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Abstract
The InsectChange database (van Klink et al. 2021) underlying the meta-analysis by van
Klink et al. (2020a) compiles worldwide time series of the abundance and biomass of
invertebrates reported as insects and arachnids, as well as ecological data likely to have
influenced the observed trends. On the basis of a comprehensive review of the original
studies, we highlight numerous issues in this database, such as errors in insect counts,
sampling biases, inclusion of noninsects driving assemblage trends, omission of drivers
investigated in original studies and inaccurate assessment of local cropland cover. We
show that in more than half of the original studies, the factors investigated were exper-
imentally manipulated or were strong -often not natural- disturbances. These internal
drivers created situations more frequently favouring an increase than a decrease in in-
sects andwere unlikely to be representative of habitat conditionsworldwide.Wedemon-
strate that when both groups were available in original freshwater studies, selecting all
invertebrates rather than only insects led to an overestimation of the “insect” trend. We
argue that the disparate and non-standardised units of measurement of insect density
among studies may have detrimental consequences for users, as was the case for van
Klink et al. (2020a, 2022) who log10(x+1)-transformed these heterogeneous data, com-
promising the comparison of temporal trends between datasets and the estimation of
the overall trend. We show that geographical coordinates assigned by InsectChange to
insect sampling areas are inadequate for the analysis of the local influence of agricul-
ture, urbanisation and climate on insect change for 68% of the datasets. In terrestrial
data, the local cropland cover is strongly overestimated, which may incorrectly dismiss
agriculture as a driving force behind the decline in insects. Therefore, in its current state,
this database enables the study of neither the temporal trends of insects worldwide nor
their drivers. The supplementary information accompanying our paper presents in detail
each problem identified and makes numerous suggestions that can be used as a basis
for improvement.
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Introduction 

Currently, experts agree that biodiversity is shrinking in the face of global changes of 
anthropogenic origin (IPBES, 2019). However, with respect to insects, which provide invaluable 
ecosystem services, the extent to which declines vary among insect groups and regions is still the 
subject of intensive investigation, with trend assessments hampered by lack of data and analytical 
weaknesses (Didham et al., 2020; Duchenne et al., 2022). There is also no consensus on the main 
drivers of insect changes, including land use (urbanisation/agriculture), climate change, pesticides, 
other pollution types and invasive species, mostly because these drivers are not easily 
disentangled or may act in synergy (Wagner et al., 2021; Outhwaite et al., 2022).  

While many authors have warned of insect extinctions worldwide (Cardoso et al., 2020), van 
Klink et al. (2020a) added to the debate by estimating a smaller decline in the abundance of 
terrestrial insects than reported by previous authors, and further proposed that freshwater insects 
were increasing rather than decreasing. They found that increasing cropland cover was not 
associated with terrestrial insect decline and proposed that improved water quality was a driver of 
increasing abundance of insects in freshwaters. Yet their meta-analysis gave rise to comments by 
various authors regarding (1) their data selection and methodology (Desquilbet et al., 2020), which 
led to some corrections (van Klink et al., 2020b); (2) the limitations of abundance and biomass as 
sole indicators of insect trends, masking the possible replacement of sensitive species by stress-
tolerant ones (Jähnig et al., 2021); and (3) the heterogeneity in temporal coverage, with a lack of 
old baselines (Duchenne et al., 2022). 

The study of insect trends and their drivers addresses major environmental, societal, political 
and economic issues. This sensitive subject therefore requires, first and foremost, the utmost rigor 
in databases intended to serve as references. The InsectChange database (van Klink et al., 2021) 
underlying the analysis by van Klink et al. (2020a) includes time series of the abundance and 
biomass of invertebrates reported as insects and arachnids in terrestrial and freshwater realms 
worldwide, together with ecological data on anthropogenic changes likely to have influenced 
trends. We conducted a comprehensive and in-depth analysis of the relevance and accuracy of 
the InsectChange datasets by systematically reviewing the original studies. Our analysis highlights 
numerous limitations in the constitution of this database, the accumulation of which is likely to bias 
any assessment of insect change and drivers of change. 

1. Different issues in the InsectChange database  

The invertebrate taxa included in InsectChange are not only insects and arachnids as described 
in the title and abstract, but also entognaths (i.e., noninsect arthropods comprising springtails, 
diplurans and proturans), as indicated only in the keywords and appendices. Considering them 
within the scope of InsectChange and updating the analysis of Desquilbet et al. (2020) after the 
erratum by van Klink et al (2020b), we found that the sum of the remaining issues affected 161 of 
the 165 datasets. We found 553 issues, which belong to 17 types of problems pertaining to errors 
(153), inconsistencies (40), methodological issues (279) and information gaps (81), with 3.4 ± 1.6 
problem types per dataset (Table 1, Figure 1a), as well as a methodological issue concerning the 
entire database. These multiple problems and the consequences they may have for the 
assessment of insect trends are detailed in Table 1. There were more problem types per dataset 
in the freshwater realm than in the terrestrial realm (Figure 1b, Appendix S1, Problems.xlsx), 
mainly because freshwater datasets were more affected than terrestrial datasets by problems 
related to the inclusion of invertebrates other than insects, the inclusion of studies with internal 
drivers and the assignment of inadequate geographic coordinates for local-scale analysis 
(Appendix 1, Figure 2b). 
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Table 1 – Description of the problem types, their frequencies and their possible 
impact on insect trend analysis 

Problem 
category 

Problem type # (%) of 
studies 

Definition Consequences and 
risks 
 

E
rr

o
rs

 

Insect group 
inadequately reported 

55 
(33.3%) 

The group reported in the table 
DataSource.csv and/or in column 
“GroupInData” of the table SampleData.csv 
does not correspond to the group that was 
actually extracted from the source study. 

- Misidentification of 
insect group.  
- Erroneous analysis of 
changes in specific 
groups of insects. 

Noninsects/ 
arachnids/entognaths 
considered 

35 
(21.2%) 
 

The group of invertebrates included in 
InsectChange includes taxa (most often 
macroinvertebrates) that are not insects, 
arachnids or entognaths. 

- Abundance (and to 
an even greater extent, 
biomass) affected. 
- Misanalysis of 
change in taxa 
interpreted as insects, 
the consequence of 
which depends on the 
weight of included 
noninsects and its 
variation over time. 

Errors in insect counts 25 
(15.2%) 

The abundance and/or biomass numbers 
reported in the table 
InsectAbundanceBiomass.csv do not 
correspond to the actual numbers reported in 
the source study. 

Erroneous analysis of 
insect change. 

Unaccounted-for 
change in sampling 
effort or sampling 
method 

18 
(10.9%) 

A change in sampling effort over time records 
in the source study was not considered when 
reporting the abundance and/or biomass 
numbers of the source study in the table 
InsectAbundanceBiomass.csv; or time records 
with different sampling methods were mixed 
despite warnings by the authors of the source 
study about resulting errors.  

- Slope of insect 
dynamics often 
affected. 
- Erroneous analysis of 
insect change. 

Overlapping data  13 
(7.9%) 

Insect data overlap owing to a site included in 
different studies as two plots or to a plot that is 
actually a pooling of other plots of the same 
study also included in InsectChange, resulting 
in insect double counting. 

- Overweighting of 
some insect 
populations in the 
global analysis. 
- Erroneous analysis of 
insect change. 

Error in insect stratum  7 
(4.2%) 

The insect stratum (i.e., underground/soil 
surface/water/herb layer/trees/air) reported in 
the table SampleData.csv is erroneous. 

Erroneous analysis of 
insect change 
conducted at the 
stratum level.  

 
 
 
 
 

In
co

n
si

st
e

n
ci

e
s 

Unfounded 
inclusion/exclusion/ 
pooling of plots 

14 
(8.5%) 

Some plots were inconsistently either 
included, or excluded, or pooled  

Included plots not 
representative of 
sites in source 
studies.  

Inadequate temporal 
resolution 

12 
(7.3%) 

The methodology (p. 17 of InsectChange file 
MetadataS1) stating that the temporal 
resolution was as fine as possible between 
the week and the year (except for 6 datasets 
sampled 6 to 8 times in any month) was not 
respected. 

Erroneous analysis 
of insect change. 

Inconsistency of taxa 
among plots/metrics 

7 
(4.2%) 

For the same study, the insect group differs 
between plots or between metrics 
(abundance/biomass) but this cannot be 
known because the table SampleData.csv 
provides information at the study level but not 
the plot level or for abundance but not 
biomass.  

- Erroneous 
comparative 
analysis of a given 
group of insects 
among plots or 
metrics.  
- Biased analysis of 
insect change. 

Unfounded exclusion of 
metrics/insects/years 

7 
(4.2%) 

A metric (abundance or biomass), insect 
groups, or years of the source study were not 
included in InsectChange. 

- Data not 
representative of 
the source data. 
- Biased analysis of 
insect change. 
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Table 1 – Continued 
M
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Disparate and 
often non-
standardised 
units of 
measurement 
of insect 
densities 
across datasets 

General 
issue of 
the 
database  

The metrics, sampling methods, spatial scales 
and units of measurement in the table 
SampleData.csv vary between datasets and the 
data in the table InsectAbundanceBiomass.csv 
are not harmonised. 

- Temporal slopes between 
datasets not directly 
comparable due to data 
heterogeneity, and not 
comparable in the case of a 
log10(x+1)-transformation of 
the dependent variable. 
- Compromised estimation of 
the overall insect trend.  

Inadequate 
geographic 
coordinates for 
study at local 
scale 

112 
(67.9%) 

The geographic coordinates provided in the 
table PlotData.csv (column “frcCrop900m”) are 
inexact or not precise at the 900m×900m scale 
required for the matching with ESA-CCI land 
cover estimates. 

- Misestimation of land 
cover, temperature and 
precipitation at local scale. 
- Erroneous analysis of 
drivers of insect change at 
local scale.  

Studies with 
internal drivers 

88 
(53.3%) 

Studies with controlled or natural experiment, 
focused on a factor/treatment studied through 
experimental or natural variations across space 
and/or time, or studies with a major disturbance 
affecting the habitat or creating a habitat 
conducive to insect colonisation. 

- Studies not representative 
of the dynamics of insect 
populations in their naturally 
disturbed habitats, since half 
of them concern artificial or 
excessively disturbed 
habitats. 
- Biased analysis of insect 
change. 

Inadequate 
cropland cover 
estimation  

51 
(49.5%*) 

Inadequate estimation of the local cropland 
cover in column “frcCrop900m” of the table 
PlotData.csv.  

Erroneous analysis of the 
impact of land use on insect 
change at the local scale.  

Only two years 
of records 

22 
(13.3%) 

Although the times series cover a period of at 
least 9 years, some series have only two records 
(first and last year) in the table 
InsectAbundanceBiomass.csv. 

- Lack of records given the 
nonmonotonic dynamics of 
insect populations. 
- Possible misinterpretation 
of insect trends. 

Inflation of 
studies/plots 

6 
(3.6%) 

Some time series (without overlapping data) 
included in different studies instead of different 
plots in the same study and/or split between 
several plots instead of compiled in a single plot, 
inconsistently with the methodology used for 
others. 

- Overweighting of some 
time series in the statistical 
analyses. 
- Non-consideration of 
possible spatial correlation in 
the data. 

In
fo

rm
a

ti
o

n
 g

ap
s 

Omission of 
internal driver  

61 
(37%) 

In studies with controlled or natural experiments 
or with a major disturbance, the factor or 
disturbance was not mentioned in columns 
“DetailsPlots” or “ExperimentalTreatment” of the 
table PlotData.csv. 

Risk of erroneously 
attributing insect changes to 
external drivers, when they 
more directly reflect habitat 
changes caused by drivers 
originally investigated in the 
source studies. 

Dates missing 
when several 
sampling days  

20 
(12.1%) 

The table InsectAbundanceBiomass.csv 
provides several samplings in a given period but 
does not indicate their chronology due to 
unreported sampling dates. 

- Consideration of samples 
as interchangeable 
replicates when they are 
time-dependent. 
- Erroneous analysis of 
insect change. 

All the files listed in the ‘Definition’ column refer to InsectChange files. *Percentage of 
datasets with inadequate cropland cover estimation provided only for terrestrial datasets. 

1.1 Errors 

Among the errors, the composition of the invertebrate group selected from the source datasets 
was misreported in 55 datasets, often because the authors of InsectChange neglected to specify 
that they had selected only certain taxa from the original community (e.g., Figure 2a). Moreover, 
35 datasets considered taxa other than insects, arachnids or entognaths (hereafter collectively 
referred to as “insects” for brevity) and most often included the entire invertebrate assemblage 
instead of insects only, sometimes changing the insect trend of the original time series to the point 
of reversal (e.g., Figure 2b, details in Section 2). Insect counts were misreported from source 
studies in 25 datasets because of misinterpretation, calculation errors, the inversion of numbers, 
or species counted twice (e.g., Figures 2c and 2d). The stratum in which insects were sampled 
was misreported in 7 datasets, for example indicating that insects were sampled in the herb layer 

Problem 
category 

Problem type # (%) of 
studies 

Definition Consequences and risks 
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instead of trees. This may affect trend estimates by stratum, particularly those, such as trees, which 
are represented by only a few datasets (8 datasets for the tree stratum).  

(b)(a)

Information 
gaps

Methodological
issues

Inconsistencies

Errors

 

Figure 1 – Distribution of the types of problems encountered in the InsectChange 
database (details in Problems.xlsx). (a) Mean (± SE) number of problem types per 
dataset and distribution of datasets according to the number of problem types. Each 
dot refers to a dataset; thus, the occurrence of i dots on the y line indicates that i 
datasets have y problem types. (b) Comparison of the mean number and distribution 
of problem types per dataset between freshwater and terrestrial realms. The 
problem type related to cropland cover, which was only assessed for the terrestrial 
realm, was not included in this comparative analysis, as well as the general problem 
of data heterogeneity. White stars were placed in the ‘Freshwater’ barplot when, on 
the basis of binary logistic regression, the problem type affected significantly more 
freshwater datasets than terrestrial datasets (Appendix 1). Terrestrial datasets were 
never significantly more affected by a given problem type than freshwater datasets 
were. *:0.01<P<0.05; **:0.001<P<0.01;***:P<0.001. 

In addition, variation in sampling effort or method over time is a classic methodological bias in 
time series (Isaac & Pocock, 2015). It becomes an error when it is not noticed and considered by 
authors of meta-analyses, as was the case for 18 InsectChange datasets. This type of error may 
affect the insect trend of the included dataset, for example, when the number of sampling 
repetitions increased over time but the number of insects was added rather than averaged (e.g., 
Figure 2e), or when the authors of the source study specified that the sampling method changed 
between the first and subsequent records and did not themselves create a single time series from 
these two types of records, unlike the authors of InsectChange (Figure 2f).  

Finally, some datasets or plots had overlapping data for all or part of the time periods (13 
datasets), resulting in double counting, either because different datasets included the same plots 
or because a plot in a given dataset was actually a pooling of others from the same dataset. This 
leads to overweighting some insect populations in the global analysis. In 9 datasets, the exact 
same insects were counted twice. For example, InsectChange Study 1452, which is illustrated in 
Figure 2g, examined the change in biomass of the invertebrate assemblage after the creation of 
the Kama Reservoir in Russia. InsectChange Plots 456, 457 and 458 corresponding to the upper, 
central and dam sections of the reservoir, respectively, include data from 2003 to 2015 mainly for 
insects, and Plot 455, corresponding to the average sampling in the three sections of the reservoir, 
includes data from 1955 to 2013 on the entire zoobenthic assemblage. From 2003 to 2013, insect 
data from Plot 455 therefore overlap with invertebrate data from Plots 456, 457 and 458, with the 
same insects counted twice. In two other InsectChange datasets, data overlapped because one 
study reported the abundance dynamics of ant nests and the other, centred on the same ants, 
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reported the abundance dynamics of the ants themselves. The last two datasets included the 
dynamics of grasshoppers in the soil stratum of the same three sites, obtained by visual counting 
for one dataset and collection in pitfall traps for the other. These different cases of overlapping 
data may affect the analysis of overall insect trends. 

D
en

si
ty

 o
f i

ns
ec

ts
 (

ab
un

da
nc

e 
or

 b
io

m
as
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series with only two records

0

16000

1955 1975 1995

insects only

all invertebrates considered

(b) Consideration of the invertebrate 
community instead of insects only

Study 1435 - Plot 448
Kentucky freshwater invertebrates

#/
m

²
0

450

1995 2007 2019

(a) Insect group inadequately reported

Study 1524 – Plot 1740
Netherlands moths and beetles

#/
m

²

#/
m

²

0

800

1983 1992 2001

Study 1385 – Plot 137
Brazil dung beetles

0

26

1975 1985 1995

incorrect numbers (some 
species counted twice)

correct numbers

Study 1393 – Plot 131
Russia island ground beetles

(d) Some taxa counted twice

sampling effort 
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sampling effort
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Figure 2 – Examples of errors (blue blackground) and inconsistencies (orange 
background) in the selection of data, which affected the temporal trends in the 
original datasets (Appendix S1, Problems.xlsx, Fig2and5.xlsx). (a-g) Different types 
of errors; (g-i) Inconsistencies regarding taxa across plots (g), metrics (h) or plot 
inclusion (i). Problematic insect dynamics are represented by red dashed lines, 
whereas nonproblematic or corrected ones are represented by solid blue lines.  

1.2 Inconsistencies 

There were also a number of inconsistencies. In 7 datasets, there were inconsistencies of taxa 
between plots of the same dataset (e.g., Figure 2g, shows time series considering the entire 
assemblage of invertebrates including invasive molluscs in a plot and insects and crustaceans in 
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other plots) or between metrics in the same plot (abundance or biomass; e.g, Figure 2h shows 
time series of the abundance of moths and beetles and the biomass of moths only). Because 
InsectChange does not indicate the insect group at the plot or metric level, users cannot identify 
these inconsistencies, which may lead to errors in comparative analyses of insect groups between 
different plots or metrics or in the estimation of the global trend of a particular insect group. 
Moreover, unfounded inclusion, exclusion (e.g., Figure 2i) or pooling of original sites affected 14 
datasets, with potential consequences for insect trend analysis. In 7 datasets, there were also 
unfounded exclusions of data regarding a metric, some insect groups, or some time records. 
Furthermore, 12 datasets had temporal resolutions that did not match the resolutions of the original 
datasets or those stated in the InsectChange metadata (Table 1, Appendix S1, Problems.xlsx). 
While the temporal resolution should have been “as fine as possible between the week and the 
year” (“except for 6 datasets sampled 6 to 8 times in any month”), the data were sometimes 
averaged at the yearly level even though data for months were available and there were sometimes 
more than 8 records per month. All these inconsistencies in data selection mean that the data are 
not representative of the source studies.  

1.3 Methodological issues and information gaps 

With respect to methodological issues and information gaps, the inclusion of studies with 
internal drivers, i.e., experimental conditions or major disturbances, and the frequent omission of 
information on these drivers are the focus of Section 3; the adequacy of geographic coordinates 
and the estimation of the local cropland cover are the focus of Section 4. 

In addition, a major methodological issue affecting the whole database is that the comparability 
of temporal trends between datasets is compromised by the heterogeneity of insect 
measurements, contrary to what is stated in InsectChange (e.g., p. 24 of MetaDataS1 file). 
Harmonisation of measurements was either not possible, due to variations in metrics 
(abundance/biomass), sampling methods and spatial scales between datasets, or was possible 
using standardisation for a given metric and sampling method, but was not achieved. Abundance 
and biomass units were thus not harmonised in the table InsectAbundanceBiomass.csv of 
InsectChange and were not clearly and/or systematically indicated in the table SampleData.csv of 
InsectChange. For example, abundance could be expressed as the number of individuals per m², 
per 0.1 m², or per sample, and biomass in g/m², mg/m² or g/sample. In many instances, the source 
and units for biomass data were not provided, notably when both abundance and biomass were 
available in the dataset (Appendix S1). This means that users often need to return to the source 
data to determine the data units. This problem may thus have detrimental consequences for users 
of the database who wish to estimate insect temporal trends. These detrimental consequences 
depend on whether the dependent variable in the model is transformed before analysis or not and 
on the type of transformation. For example, to avoid the log of 0 and reduce the high discrepancies 
in insect counts, van Klink et al. (2020a) and van Klink et al. (2022) used a log10(x+1)-
transformation of these nonharmonised data, adding 1 to each abundance or biomass number 
before log-transformation. However, whereas a log10(x)-transformation gives the same regression 
slope over time whether the dependent variable in a time series is expressed, for example, in 
mg/m² or g/m², a log10(x+1)-transformation gives different regression slopes. This raises a problem 
in the case of a meta-analysis focused on trend estimation where the dependent variable is 
expressed in different units of measurement. More precisely, in the case of a log10-transformation 
of x, the slope of x (e.g., biomass in our case) with respect to t (time in our case), i.e., (log(x2)-
log(x1))/(t2-t1) = log(x2/x1)/(t2-t1), expresses the relative variation of x over t (e.g., +10%/year) and 
not the absolute variation (e.g., + 2.7 g/year). With a log(x+1)-transformation, if x is numerically 
close to 0, log(x+1) is comparable to x and the slope is almost an absolute variation. If x is 
numerically high, log(x+1) is comparable to log(x) and the slope is almost a relative variation. 
Therefore, the interpretation of log(x+1) changes with the magnitude order of x. This issue is 
especially problematic in InsectChange, where magnitude orders of nonstandardised data vary 
between datasets from 10-16 to 106. For these reasons, this methodological issue compromises 
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the comparison of temporal trends between datasets or groups of datasets and the overall insect 
trend estimation, and calls into question the results obtained from the InsectChange database. 

Besides, 22 datasets had only two years of records (20 of these 22 had two records per plot), 
whereas the nonmonotonic dynamics of insect populations require more records (Roubik, 2001; 
Didham et al., 2020). It is well known that time series without sufficient records lack statistical 
power and are potentially misleading (Roubik, 2001; White, 2018). This problem of only two years 
of records involves 13.3% of the studies (n = 165) and is not randomly distributed across 
continents. For example, it affects a quarter of the datasets and plots in Asia (4 of 16 datasets and 
22 of 84 plots), suggesting that insect trend assessment for this continent on the basis of 
InsectChange data is likely biased. This methodological issue of only two years of records is 
particularly problematic when combined with other types of problems, such as considering the 
whole assemblage of invertebrates instead of just insects (Figure 2a), reversing insect counts 
(Figure 2c) or failing to correct for a change in sampling effort (Figure 2e) because, as a result, 
insect trends may be radically altered compared with those of the original datasets.  

Another methodological issue is the inflation of datasets and/or sites (without overlapping data) 
compared with the original studies (6 datasets). For example, site inflation may result from splitting 
some sites of the original datasets into several InsectChange plots separated by only a few metres. 
This leads to overweighting of these datasets in the statistical analyses. This may also lead 
uninformed users to carry out statistical analyses without accounting for possible spatial 
correlation.  

Finally, in 20 datasets, dates were not indicated when there were successive samplings per 
month. This information gap may lead users to consider samples as interchangeable replicates 
when they are time dependent. 

2. Focus on the problematic inclusion of clams, snails, worms and 
shrimp in freshwater data 

In the freshwater realm, 80% (19 of 24) of the biomass datasets and 40% (21 of 54) of the 
abundance datasets included invertebrates other than insects. This issue concerned 28 distinct 
datasets, 24 of which included the entire freshwater invertebrate assemblage (Figure 3, Table S1 
in Appendix S2). The great majority of these 24 datasets included data on worms, molluscs and 
crustaceans, and taxa such as Oligochaeta, Hirudinea, Turbellaria and Amphipoda, which are 
often indicative of poor water quality (Enns et al., 2023) (Table S2 in Appendix S2). The inclusion 
of these datasets is not consistent with the purpose of the database because the dynamics of 
insects cannot be inferred from those of entire invertebrate assemblages. This is illustrated in 
Figure 3a, which presents examples from datasets in the study in which insect and invertebrate 
assemblages have contrasted trajectories (top), and in which proliferating invasive molluscs drive 
the trend of the invertebrate assemblage (bottom, FreshwaterNonInsects.xlsx).  

In addition, we calculated that on average insects made up 48.7% ± 31.9% of the entire 
assemblage in the 13 datasets (48 plots) with information on all or part of the time records (Figure 
3b, FreshwaterNonInsects.xlsx). The insect share in the assemblage also highly varied over time 
(Figure S1 in Appendix S2), with a coefficient of variation averaging 36.5% ± 21.6% in the nine 
datasets (42 plots) where information was available for more than one time record. Therefore, 
considering noninsects in the assemblage can considerably alter the temporal trend of abundance 
or biomass at the scale of the source study. Out of the 53 plots of 15 datasets with information on 
invertebrates driving the trend of the entire assemblage, noninsects (invasive molluscs, 
opportunistic oligochaetes and/or amphipods, etc.) were found to drive the assemblage trend in 
almost half of the plots (25), affecting two-thirds of the datasets (10) (FreshwaterNonInsects.xlsx). 
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Figure 3 - Freshwater time-series including noninsects, while the insect share was 
often low and variable over time (Appendix S2, FreshwaterNonInsects.xlsx). (a) 
Case studies 1455 and 1466 (Appendix S1) illustrating (top) contrasted trajectories 
of the entire assemblage and insects only, and (bottom) invasive noninsects driving 
the trend. (b) The 62 freshwater datasets, 28 including noninsects (24 of which 
included the entire invertebrate assemblage). The percentage of insects, which 
could be extracted from 13 of these, averaged 48.7% with a 36.4% coefficient of 
variation over time. (Appendix S1, Problems.xlsx). Insect % not computable: the 
insect data were not available from the original time series focused on the whole 
invertebrate assemblage. Insect % ‘sometimes’ or ‘always’ computable: it was 
possible to extract the percentage of insects for some or all records of the time 
series, respectively. Insects inferred to be mostly dominant: the percentage of 
chironomids, which are part of the insects in these InsectChange-selected data 
subsets of original datasets, could be calculated for each time record and was most 
frequently well over 50% (Table S1 in Appendix S2). Credits for the photographs 
are detailed in Table S3 in Appendix S2. 

To visualise the trend differences between total invertebrates and insects at the plot level, we 
extracted the estimates of regression slopes for each plot and the two assemblage types when 
possible (21 plots, 7 datasets, three from the USA, three from Russia, one from Italy). To this end, 
we first converted data units into international units. Unlike van Klink et al. (2020a), we did not 
log10(x+1)-transform the data (Section 1.3) but log10(x)-transformed them, which was possible 
given the absence of zeros in the abundance and biomass counts in this data subset. We ran as 
many analyses of covariance as there were plots, each on log10(x)-transformed insect densities, 
using the time covariate expressed in years, the assemblage type as a factor and the interaction 
between them as the explanatory variables (FreshwaterNonInsects.xlsx). The temporal trend 
estimates were very different for insects and total invertebrates for most plots and were even 
reversed for one-third of them (7 out of 21, Figure 4a).  
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β1 > 0, P=0.18

β2 < 0, P=0.03
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(a)

 

Figure 4 – Comparison of temporal trends (in the log10 space) of invertebrate 
abundance or biomass between all invertebrates and insects only, for freshwater 
time series on whole assemblages and for which the insect share was always 
computable. (a) Comparison at the plot level. The trends were very different for 
insects and total invertebrates for most plots, and reversed for 7 of the 21 plots. (b) 
Comparison at a larger scale (mean estimate for the subset of 7 datasets and 21 
plots). The results of the mixed linear model showing significantly different trend 
estimates between the two assemblage types for biomass data, for which a positive 
trend (β1b) was observed when all invertebrates were considered and a negative 
trend (β2b) when only insects were considered. The overall (abundance and biomass 
combined) trend estimate was positive (β1) but not significantly different from zero 
for all invertebrates, and significantly negative (β2) for insects (Appendix 2). 

To test whether this problem affects the trend on a wider scale than that of the plot, we 
compared the mean trends between insects and all invertebrates in this data subset, which was 
composed of 21 plots from seven datasets, four with abundance data, and three with biomass 
data. To this end, we performed a mixed linear model on the log10-transformed insect densities. 
The fixed variables were the same variables as those used previously, and in addition the metric 
as a factor and the associated second and third-order interactions. We chose datasets and plots 
nested within datasets as random variables, considering them as independent and identically 
distributed, such as van Klink et al. (2020a). We found that the temporal trends differed significantly 
depending on the assemblage considered (significant interaction with time, Appendix 2), especially 
for biomass data (significant third order interaction). While the temporal trend was negative for 
abundance and did not differ significantly between assemblage types (P=0.96), for biomass, the 
temporal trend was positive for total invertebrates (P=0.0003) but was significantly lower (P<0.01) 
for insects for which it tended to be negative (P=0.066) (Figure 4b, Appendix 2, 
FreshwaterNonInsects.xlsx). This first demonstrates that abundance and biomass trends can be 
very different, particularly when considering entire assemblages that can include large-size and 
invasive taxa such as certain molluscs. This further demonstrates that, on a wider scale than that 
examined in the study, considering entire invertebrate assemblages rather than only insects can 
lead to significant overestimation of the temporal trend (also see results of the post hoc tests for 
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trend comparisons for abundance and biomass combined with a significant trend difference 
(P=0.01) between the two assemblage types, Appendix 2).  

3. Inclusion of datasets specifically designed to study particular, often 
experimentally manipulated, factors of insect changes  

A major limitation of the InsectChange database is that users are inclined to erroneously 
attribute insect changes to possible anthropogenic drivers, such as changes in cropland cover, 
urban cover or climate, included in InsectChange after extraction from external databases, when 
they more directly reflect habitat changes caused by internal drivers, i.e., factors of insect changes 
specifically investigated in the original studies. Indeed, 88 out of the 165 datasets were extracted 
from controlled or natural experiments or from strongly disturbed contexts, and the factors that 
were originally investigated or major disturbances affecting the results were not mentioned in 69% 
of these 88 datasets (Table 1, Appendix S3, Problems.xlsx). Among these 88 datasets, 14 
concerned controlled experiments testing the effect of one or several treatments in different plots 
(Figure 5a) and 53 concerned natural experiments (Diamond, 1983) investigating the effect of a 
natural disturbance by comparing insect abundance in more or less disturbed plots (Figure 5b) or 
before and after the disturbance in a plot (Figure 5c). In these experimental datasets, only control 
plots, only experimental plots or both types of plots were inconsistently included in InsectChange. 
In 21 observational datasets of the 88, a strong disturbance affected insect trends (Figure 5d).  

Among these 88 datasets, the internal factors could be expected to have positive effects, for 
example, the effects of cessation of harmful activities, remediation measures (e.g., Figure 5e), 
active restoration or creation of new habitats such as nesting sites, reservoirs or ponds (e.g., Figure 
5f) that favour insect recovery or colonisation. The studied factors could also be negative, such as 
severe drought, fire or pesticide application, creating deleterious conditions for insects at the 
beginning, middle or end of the observation period, followed by recovery, the timing of which 
strongly influences insect trends (Appendix S3). An increase in invertebrate abundance or biomass 
after a negative factor of pollution was paradoxically expected in six freshwater studies (Figure 5g, 
Appendix S3), because only or mostly stress-tolerant chironomids were considered or proliferating 
noninsects were included such as oligochaetes, opportunists in waters affected by eutrophication 
(Rosa et al., 2014), or invasive amphipods. 

Two-thirds (41 of 62) of the freshwater datasets were affected by internal drivers, a proportion 
significantly higher than that (one half: 47 of 103) of the terrestrial datasets (χ² = 5.7, P = 0.02, 
Figure 5g left and middle, Appendix S3). Among these two-thirds, internal drivers were found to 
create situations that favour an increase in the number of insects in 61% of the cases (25 
freshwater datasets in green in Figure 5g, left). Considering all the freshwater and terrestrial 
datasets impacted by specific drivers (Figure 5g, right), there were five times more situations 
favouring an increase in insects (42 datasets in green) than those favouring a decline in insects 
(nine datasets in brown).  

This analysis raises the question of whether the data included in InsectChange are 
representative of habitat conditions and associated insect abundances worldwide, particularly in 
freshwater. While the selection of data according to specific and consistent criteria is a necessary 
condition for a meta-analysis to lead to robust conclusions (Englund et al., 1999), it was not met in 
InsectChange. The inclusion of time series with specific experimental designs to address 
ecological questions with differing purposes and expectations raises three issues for meta-
analyses and other syntheses carried out using this database. (1) Such inclusion does not fit the 
definition of a meta-analysis as “a set of statistical methods for combining the magnitudes of the 
outcomes (effect sizes) across different datasets addressing the same research question” 
(Koricheva et al., 2013); (2) it implies that plots within datasets are not independently and 
identically distributed, which is not indicated in InsectChange; and (3) it introduces the problem of 
the “false baseline effect” (Didham et al., 2020), i.e., any nonrandom bias towards an above-
average or a below-average starting point in a time series comparison, with a subsequent bias in 
the overall trend estimation. Therefore, because of these often artificial situations, which lead to 
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below-average starting points much more frequently than above-average starting points, the insect 
trends obtained from InsectChange data (van Klink et al., 2020a) for freshwater and terrestrial 
realms are most likely overestimated.  
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Figure 5 - Inclusion of datasets specifically designed to study particular factors of 
insect change (internal drivers), the combination of which is unlikely to be 
representative of habitat conditions worldwide (Appendix S3, Fig2and5.xlsx). 
Examples of (a-c) controlled or natural experiments and (d-f) datasets with major 
disturbances; in (f), dashed and purple curves represent erroneous and actual data, 
respectively. (g) Comparison of the proportions of datasets affected by internal 
drivers between freshwater and terrestrial realms, showing the particularly 
problematic case of freshwater. It is also worth noting the frequency of situations 
favouring an increase in insects compared with their decrease. Red frame: datasets 
with internal drivers; blue frame: datasets without internal drivers; green: increases 
in insects favoured; brown: decreases in insects favoured. 

How could data selection be improved in InsectChange? First, to reach more robust and 
meaningful conclusions, the best way to proceed would be to select more homogeneous datasets 
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enabling testing of a single clear hypothesis, or alternatively to control for heterogeneity among 
studies with statistical analyses that take these differences into account with predictor variables. 
For controlled experiments, it would be relevant to consider only control sites. For other datasets, 
care should be taken to ensure the representativeness of situations and drivers in terms of sites 
with or without disturbance and in terms of timings of disturbance, and disturbance types could be 
weighted according to their frequency (Cardinale et al., 2018). Maps of human impacts on 
ecosystems, for example, could guide the choice of data and/or their weighting (Gonzalez et al., 
2016).  

In any case, users are exposed to the risk of misinterpreting trend drivers if they use 
InsectChange data, i.e., insect changes and local indicators of anthropogenic changes extracted 
from external databases, without knowledge of the factors originally investigated in the source 
studies.  

4.  Methodological issues resulting in a strong overestimation of the 
local cropland cover 

Finally, we found a strong overestimation of local cropland, a possible driver included in 
InsectChange, by matching study plots to land covers provided in the European Space Agency 
Climate Change Initiative (ESA CCI) database (ESA, 2017) via the geographic coordinates that 
were either provided in the source studies or inferred by the authors of InsectChange. According 
to our analysis of terrestrial plots, this problem arises because (1) the geographic coordinates 
assigned to InsectChange plots are often inadequate for indicating sampling locations and (2) the 
interpretation of satellite images to determine land cover at actual sampling locations is often 
imperfect. 

4.1 Assignment of inadequate geographic coordinates for local analysis 

The local scale around each plot is defined in InsectChange as the area of 900 m × 900 m 
centred on the 300 m × 300 m ESA-CCI cell encompassing the geographic coordinates assigned 
to the plot and including the eight surrounding ESA-CCI cells. This area is used to estimate 
cropland or urban cover at the local scale. The adequacy of these local-scale indicators hinges on 
the premise that, for each plot, the geographic coordinates assigned to the plot in InsectChange 
are precise enough to point to the insect sampling area, and that this sampling area is included in 
a 900 m × 900 m square (hereafter referred to as a “local-scale square”, Figure 6a). However, this 
was not the case for almost a quarter of the terrestrial plots (233 out of the 985 plots). This 
methodological issue affected 63 of the 103 terrestrial datasets included in InsectChange. 

We assessed the matching with ESA-CCI as adequate when the actual sampling area was at 
the location indicated by InsectChange geographic coordinates and small enough to be 
encompassed in a local-scale square (Figure 6a). By this criterion, matching was adequate for 658 
out of 985 terrestrial plots of InsectChange. Among these, 357 were assigned different geographic 
coordinates. Each of these geographic coordinates adequately indicated the actual sampling area, 
which was adequately encompassed in a local-scale square (Figure 6a1). The remaining 301 plots 
shared geographic coordinates with others, with a total of 11 distinct geographic coordinates 
assigned by InsectChange. Each of these 11 coordinates adequately pointed to a zone included 
in the global sampling area of the original study comprising the sampling areas of different plots 
assigned a unique pair of geographic coordinates. This global sampling area was itself small 
enough to be encompassed in a local-scale square (Figure 6a2).  

By contrast, we assessed the matching with ESA-CCI as unclear for 94 plots and inadequate 
for 233 terrestrial plots (Figure 6b), as detailed in our supplementary table CroplandCover.xlxs. 
We assessed the matching as unclear either when the sampling area was a butterfly transect and 
we found no information on the size of this transect, or when several plots shared the identical 
geographic coordinates and we found no information on their precise sampling areas.  
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Figure 6 - Inadequate assignment of geographic coordinates (GCs) for local 
analysis: the case of terrestrial plots. (a) adequate InsectChange GCs, (b) unclear 
or inadequate GCs, and, for inadequate GCs, boxplots (including the mean in red) 
of the maximum distance among sampling points in case of identical InsectChange 
GCs for different sampling points (left) and of the distance to the sampling area 
when the GCs were outside the sampling area (right).  

 
Among the plots with an inadequate matching, the actual sampling area was larger than a local-

scale square for 190 terrestrial plots, either because a unique InsectChange plot aggregated data 
from actual sampling points more than 900 m distant from each other (18 plots; Figure 6b1) or 
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because several InsectChange plots with the same assigned geographic coordinates 
corresponded to actual sampling areas more than 900 m distant from each other (172 plots; Figure 
6b2). Both cases contradicted the statement in InsectChange that data on the cropland cover were 
extracted “at and surrounding the sampling sites”, which implicitly assumes that for each plot, the 
sampling area was fully encompassed in a local-scale square. Matching with an external database 
is thus not appropriate, as it provides land cover information either for only part of the sampling 
area or for an unsampled area. When information was available, the maximum distance between 
sampling points in a sampling area varied from 1 to 370 km, as shown on the left boxplot in Figure 
6b. For example, the 370 km distance is related to Study 1470, where InsectChange extracted a 
mean hymenopteran time series from Belarus in a unique plot and assigned it a location in Belarus 
where no sampling actually occurred. The information from the source study gave the names of 
the areas where the insects were sampled, allowing calculation of the distances between sampling 
points, which ranged up to approximately 370 km. Therefore, the local-scale indicators calculated 
around the geographic coordinates assigned to this unique “plot” are not meaningful for informing 
on the local conditions around the actual sampling points.  

For the remaining 43 plots with inadequate matching, the geographic coordinates were 
included in a local-scale square that was outside the sampling area (Figure 6b3). When information 
was available, the distance between the InsectChange geographic coordinates and the actual 
sampling area varied from 400 m to 450 km, as shown in the right boxplot on Figure 6b. For 
example, from the columns PlotName, Location and DetailsPlot in the table PlotData.csv of 
InsectChange, Plots 1656 (Study 1266) and 1670 (Study 1006) represent the Cairngorms site of 
the UK Environmental Change Network, but were inadequately assigned the geographic 
coordinates of the 450 km-distant Yr Wyddfa/Snowdon site. Other sources of inadequacy are 
detailed in our supplementary table CroplandCover.xlxs. They include the use of different 
geographic coordinates than those provided in the source study, an error when transforming 
geographic coordinates to the decimal format, the inexact attribution of geographic coordinates in 
cases when they were not provided in the original study, and the use of geographic coordinates 
that were approximate or erroneous in the original publication or database. 

4.2 Overestimation of cropland cover at the local scale 

To assess the local cropland cover area, we used information available in the original studies, 
in other publications, on Google Earth around the correct sampling areas, on satellite images from 
Landsat 8 or Sentinel 2 for more dates, on the internet and in ESA CCI. The information available 
generally did not allow us to establish precise cropland covers, but often enabled us to determine 
whether InsectChange estimates of the percentages of land covered by crops were of an adequate 
order of magnitude, overestimated or underestimated, on the basis of clearly identifiable parts of 
local land covers. 

In some cases, we were unable to make a decision, either because the precise sampling 
location was unknown and could include crops, or because satellite images were difficult to 
interpret, and we found no other source of information. We found that the assessment of local 
cropland cover was inadequate for half (486 of 985) of the terrestrial plots, with a very uneven 
distribution of errors (Figure 7a1, CroplandCover.xlsx). Most plots assessed as having no 
surrounding crops were well assessed (455 of 486 plots), whereas most plots assessed as having 
surrounding crops suffered from an overestimation of the cropland cover (353 of 499 plots), with 
71% of these 353 (252 plots) in fact having no surrounding crops. On the basis of only clearly 
identifiable parts of the land cover, we found that for 129 geographic coordinates for which 
assessment was possible, the assessment errors were very wide-ranging: the minimum 
overestimation of the cropland cover varied between 3% and 100% (mean: 45%, median: 36%, N 
= 114) and its minimum underestimation varied between 1% and 67% (mean: 15%, median: 12%, 
N = 15, Figure 7a2). Because of the strong overestimation of cropland cover, we argue that 
InsectChange cannot provide a reliable analysis of the impact of local cropland cover on insect 
changes and could lead to incorrect dismissal of the impact of cropland cover on insect decline.  
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Figure 7 - Overestimation of local cropland cover (CroplandCover.xlsx). (a) 
Assessment errors of the cropland cover of plots and their unevenness: 1) 
InsectChange assessment of local cropland cover of an adequate order of 
magnitude, overestimated, underestimated or inadequate or unclear (without a 
possible assessment); 2) Minimum error in cropland cover assessment, based on 
clearly identifiable parts of the land cover, for geographic coordinates with 
inadequate cropland cover assessment. (b) Example of overestimation of the local 
cropland cover in Study 1102 (van Klink et al., 2019), Plot 567, with adequate 
geographic coordinates (latitude: 52.77986, longitude: 6.57968, last year in study: 
2016, cell scale: 300 m × 300 m); 1) InsectChange assessment of cropland cover 
shown in red = (8 × 100%)/9 = 89% from ESA-CCI 2015 coding, i.e., 8 yellow cells 
(ESA-CCI code 10, “cropland, rainfed”) coded as cropland in InsectChange and one 
brown cell (ESA-CCI code 110, “mosaic herbaceous cover > 50%/tree and shrubs 
< 50%”) coded as uncropped in InsectChange; 2) Our assessment of cropland cover 
on the basis of information from the source study and Google Earth satellite image 
from May 2, 2016, showing the local area surrounding the plot in Hullenzand 
heathland (Netherlands). Most of the area was heath land, whereas the 
northwestern green area outlined in blue, representing ≈ 2% of the local-scale 
square, was cropland or grassland. The local cropland cover was therefore either 
0% or ≈ 2%. On this basis, the 89% assessment in the database was coded as 
overestimated in our analysis (Appendix S1, Problems.xlsx). 
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Inadequate geographic coordinates explained only 18.3% of inadequate cropland cover 
assessments. Indeed, for more than half (127 out of 233) of the plots that were assigned 
inadequate geographic coordinates, the actual sampling area and the local surroundings totally 
lacked crops, in line with the InsectChange assessment for these plots. In most cases, therefore, 
the inadequacy of geographical coordinates had no impact on the assessment of local cropland 
cover. The main reason for inadequate cropland cover assessments was the inaccurate 
interpretation of satellite images by the ESA-CCI database (CroplandCover.xlsx), notably because 
grasslands, heathlands, steppes, barrens, prairies, shrublands, marshlands, natural vegetation 
areas, parks or golf courses may inaccurately be coded as croplands (Peng et al., 2017; Liu et al., 
2018), and the representation of land cover is imprecise when used at a local scale composed of 
nine 300 m × 300 m squares with rough cropland cover assigned to each of them (63.2% of 
inadequate cropland cover assessments, CroplandCover.xlsx, example in Figure 7b). For some 
plots (but not systematically for all plots), we checked whether cropland covers were adequately 
retrieved from ESA-CCI. We found that this was not the case for 8.2% of cropland covers, were 
the InsectChange assessment did not match with ESA-CCI information. Finally, 10.3% of the 
cropland cover assessments were inadequate for other reasons (for example, insufficient 
resolution of satellite images at the beginning of the 1990s, tree cover, parking lots, and shadow 
on the top of a mountain incorrectly coded as cropland). 

In terms of freshwater, 49 of the 62 studies matched with ESA-CCI information included 
inadequate geographic coordinates that should be used with caution. We did not check local 
cropland cover estimates, as the water quality at the sampling points may be more dependent on 
upstream land use than on land use of immediately adjoining plots (Allan, 2004; Desquilbet et al., 
2020). For terrestrial and freshwater datasets, a quality check of the accuracy of estimates 
provided for other possible drivers of insect change, notably local-scale drivers (urban cover and 
climate change) similarly affected by the inadequacy of geographic coordinates, is strongly 
recommended. 

Conclusion 

The numerous problems affecting the InsectChange database call for corrections and extreme 
vigilance in its use. They call into question the results obtained thus far from this database, in the 
first place those of van Klink et al. (2020a,b), which were widely covered by various media reaching 
a broad readership (Kimbrough, 2020; McGrath, 2020; Ritchie, 2024). The main consequence is 
that InsectChange conveys unsubstantiated information to scientists, decision-makers and the 
general public. We argue that InsectChange, in its current state, does not allow the study of insect 
trends worldwide or their drivers and is particularly unsuitable for the analysis of the influence of 
agriculture on insects, or for the study of changes in freshwater insect assemblages. We have 
outlined ways of improving data selection to make the data more representative of habitat 
conditions and insect numbers at a global scale. Our detailed appendices are designed to facilitate 
data consolidation. More generally, this comment underlines the need for relevant matching with 
external databases. Our careful review also illustrates the value of contacting dataset owners to 
ensure their appropriate use and calls for vigilance to avoid transferring errors across databases, 
as occurred for 11 datasets incorporated from the Global Population Dynamics Database 
(Prendergast et al., 2010) and/or Biotime (Dornelas et al., 2018) into InsectChange (Appendix S1). 
Finally, our in-depth analysis highlights the attention that should be given to the data and their 
meaning to ensure that large databases built from individual datasets participate in a cumulative 
knowledge process. 
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Appendices 

Appendix 1 - Results of the binary logistic regressions testing for an effect of realm 
on each problem type. 

Problem 
category 

Dependent variable  
(problem type) 

Characteristic Log(OR)1 95% CI2 p-value 

Er
ro

rs
 

Inexact insect group Intercept -0.26 -0.77, 0.24 0.3 
 Freshwater realm — —  
 Terrestrial realm -0.73 -1.4, -0.06 0.032 
Noninsects Intercept -0.19 -0.70, 0.30 0.4 
 Freshwater realm — —  
 Terrestrial realm -2.4 -3.4, -1.6 <0.001 
Insect count error Intercept -1.8 -2.5, -1.1 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.08 -0.79, 1.0 0.9 
Unaccounted sampling 
effort/method 

Intercept -3.0 -4.4, -2.0 <0.001 
Freshwater realm — —  
Terrestrial realm 1.2 0.05, 2.7 0.065 

Overlapping data Intercept -2.2 -3.2, -1.5 <0.001 
 Freshwater realm — —  
 Terrestrial realm -0.38 -1.5, 0.79 0.5 
Insect stratum error Intercept -21 -815, 66 >0.9 
 Freshwater realm — —  
 Terrestrial realm 18 -194, NA >0.9 

In
co

ns
is

te
nc

ie
s 

Taxa inconsistency Intercept -2.4 -3.5, -1.6 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.09 -1.0, 1.3 0.9 
Site inconsistency Intercept -3.4 -5.2, -2.2 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.43 -1.1, 2.4 0.6 
Inadequate temporal resolution Intercept -2.7 -3.9, -1.8 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.20-0.83 -2.5, 0.7 0.3 
Data exclusion Intercept -2.7 -3.9, -1.8 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.20 -1.0, 1.6 0. 8 

M
et

ho
do

lo
gi

ca
l i

ss
ue

s 

Internal driver(s) Intercept 0.67 0.15, 1.2 0.013 
 Freshwater realm — —  
 Terrestrial realm -0.84 -1.5, -0.20 0.011 
Inadequate geographic coordinates 
for study at local scale 

Intercept 1.3 0.75, 2.0 <0.001 
Freshwater realm — —  
Terrestrial realm -0.87 -1.6, -0.16 0.019 

Only two years of records Intercept -1.9 -2.7, -1.2 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.06 -0.85, 1.0 0.9 
Study or site inflation Intercept -21 -815, 66 >0.9 
 Freshwater realm — —  
 Terrestrial realm 18 -209, NA >0.9 

In
fo

rm
at

io
n 

ga
ps

 

Omission of drivers Intercept 0.00 -0.50, 0.50 >0.9 
 Freshwater realm — —  
 Terrestrial realm -0.89 -1.6, -0.24 0.008 
Omission of dates Intercept -2.7 -3.9, -1.8 <0.001 
 Freshwater realm — —  
 Terrestrial realm 0.98 -0.08, 2.3 0.093 

1 OR = Odds Ratio, 2 CI = Confidence Interval 
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Appendix 2 – Effects of considering total freshwater invertebrates instead of 
freshwater insects only on trend estimation. (a) Results of mixed model testing for 
effects on insect density (log10-transformed) of fixed variables with respect to time, 
type of assemblage considered and metric, and random variables with respect to 
datasets and plots within datasets. (b) Trend estimation (in the log10 space) between 
the different groups and tests for their differences. 

(a) Mixed linear model on log10(insect density) dependent variable 

- Type III ANOVA-like table with Satterthwaite’s method for the fixed effects 

Independent variable Sum of squares Mean 
square 

Num.df Den.df F 
value 

P value 

Assemblage type 0.799 0.799 1 124.85 6.351 0.013 * 
Metric 0.356 0.356 1 125.80 2.861 0.093 
Time 0.137 0.137 1 125.53 1.104 0.295 
Assemblage type * Metric 1.271 1.271 1 124.85 10.220 0.002 ** 
Time * Assemblage type 0.832 0.832 1 124.84 6.694 0.011 * 
Time *Metric 0.240 0.240 1 125.53 1.938 0.166 
Assemblage type*Time*Metric 1.290 1.290 1 124.84 10.371 0.002 ** 

- ANOVA-like table for the random effects 

npar  logLik AIC LRT Df P value 
none 11 -77.573 177.15    
1 | Dataset_ID 10 -78.422 176.84 1.697 1 0.193 
1 | Dataset_ID : Plot_ID 10 -90.546 201.09 25.946 1 3.5e-07*** 

(b)    Time trend estimates for each group 

Assemblage type Metric Time.trend SE df  t.ratio  P value 
Total invertebrates Abundance -0.0071 a 0.0035 126 -1.995 0.048 * 
Insects Abundance -0.0042 a 0.0035 126 -1.181 0.240 
Total invertebrates Biomass  0.0140 b 0.0037 124  3.768 0.0003 *** 
Insects Biomass -0.0124 a 0.0067 125 -1.855 0.066 . 
Total invertebrates Abundance & Biomass  0.0035 a’ 0.0026 125 1.353 0.1786 
Insects Abundance & Biomass -0.0083 b’ 0.0038 125 -2.192 0.0302 * 

*: P < 0.05, **: P < 0.01, and  ***: P < 0.001 
Different letters were associated with the trend estimates when they were significantly 
different from each other according to post hoc pairwise tests with Satterthwaite’s method 
and Holm’s correction for multiple comparisons. 
The model run without the non-significant factor Dataset_ID gave comparable results and 
was not better according to the Akaike information criterion (AIC) with a AIC difference of only 
0.3. 
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