camodel(musselbed_mod, init_landscape, times = seq(0, 50)) 
plot(output) 
image(output) 

By default, chouca uses a C++ backend based on Rcpp (Eddelbuettel, 2013), which has reasonable 

performance. This can be improved by compiling the model code just before the simulation is run, and 

using memoization so that transition probabilities are computed only once for cells with the same 

neighborhood configuration. This typically improve performance by two orders of magnitude over a 

typical implementation (Figure 3; Schneider et al., 2016), which can be further increased by parallelizing 
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computations over multiple cores, though this is a less efficient approach. Enabling these options can 

be done by passing control arguments as an R list object: 

control_args <- list(engine = "compiled",  
                     cores = 4, 
                     precompute_probas = TRUE) 
output <- run_camodel(musselbed_mod, init_landscape, niter = 256, control = control_args) 

This “control” list defines how the simulation is run, which data to save from the simulation, or the 

textual output to print while the simulation is running (a complete list of options can be found in the help 

page by using ?run_camodel on the R console). The user can also supply custom functions that will be 

run as the simulation is running. This can be useful, for example, to display landscapes, covers, or 

compute statistics on the 2D landscape as the simulation is running, which we illustrate in the following 

sections. 

 

Figure 3 - Simulation speeds for a set of three simple ecological models (2-3 states and 

3-4 transitions) according the the grid size, for a pure-R implementation (R reference; 

Schneider et al., 2016), and three backends provided by chouca (blue and green lines). 

Single-core performance on a 2020 desktop computer. 

Graphical explorations  

Because an SCA describes dynamics over landscapes, they are particularly well-adapted to pattern-

oriented modelling (Grimm et al., 1996), in which a model is defined and revised based on a qualitative 

or quantitative comparison with empirical patterns. Likelihood-based approaches are increasingly 

popular to compare models with data (Hartig et al., 2011 and section below), but the qualitative 

comparison and visual exploration of model dynamics remains an essential phase of the design of spatial 

models. To make this modeling step more accessible, we made it easy to investigate visually the 

behavior of models, and illustrate here this approach with an epidemiological example. 
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Keeling (2000) uses an SCA-based approach to investigate the spread of a parasite over space, with 

an application to forests. This very simple model uses three states, “host”, “parasitized”, “empty”, and 

can be defined as follows in chouca: 

mod <- camodel(transition(from = "empty", to = "host", 
                          ~ 1 - ( 1 - g )^( 4 * q["host"] ) ), 
               transition(from = "host", to = "parasitized", 
                          ~ 1 - ( 1 – T )^( 4 * q["parasitized"] )), 
               transition(from = "parasitized", to = "empty", 
                          ~ 1), 
               parms = list(g = 0.05, T = 0.5), 
               wrap = TRUE, 
               neighbors = 4) 

where 𝑔 is the growth rate of the host, and 𝑇 the transmissibility of the parasite (this model assumes 

that infection is always fatal, so the transition from “parasitized” to “empty” is equal to 1). 

This model can produce interesting “epidemiological fronts”, which stem from the way the parasite 

spreads to its neighboring hosts, killing them and leaving behind empty, bare patches that are later 

recolonized by the host, albeit at a slower rate. This phenomenon of fronts propagating through an 

excitable media may be difficult to quantify formally, but can be easily visualized from model outputs. 

This can be done in chouca by setting the run_camodel() function to display the results as the 

simulation is run. To do so, we adjust the control list to include a function that displays the landscapes: 

options <- list(custom_output_fun = landscape_plotter(mod), 
                custom_output_every = 1) 

then run the model on a 256×256 grid seeded with 10% of cells in the “parasitized” state: 

initmm <- generate_initmat(mod, c(host = 0.9, parasitized = 0.1, empty = 0), 
                           nrow = 256, ncol = 256) 
output <- run_camodel(mod, initmm, times = seq(0, 1024), control = options) 

The above lines of code will run the model and display the changing landscape, which allows 

investigating the spreading patterns of the parasite. Once this visualization step is done (Figure 4, and 

animated version in SM1), the options set to visualize the landscape can be removed to reduce 

simulation times, for example to investigate the model behavior along a range of parameter values. 

 

Figure 4 - Landscape patterns of the host-parasitized-empty model (respectively green, 

yellow and blue) as displayed on screen.  
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Inference of local interactions from landscape-scale patterns 

Because SCA are defined on grids, a natural application is to compare their output to empirical raster 

data, such as remote-sensing images, to infer local-scale ecological interactions from landscape-wide 

spatial patterns. Arid systems provide a good illustration of this approach: in those systems, interactions 

between plants are often a balance of negative effects, through competition for nutrients or water, with 

positive effects, for example with an increased survival of seedlings below the canopy of taller plants 

(Valiente-Banuet & Ezcurra, 1991). These effects can be strong enough for new plants to mostly establish 

below existing plants, which results in their aggregation into patches, and has important consequences 

for the resilience of those systems to changes in aridity (Kéfi et al., 2007). The sizes and numbers of those 

patches can be readily quantified from remote-sensing images, and such patterns can be used to infer 

whether facilitation occurs between plants (Xu et al., 2015; Chen et al., 2022). This is traditionally done 

by summarizing the spatial structure into spatial statistics, such as spatial autocorrelation (Sankaran et 

al., 2017) or type of patch size distribution (Siteur et al., 2023; Pichon et al., 2024) and linking the 

observed changes in those metrics to theoretical results (Scanlon et al., 2007; Kéfi et al., 2024). However, 

such qualitative comparison logically results in a qualitative and corroborative result, i.e. is there or is 

there not facilitation between plants, rather than a more informative quantitative result, i.e. how strong 

facilitation is between plants. A quantitative inference must be based on an approach that links 

quantitatively some aspects of the spatial patterns to the strength of facilitation. This can be done by 

defining a model that links the strength of facilitation with the expected patterns, and finding model 

parameters that maximize agreement between model output and data. This is expensive 

computationally, but this limitation is alleviated by a fast SCA engine such as chouca, as we show below. 

We define here a model of an arid ecosystem with two states, “bare” and “vegetated”. A bare cell can 

become a vegetated cell with the probability 𝑝𝑝𝑙𝑎𝑛𝑡. A vegetated cell can become bare (plants die) with 

the probability 𝑑(1 − 𝛽𝑞𝑝𝑙𝑎𝑛𝑡), where 𝑑 is a constant mortality rate, that is reduced by the coefficient 𝛽. 

𝛽 captures the local effect of plants, either facilitation when they increase the survival of plants near 

existing vegetation (𝛽 > 0), or competition when survival is decreased (𝛽 < 0). This model is 

implemented in chouca using: 

facilitation_mod <- camodel( 
  transition(from = "bare", to = "plant", ~ p["plant"] ), 
  transition(from = "plant", to = "bare", ~ d * ( 1 – beta * q[“plant”]) ), 
  parms = list(beta = 0.5, d = 0.85), 
  wrap = TRUE, 
  neighbors = 4 
) 

We ran the model till equilibrium on a 1024×1024 grid, to simulate a landscape that would be 

obtained from empirical data (e.g. a remote sensing image) using (𝑑, 𝛽) = (0.85, 0.5). From this 

landscape used as observed data, we computed the distribution of pairs, which summarizes all the 

possible pairs of neighboring cells present in the landscape 𝒏𝒐𝒃𝒔 = (𝑛𝑝,0, 𝑛𝑝,𝑝, 𝑛0,0 ). We then define the 

likelihood 𝑃(𝒏𝒐𝒃𝒔│𝑑, 𝛽) assuming these observed number of pairs follow a multinomial distribution of 

size 𝑁𝑝 (the sum of all pairs, a fixed number given the grid size and neighborhood type), and probabilities 

𝝁 = (𝜇𝑝,0, 𝜇𝑝,𝑝, 𝜇0,0 ). 𝝁 defines the relative probabilities of observing each type of pair in the grid, which 

depend on the particular values of 𝑑 and 𝛽, and can be estimated by simulating the landscape with these 

parameter values. This estimate of the likelihood formally quantifies the agreement between model and 

data, and allows exploring the parameter space in terms of 𝑑 and 𝛽 to find the most likely parameter 

combinations given the observed patterns. 

We find that this approach can recover the parameter values used for 𝑑 and 𝛽, with only one global 

maximum in the likelihood function (Figure 5; code provided in SM2), showing that the distribution of 

pairs is a sufficient statistic to recover the model parameters. Applying such an approach to empirical 
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data would require further testing of model assumptions, for example, to investigate whether facilitation 

occurs on the recruitment of new plants instead of on the mortality of adult plants – this can be done by 

simply changing the model definition above. Because this approach is likelihood-based, model support 

can be compared using traditional statistics, such as AIC, and a Bayesian approach can be used to 

estimate credible intervals on parameter values, or use informative priors grounded in knowledge about 

the system (Hartig et al., 2011).  

Using this type of simulation-based inference is very expensive computationally, as this simple test 

requires running around a thousand simulations. This would require long-running computations with 

usual SCA implementations, but takes just under five minutes with chouca on a 2018 laptop computer (8 

cores). This way of calibrating models has seldom been used in spatial ecology – a fast SCA 

implementation is essential to make it more accessible and test its relevance to real-world datasets.  

 

Figure 5 - Likelihood surface as a function of the two model parameters d and β. Blue 

values indicate parameter combinations with high likelihood. The white dot and lines 

indicate the estimated parameter values. 

Conclusion 

chouca is an easy-to-use package to model, simulate, and visualize SCA in a reproducible way, that 

enables an interactive design and revision of models as well as novel methodological approaches. 

chouca does not support all types of cellular automata, and does not replace more generic modelling 

frameworks such as NetLogo (Wilensky, 1999) or simecol (Petzoldt & Rinke, 2007), but allows very efficient 

simulation for the types of SCA it supports. The package focuses on processes defined at the level of a 

cell, while other SCA define processes at the level of pair of cells, a model representation other software 

packages can provide (e.g. CellLab-CTS; Tucker et al., 2016). Another limitation is the use of rectangular 

grids, which may produce discretisation artefacts that are not present in real-world patterns – future 

improvements may include the ability to run simulations on triangular or hexagonal grids. It is important 

to note that because chouca splits the definition of an SCA model from its simulation phase, it may use 

different backends for simulation. This opens the possibility of future improvements to already-

implemented models without modification of existing code.  
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Because of the relatively low bar of entry of SCA compared to other forms of spatial modelling, we 

hope this work will contribute to make more accessible the testing of hypotheses linking spatial 

processes to patterns in ecology, as well exploring system-level consequences of specific local 

management decisions. chouca is available and maintained on CRAN, and welcomes comments, 

feedback and bug reports on its home page at https://github.com/alexgenin/chouca.  
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