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Abstract
As biodiversity plummets due to anthropogenic disturbances, the conservation ofoceanic species is made harder by limited knowledge of their distributions and migra-tions. Indeed, tracking species distributions in the open ocean is particularly challengingdue to the scarcity of observations and the complex and variable nature of the oceansystem. In this study, we propose a new method that leverages deep learning, specifi-cally convolutional neural networks (CNNs), to capture spatial features of environmentalvariables. This novelty eliminates the need to predefine these features before modellingand creates opportunities to discover unexpected correlations. Our aim is to present theresults of the first trial of this method in the open ocean, discuss limitations and providefeedback for future improvements or adjustments. In this case study, we considered38 taxa comprising pelagic fishes, elasmobranchs, marine mammals, marine turtles andbirds. We trained a model to predict probabilities from the environmental conditions atany specific point in space and time, using species occurrence data from theGlobal Biodi-versity Information Facility (GBIF) and environmental data from various sources. Thesevariables included sea surface temperature, chlorophyll concentration, salinity and fif-teen others. During the testing phase, the model was applied to environmental data atlocations where species occurrences were recorded. The classifier accurately predictedthe observed taxon as the most likely taxon in 69% of cases and included the observedtaxon among the top three most likely predictions in 89% of cases. These findings showthe adequacy of deep learning for species distribution modelling in the open ocean. Ad-ditionally, this purely correlative model was then analysed with explicability tools to un-derstand which variables had an influence on the model’s predictions. While variable im-portance was species-dependent, we identified finite-size Lyapunov exponents (FSLEs),sea surface temperature, pH and salinity as the most influential variables, in that order.These insights can prove valuable for future species-specific ecology studies.
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1. Introduction
1.1. Background

The open ocean is a vast and complex ecosystem that covers over 70% of the Earth’s surface,yet it remains one of the least understood and studied ecosystems on our planet (Raffaelli et al.,2005; Robinson et al., 2011). It plays a critical role in regulating the Earth’s climate and biogeo-chemical cycles (including nutrient cycles and carbon sequestration), making it a vital componentof all life on Earth (Barrón and Duarte, 2015; Ganzeveld et al., 2009).However, the ocean is facing a range of human-induced threats, including over-fishing, pol-lution and climate change (Jackson et al., 2001; Macías-Zamora, 2011; Sen Gupta et al., 2020).These threats can have serious consequences for marine biodiversity and therefore negativelyimpact the livelihoods of millions of people who depend on the oceans for their food or income(Selig et al., 2019).To solve these most pressing challenges, a necessary first step is to understand how marinelife is distributed within the open ocean. Species distribution models can provide valuable in-sights into where different species are likely to be found and how environmental factors drivetheir distribution (Miller, 2010). By developing accurate and reliable models, we can identify ar-eas that are most threatened by foreseen local disturbances and develop effective conservationstrategies to protect these ecosystems.Furthermore, changes in the Earth’s climate are already affecting ocean conditions, namelywarming waters, ocean acidification and sea level rise, among others (IPCC, 2019). This makesit even more urgent to understand the link between environmental variables and species dis-tributions, to be able to predict how marine biodiversity may respond to these changes. Thisinformation is critical for informing decision-making and management efforts to ensure the long-term sustainability of marine ecosystems and the services they provide to society.Therefore, studying species distribution in the open ocean is essential for advancing our un-derstanding of these complex ecosystems and for developing effective conservation and man-agement strategies to protect them.
1.2. Existing methods for predicting species distributions

A wide variety of Species Distribution Models (SDMs) have been discussed in literature(Guisan and Thuiller, 2005). This is generally done through modelling a species-specific envi-ronmental niche where environmental conditions are favourable to the species in the long term,shaped by natural selection (Guisan and Zimmermann, 2000). Predictors are chosen empiricallyto try and predict the species’ ranges from observed species’ occurrences.Usually, SDMs use climatological summaries of environmental data, at the location wherethe observation is recorded. These spatially isolated data are unable to convey the full natureof the environmental seascape around animals, as single values cannot represent more complexbathymetry features such as trenches for example. The same applies to other variables, whichspatial structure may be more important than isolated values: algal blooms, temperature fronts,eddies, etc. Yet these spatial structures represent processes which are essential to ascertainspecies distributions (Baudena et al., 2021; Ramos et al., 1996).A solution to this shortcoming is to include the environmental data in the neighbourhood ofspecies occurrences, but the number of predictors then becomes much larger than the numberof observations. This is unfit for statistical models and requires a feature extraction step to sum-marize input data into fewer significant variables. This work may be carried out manually, whichenables the model to take advantage of scientists’ expert knowledge. This is how some spatialfeatures are added into SDMs (Brodie et al., 2015), but it limits the performance of the model tothe scope of existing knowledge and prevents the discovery of previously unknown influentialfactors.Furthermore, the use of climatological summaries prevents taking advantage of these spatialfeatures, as they are lost when averaging the values over time.While some climatology productstry to mitigate this shortcoming (e.g. frequency of presence of fronts (Miller and Christodoulou,2014)), countless such products would be necessary to capture all types of features. Therefore,
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the only remaining solution is to use instantaneous values at the time of species occurrence(Mannocci et al., 2017). This slightly changes the objective of the model: it does not try to modelthe ecological niche anymore, but dynamic distributions of the species and becomes a dynamicSDM (Milanesi et al., 2020). This development is necessary if we want to include the aforemen-tioned spatial structures into predictors. Incidentally, this makes the predictions highly depen-dent on time, which has two unintended benefits: 1.making it possible to include the variabilityof environmental data into SDM predictors, which has been identified as a way to improve theirperformance (Bateman et al., 2012) and 2. allowing modelling the variations of distributions overtime, which is especially interesting for highly mobile species or those that have rapid populationdynamics (Fernandez et al., 2017; Melo-Merino et al., 2020).This calls for new methods to extend the scope of SDMs to fully take into account the com-plex spatial structures of environmental seascapes and, as a direct benefit, their variability overtime.
1.3. Potential benefits of using deep learning for modelling marine species distribution

Convolutional neural networks (CNNs) were designed for image processing, so they haveembedded feature extractors that are designed to detect multiple levels of details using convo-lution layers (He et al., 2016). As the training advances deeper within the layers, small detailsare increasingly pooled together to be able to detect much more complex shapes. With imageclassification, one can identify the following levels, from most precise to coarser:
(1) Values of specific pixels(2) Value of a small group of pixels: textures, edges(3) Association of several groups of pixels: shapes, geometric features(4) Association of several shapes: objects, animals, plants(5) Average and extreme values on the whole image: brightness/tint
This is especially useful with environmental data raster layers (from satellite observations ormodels) as it enables the model to detect the same various levels of details on environmentalvariables. Here are some examples of the same levels of detail, applied to environmental vari-ables:
(1) Values at a given point(2) Homogeneity of the variable in the neighbourhood of occurrence: fronts, slopes(3) Geographic features: bays, underwater canyons, river plumes(4) Complex shapes: current structures, cyclones(5) Average and extreme values over the buffer zones
The use of CNNs to model species distributions was successfully developed for terrestrialplants (Botella et al., 2018). The CNN architecture proved especially useful to capture spatialfeatures, as well as to transfer knowledge from better-known species to lesser-known species(Deneu et al., 2021). CNN-based SDMs, as described here, usually predict species distributionsby providing a classification rather than regressions.While these studies were mostly based on satellite imagery (Sentinel-2), optical data is notenough to represent the state of the oceanic environment, although it yields some interestingproducts such as chlorophyll concentration. These products and many other significant oceanicvariables are available as processed data sets, which should be used for a more comprehensiveview of oceanic conditions. Another difference with this previous work is the high temporalvariability of the oceanic seascape. Here we present an adaptation of the work of Botella et al.(2018) and Deneu et al. (2021) that includes these adaptations to the specificity of the openocean.

1.4. Objectives of the study
Through the present study, we explore the possibilities that deep-learning-based SDMs offerin the open ocean.We first give a detailed overview of the data that was used to build our model.Thenwe show the results thatwe obtained, including performancemetrics and distributionmaps.
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Finally, we point out the limits that we have found with our methodology choices and suggestways to improve the results’ quality in the future.
2. Methods

The main step of our process is to build a model to relate species presence to environmentaldata. To achieve this, we used occurrence data from the Global Biodiversity Information Facil-ity (GBIF) (GBIF, 2023) and downloaded environmental data in a buffer around each of theirlocations, at the date of their occurrence. All the data sets are freely available.It is important to note that as training data is presence-only, we cannot predict abundanceor any absolute measure of presence. That’s why we modelled a multivariate output, wherepredictions are observation probabilities, relative to the 38 taxa that are the subject of this study.After training, this provided uswith amodel which takes environmental data as input and outputsa vector of observation probabilities (one for each taxon). The full process is summarized in Figure1 and is explained in detail in this section.

Figure 1 – Summary view of the analysis process: model training in the top half andpredictions in the bottom half.
2.1. Description of the occurrence data

Thirty-eightmarine species or generawere selected for the proof of concept that is describedin the present article. They include large pelagic fishes, elasmobranchs, turtles, sea mammalsand two species of marine birds (see Table 1). They were chosen based on the availability ofoccurrence data, and special attention was given to their diversity in order to stress-test ourmodel. The sample contains highly mobile and sessile species, widespread and local ones, somewhich live in biodiversity hotspots and others in less frequented waters. While sessile species(Acropora) cannot move in response to changing environmental conditions, the model may learnsuitable conditions from geographical or long-term patterns, which could be useful to study the
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potential impact of temporary episodes (e.g. El Niño Southern Oscillation) or slower trends (e.g.ocean warming).
Table 1 – Species that were included in the study, coloured by taxonomic class. The lastcolumn is the digital object identifier (DOI) of downloaded archives.

English name Taxonomic name N samples DOI
Yellowfin tuna Thunnus albacares 9,998 10.15468/dl.gr2wbbLongfin tuna Thunnus alalunga 9,991 10.15468/dl.aqjv3yAtlantic bluefin tuna Thunnus thynnus 8,908 10.15468/dl.nnyeybSouthern bluefin tuna Thunnus maccoyii 2,022 10.15468/dl.tw97qjBigeye tuna Thunnus obesus 9,999 10.15468/dl.c96qppSkipjack tuna Katsuwonus pelamis 9,986 10.15468/dl.6y2zzmFrigate Tuna Auxis thazard 4,855 10.15468/dl.kfm6kqSailfish Istiophorus 9,996 10.15468/dl.f48dugBlack marlin Istiompax indica 705 10.15468/dl.b5ackyBlue marlin Makaira 2,767 10.15468/dl.sygtawSwordfish Xiphias gladius 9,996 10.15468/dl.hazqd2Dolphinfish Coryphaena 9,992 10.15468/dl.q67bqtHumphead wrasse Cheilinus undulatus 2,446 10.15468/dl.9g76hqOceanic Whitetip Carcharhinus longimanus 2,160 10.15468/dl.b5ws4qWhitetip Carcharhinus albimarginatus 9,991 10.15468/dl.vpc772Silk shark Carcharhinus falciformis 9,998 10.15468/dl.vg4rwhSandbar shark Carcharhinus plumbeus 9,993 10.15468/dl.7fczpaGrey reef shark Carcharhinus amblyrhynchos 10,000 10.15468/dl.ccqywsMako shark Isurus oxyrinchus 6,240 10.15468/dl.h5akxkBlue shark Prionace glauca 9,973 10.15468/dl.zqksskDevil ray Mobula mobular 1,064 10.15468/dl.p4e2sxReef manta Mobula alfredi 7,928 10.15468/dl.bkjkguEagle ray Myliobatis 9,974 10.15468/dl.3u3v7kHumpback whale Megaptera novaeangliae 9,980 10.15468/dl.yzg4n3Fin whale Balaenoptera physalus 9,996 10.15468/dl.r9kaq8Blue whale Balaenoptera musculus 9,973 10.15468/dl.28f7xdBottlenose Tursiops 9,952 10.15468/dl.bec9p4Spinner dolphin Stenella longirostris 7,394 10.15468/dl.xz5edsCommon dolphin Delphinus delphis 9,974 10.15468/dl.u5be7vSperm whale Physeter macrocephalus 9,984 10.15468/dl.7pf4ueHarbour porpoise Phocoena phocoena 9,937 10.15468/dl.afr2fnSouthern right whale Eubalaena australis 9,963 10.15468/dl.e3hdkjGreen turtle Chelonia mydas 9,835 10.15468/dl.6gs9rpLoggerhead Caretta caretta 9,941 10.15468/dl.dmb6dsHawksbill turtle Eretmochelys imbricata 9,721 10.15468/dl.e6w44wEmperor penguin Aptenodytes forsteri 9,981 10.15468/dl.s5unhsWedge-tailed shearwater Puffinus pacificus 9,964 10.15468/dl.vyztueAcropora coral Acropora 8,676 10.15468/dl.vg752f

Presence data for these taxawere downloaded from theGBIF. This database contains speciesoccurrences that are free to access and download, which is essential for reproducibility. Someflawed data is unavoidably present in the database, but small errors in the geographical coordi-nates are not a problem as the oceanographic landscape that we consider has limited precisiondue to environmental data resolution (see Table 2). Furthermore, convolutional neural networksare known to be robust against occasional labelling mistakes (Chen et al., 2020).Digital object identifiers (DOIs) for the download of each species are available in Table 1.When more than 10,000 occurrences of a taxon were available, a random sample of 10,000
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occurrences was selected. In all cases, GBIF identifiers of occurrences that were actually usedare available in the training data set CSV files (id column). We removed points located on thecontinents and no other filtering was conducted on geographical precision.We made the debatable choice not to intervene in the input data, as we cannot assume anyconsistent rules over all data sets. For example duplicates might be multiple sightings or simplymistakes. This choice is arbitrary and more thorough data cleaning could be beneficial to futurework.This added up to 314,253 occurrences for all taxa, depicted in Figure 2.

Figure 2 – Random sample (10%) of the training data set, coloured by taxonomic class.
2.2. Description of the environmental data used as inputs

Eighteen environmental variables were considered, some from satellite observations and oth-ers from models. Three of them contain two values: both strength and orientation components(i.e., polar coordinates) for finite-size Lyapunov exponents (FSLEs), and both zonal andmeridionalcomponents for surface wind and geostrophic current. Temperature and chlorophyll values werealso included 15 and 5 days before the occurrences, as it was previously demonstrated that ma-rine animals may have a delayed response to some variables, especially temperature (Moraeset al., 2012). Finally, four geographical variables were added (see Section 2.3.2). Even thoughthese four variables were constant over each patch, they were encoded as layers with equaldimensions to the other variables. This was done for simplicity of implementation, as well as totake advantage of GPUs’ efficiency at parallelized computation. Overall, this amounts to a totalof 29 layers of data, shown in Table 2.Each of these layers is two-dimensional: for 3D data only the surface layer was downloaded.However all the tools that we use in this study are compatible with 3D environmental data. Wechose to focus on other aspects in this study, but the vertical dimension may be included intofuture work.
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Table 2 – 29 layers used as input data (re-ordered for clarity).NB: Eddy kinetic energy is calculated using geostrophic current data. Res. = Resolution.P.S.U. = Practical salinity Unit. CMS = Copernicus Marine Service.
Variable Source Source type Res. Time Res. Unit
Bathymetry GEBCO, 2022 Observations 0.0042° m

Salinity European Union-CMS, 2020 Observations 0.25° weekly P.S .U.

Wave Height European Union-CMS, 2021b Observations 2° daily m

Surface wind (u) CCMP (Mears et al., 2022) Observations 0.25° 6 hours m.s−1

Surface wind (v) CCMP (Mears et al., 2022) Observations 0.25° 6 hours m.s−1

Oxygen European Union-CMS, 2018, 2019 Models 0.25° daily mmol .m−3

pH European Union-CMS, 2018, 2019 Models 0.25° monthly
FSLEs (strength) LOCEAN/CLS/CTOH/CNES, 2021 Observations 0.04° daily days−1

FSLEs (orientation) LOCEAN/CLS/CTOH/CNES, 2021 Observations 0.04° daily degrees

Geostrophic Current (u) European Union-CMS, 2017, 2021a Observations 0.25° daily m.s−1

Geostrophic Current (v) European Union-CMS, 2017, 2021a Observations 0.25° daily m.s−1

Eddy kinetic energy Calculated 0.25° daily m2.s−2

Chlorophyll OCCI (Sathyendranath et al., 2021) Observations 0.042° daily mg .m−3

Chlorophyll (D-5) OCCI (Sathyendranath et al., 2021) Observations 0.042° daily mg .m−3

Chlorophyll (D-15) OCCI (Sathyendranath et al., 2021) Observations 0.042° daily mg .m−3

SST MUR (NASA/JPL, 2019) Observations 0.25° daily kelvin

SST (D-5) MUR (NASA/JPL, 2019) Observations 0.25° daily kelvin

SST (D-15) MUR (NASA/JPL, 2019) Observations 0.25° daily kelvin

Mixed layer thickness European Union-CMS, 2020 Observations 0.25° weekly m

Diatoms European Union-CMS, 2022 Observations 4km monthly mg .m−3

Dinophytes European Union-CMS, 2022 Observations 4km monthly mg .m−3

Haptophytes European Union-CMS, 2022 Observations 4km monthly mg .m−3

Green algae European Union-CMS, 2022 Observations 4km monthly mg .m−3

Prochlorophytes European Union-CMS, 2022 Observations 4km monthly mg .m−3

Prokaryotes European Union-CMS, 2022 Observations 4km monthly mg .m−3

Atlantic Ocean Calculated
Indian Ocean Calculated
Pacific Ocean Calculated
North hemisphere Calculated
2.3. Data preparation
2.3.1. Enrichment. Environmental data were downloaded in a buffer around the occurrencesusing the GeoEnrich python package, which was developed for this purpose and is made avail-able to other researchers for a wide range of uses in the GitHub IRDG2OI/geoenrich repository(Morand and Poulain, 2023). The package implements caching, so that it does not make requeststo the server when data has been downloaded already.Data was downloaded for the closest available date to the occurrence. A spatial buffer of115 km was used, to include at least one data point from the least precise data (2° resolution).This is consistent with values of daily potential movement for fast animals that may travel up to120 km per day (Fromentin and Lopuszanski, 2014; Fujioka et al., 2018). All the available datawithin this buffer were downloaded into arrays.These data arrays with various resolutions (minimum 1 × 1 for wave height, maximum 493 ×
493 for bathymetry) also have various horizontal dimensions due to the longitude contractioncloser to the poles. Theywere all interpolated (up-scaled or down-scaled depending on the initialresolution) to fit the same 32× 32 grid centred around the occurrence. This grid has a resolutionof approximately 7 km.
2.3.2. Ocean basin and hemisphere. An initial goal of the study was to produce a geography-agnostic model, which means that two points with the same oceanic conditions, wherever theyare, should yield the same predictions. But this is ecologically wrong for onemain reason: natural
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barriers prevent animals from navigating anywhere in the long term, namely continents and forsome species, the warm waters around the equator.Because we propose a type of dynamic SDM, we cannot capture these long-term barriers,so we have to include them artificially. Therefore we added four binary variables: three for themain oceanic basins and one for the hemisphere.The world’s oceans were split into three main basins: the Atlantic, Indian and Pacific oceans.Very few of the occurrences were located in the Arctic Ocean: they were assigned the closestof these ocean basins. Occurrences from the Southern Ocean were more numerous and are notseparated from these three oceans by any physical barrier, so they could be assigned to theclosest one.It is important to note that the Ocean basin and the hemisphere are the only geographicalinformation provided to the model. This is by design to avoid learning the observation bias thatis present in the training data.
2.3.3. Feature scaling. All datawere scaled to the [0, 1] interval and saved into a data cube (32×32geographical pixels × 29 layers). Outliers (highest and lowest 1% of the values of the trainingdata set) were replaced with the corresponding extrema and the scaling factors were saved tobe reapplied to any subsequent input data.Some data are missing because of natural phenomena such as clouds, or because the occur-rences were out of the data set time range. In that case, we used themedian value of the variableover the tile. If data was missing over the whole tile, we used the median value over the wholedata set instead. This does not allow the model to differentiate unobserved data (e.g. because ofclouds) from no-data areas (e.g. coast), but this is not an issue as land pixels are already explicitlyprovided in the bathymetry layer.Figure 3 shows an example of all the data that are included in the data cube used for training,with the feature scaling reversed in order to show the real values. The figure does not show thefour binary geographical variables.
2.4. Training the model

Themodelling technique that we describe in this studywas developed for plant species distri-butions (Deneu et al., 2021). We used the Malpolon framework (Lorieul et al., 2023) after someadaptations to our use case. It was built on top of PyTorch (Paszke et al., 2019) and PyTorchLightning (Falcon et al., 2020) frameworks.The Malpolon framework implements a convolutional network with the resnet50 feature ex-tractor (He et al., 2016). We adapted it to use 29 inputs channels and 38 numerical outputsconverted to relative probabilities by a Softmax function. Only the first (convolutional) layer andthe last (linear + Softmax) layer were altered to adapt the number of inputs and outputs. It wastrained from scratch in two sessions: one with a .1 learning rate and another one with a .01learning rate to fine-tune the weights. We used a Binary Cross Entropy loss (averaged over thetaxa and the training batch, weighted by taxa sample sizes).Treating the problem as a classification task allows estimating the conditional probability ofy (the observed species) given that an observation has been made in the environment x. It hasthe advantage to be (asymptotically) invariant to the spatial sampling effort but it is sensitiveto the taxonomic reporting bias (the fact that some species are more observed than others)(Estopinan et al., 2024). In the absence of taxonomic reporting bias, the estimated probabilitieswould converge to the relative probability of each species given the environment. This is whysample size weights were used in the loss to compensate for this particular bias. Mapping thoseprobabilities is thus equivalent to mapping the species suitability relatively to the other speciessuitability. It can be related to the “target-group” approach for generating pseudo-absences.
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Figure 3 – Environmental variables around the point of coordinates -14.389°S, 78.918°Eon March 20th, 2021.
Therefore, the target probabilities for training were set using one-hot encoding, i.e. a one forthe observed species and zeroes for all others. This follows the principle of assumed negatives(Cole et al., 2021): we assume that only the observed species is present at the point of obser-vation. This equates to considering the pseudo-absences of the other species, but it does notprevent co-occurrences. Indeed, if two species are present in the same environmental conditions,training will push the model towards a 50%-50% prediction.

2.5. Evaluation metrics and performance assessment
Training data were randomly split into three sets: training (60%), validation (20%) and test(20%). The validation set was used to assess and improve performance during the training phase,while the test set was used after training to compute the final performance of the model, on datathat it had never seen before.In order to assess the advantage of using a convolutional model, we removed geographicalinput data and retrained the same model from scratch, using only the center value of each patch,for each variable (Punctual-DNN (Deneu et al., 2021)). Since the tiles are 32x32 pixels, we had
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to use the average of the four center values. We then computed the same accuracy metrics aswith our main model; they are displayed side by side in the Results Section.
2.6. From predicted probabilities to distribution maps

After training the model, we used it on new data to generate distribution maps. As the en-vironmental data download phase can be quite slow, we had to choose to focus either on timeextent or spatial extent, but not both at the same time. This is why we chose to compute twodifferent outputs:
• Global species distribution maps at four dates in 2021.
• Regional species distribution maps for the Southwestern Indian Ocean at 53 dates in2021.

It is important to note that the model may be used at any date in any area; the only limitationis the availability of environmental data and the time required to download them.Two grids covering both areas were generated, with an approximate 100 km stride. Theycomprised 36,506 points for the global oceans and 3,001 for the Southwestern Indian Ocean.Environmental data were downloaded for each of these points and run through themodel, whichled to 38 predicted probabilities for each of these points, at each requested date. For each taxon,these probabilities were interpolated over the whole area to generate rasterized distributionmaps. We used cubic interpolation to generate outputs with a 3600x1800 pixels resolution forthe World maps and 800x800 pixels for the Western Indian Ocean maps.It is worth noting that since we are working with probabilities that are relative to our choiceof studied taxa (because of the softmax layer), the absolute values have little purpose. Thereforeno scale is provided for all distributionmaps: they should be interpreted relatively to one another,across species, time or space.
2.7. Influence of variables

To study the influence of variables, a new model was trained after removing chlorophyll andsea surface temperature at D-5 and D-15, as well as Eddy Kinetic Energy. Indeed, these layersare highly correlated with chlorophyll and sea surface temperature on the day of occurrence andgeostrophic current respectively.It is worth noting that this model has almost the same accuracy (69.08%) as the previouslydescribed one (69.15%), which shows that the 5 variables that were removed have very littleinfluence on the classification.Afterwards, the most determining variables were calculated using the integrated gradientsmethod, which is a way to estimate the gradients of the scores with regard to the inputs, there-fore gauging the importance of each input data point (Sundararajan et al., 2017). They werecalculated for all points on the world grid at the four dates of 2021, using the Captum pythonpackage (Kokhlikyan et al., 2020). They were then aggregated over the whole study area (sumof absolute values) to represent variable importance over all the world oceans. Finally, to ana-lyze this in a taxon-specific way, this process was repeated for each taxon on a random sample(N=1000) of the points where the taxon was the top prediction.
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3. Results
3.1. Performance of the model

The accuracy of the final version of the model was 69%, which means that in 69% of cases,themost likely taxon according to themodel was the same as the one that was actually observed.The corresponding score for the Punctual-DNN is significantly lower: 63%. See Table 3 for morecomplete accuracy results. Thesemetrics prove the benefit of using spatial data, as hypothesizedin the Introduction. Although the difference in scores is quite small, percentage points closer to100% are much harder to gain than those close to 0%. Indeed, they represent the most difficultpredictions.
Table 3 – Probability that the observed taxon is among the Top N predictions of themodel, for 11 values of N

Top N Probability Probability(Spatial input) (Punctual input)
1 69.15% 63.34%2 83.19% 78.77%3 89.13% 85.85%4 92.83% 90.26%5 95.13% 93.18%6 96.63% 95.29%7 97.48% 96.45%8 97.99% 97.28%9 98.43% 97.87%10 98.75% 98.29%38 100.00% 100.00%

All these statistics were computed on the test set, i.e. on data that was never used before.A confusion matrix was computed on the test data set and is shown in Figure 4. It shows thatsome taxa were well predicted by the model (the top two being Aptenodytes forsteri andMobulaalfredi). Others were harder to predict, the worst two being Istiompax indica and Carcharhinuslongimanus. These two are among the taxa with the fewest occurrences, which could explainthis result.
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Figure 4 – The confusion matrix shows the predictions of the model on the test data set,for each actually observed taxon. Cell darkness is proportional to cross-probability.
3.2. Presentation of the species distributions maps
3.2.1. Global oceans. Distributionmapswere calculated on four dates, all in 2021, correspondingto both solstices and both equinoxes, for the thirty-eight taxa. These maps represent the proba-bility of presence among the 38 studied genera. Figure 5 shows these maps for three species onthe spring equinox. All 152 distribution maps are available online (Morand, 2023d).
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(a) Caretta caretta

(b)Mobula alfredi

(c) Puffinus pacificus
Figure 5 – Examples of distribution maps on March 20th, 2021, chosen to further dis-cuss some interesting and contrasting patterns. All maps are available publicly (Morand,2023d).
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3.2.2. Southwestern Indian Ocean. In this case, distribution maps were calculated each week of2021, for the 38 taxa. To make visualization easier, they were exported as animated GIFs thatare available online (Morand, 2023c). Again, these maps represent the probability of presenceamong the 38 studied genera. An example for Prionace glauca is shown in Figure 6.

Figure 6 – Distribution maps for Prionace glauca every three weeks of 2021. The scale isdifferent from other figures to improve visibility, hence the change in colours.
3.3. Comparison of predicted distribution maps to established maps

Validation of the distribution maps is challenging because existing distribution maps are usu-ally the results of static studies (except sometimes broad seasonal variations). Yet the maps thatwe produce are dynamic, i.e. highly dependent on time, see Figure 6 for instance. Moreover, ourmaps show presence probabilities relatively to the set of 38 species, which yields results that are
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different in nature from classic distribution maps. Finally, observation data are spatially biasedso they cannot be used for validation either.We compared some of our distribution maps to established ones, to check for inaccuracies.See Figure 7 for a few examples.

(a) Puffinus pacificus (established map (Whittow, 2020)) (b) Puffinus pacificus (prediction for 2021-03-20)

(c) Eubalaena australis (established map (Perrin et al.,2009)) (d) Eubalaena australis (prediction for 2021-06-20)

(e) Thunnus thynnus (established map (SmithsonianOcean Team, 2009)) (f) Thunnus thynnus (prediction for 2023-03-20)
Figure 7 – Comparison between established distribution maps (left) (Perrin et al., 2009;Smithsonian Ocean Team, 2009; Whittow, 2020) and deep-learning generated maps(right). Prediction maps at other dates (Morand, 2023d) do not change the interpreta-tion.

3.3.1. Puffinus pacificus. The prediction map 7a is consistent with the established one 7b, al-though it shows a significant difference between the Indian and Pacific oceans. Since establishedmaps are usually binary (presence/absence), the difference we see between the two oceans can-not be (in)validated. It is possible that the Pacific Ocean is more suitable to this species than theIndian Ocean, or the Indian Ocean stock may be an under-represented in our data set. In theory,this should not have impacted our results as the point of themethod is to be geography-agnostic.
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But in reality different stocks may have different reactions to environmental conditions, there-fore introducing a correlation with geography (location of the stocks). Perhaps some stocks wereunder-represented in our training data set.
3.3.2. Eubalaena australis. The predicted distribution 7d fitswithin the known geographical rangeof Eubalaena australis 7c and the map shows a strong disparity of the prediction density withinthis area. Again, no assumption can be made on the plausibility of the predictions, as this hetero-geneity may be caused by temporal variation, or it may not fit reality. As our results are relativeprobabilities (i.e. proportions among all 38 species), variations in one distribution map may alsoensue from variations in other species habitat preferences.
3.3.3. Thunnus thynnus. The predicted range for Thunnus thynnus 7f is within the establishedrange 7e, but it does not include all of it. Specifically, the Mediterranean Sea and the Bay ofBiscay are excluded, even though a major population lives in these areas (Fromentin et al., 2014).After checking our input data, this shortcoming can be explained by the under-representationof this population in the occurrences used for training. This will be discussed further in Section4.2.2.
3.4. Analysis of determining variables

Over the predictions for the 2021 Global use case, the most influential variables were finite-size Lyapunov exponents (FSLEs) (strength), sea surface temperature (SST), pH, salinity, FSLEs(orientation) and bathymetry, in this order. See Table 4 for a full accounting of variable influence.Figure 8 shows the median integrated gradient for each taxon. While FSLEs and SST are themost important variables overall, this chart reveals the diversity of correlations between taxaand predictors. For example, bathymetry was the most important predictor for 6 taxa. Anotherinteresting observation is that phytoplankton data was used significantly for one taxon only:Thunnus thynnus.
Table 4 – Statistics of the influence of variables over the 2021 predictions for the wholeworld (×1, 000, sorted by median). Colour scale 0 to 1. MAD = Median Absolute Devia-tion.

Variable min 25% 50% 75% max MAD
FSLEs (strength) 0.00 0.42 0.73 1.21 6.88 0.36
SST 0.00 0.17 0.44 0.95 5.13 0.33
pH 0.00 0.19 0.38 0.72 5.04 0.23
Salinity 0.00 0.19 0.32 0.63 3.56 0.17
FSLEs (orientation) 0.00 0.16 0.30 0.56 3.85 0.17
Bathymetry 0.00 0.11 0.28 0.66 8.39 0.22
Geos. Current (u) 0.00 0.13 0.24 0.41 3.25 0.12
Geos. Current (v) 0.00 0.14 0.24 0.40 2.93 0.12
Surface wind (v) 0.00 0.13 0.23 0.38 1.48 0.11
Surface wind (u) 0.00 0.12 0.20 0.34 1.43 0.10
Oxygen 0.00 0.05 0.20 0.61 4.26 0.18
Wave height 0.00 0.07 0.11 0.19 0.83 0.06
Mixed layer thickness 0.00 0.03 0.09 0.28 3.83 0.07
Pacific Ocean 0.00 0.00 0.08 0.57 3.29 0.08
Green algae 0.00 0.01 0.03 0.06 2.88 0.02
Prochlorophytes 0.00 0.01 0.03 0.06 3.62 0.02
Haptophytes 0.00 0.01 0.02 0.06 2.93 0.02
Prokaryotes 0.00 0.01 0.01 0.03 2.24 0.01
Chlorophyll 0.00 0.00 0.01 0.02 1.23 0.01
Dinophytes 0.00 0.00 0.01 0.02 3.14 0.01
Diatoms 0.00 0.00 0.00 0.02 1.96 0.00
North hemisphere 0.00 0.00 0.00 0.48 3.84 0.00
Atlantic Ocean 0.00 0.00 0.00 0.12 3.27 0.00
Indian Ocean 0.00 0.00 0.00 0.00 3.35 0.00
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Figure 8 – Variables that had the most influence on the determination of each taxonpresence (darker = stronger influence). NB: Istiompax indica is not present in this chart asit was never predicted to be the most likely taxon.
4. Discussion

4.1. Ecological interpretation of the results, implications for offshore species distributions
The variables that were identified as important are coherent with past research. Specifically,FSLEswere identified as a particularly important predictor ofmovement for topmarine predators(Tew Kai et al., 2009). Sea surface temperature was also expected to be an important predictor,since it has important physiological consequences and is therefore the most frequently used
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descriptor in marine SDMs (Melo-Merino et al., 2020) and was identified as the most relevantfactor in an SDM review (Bosch et al., 2018).This study also demonstrates a high sensitivity to temporal variations in environmental con-ditions, as shown in Figure 6. This highlights the need for distribution models of fast-movingspecies to consider these variations and is coherent with previous findings (Bateman et al., 2012;Melo-Merino et al., 2020).We noticed some surprises in influential variables: bathymetry was not a good predictor ofAcropora coral distribution, which is contradictory with their need for light. A possible explana-tion is that the model may have used other variables as a proxy for low depths. This could bea legitimate and expected behavior, or overfitting due to auto-correlated training data, which isdiscussed in the next section.
4.2. Benefits and limitations of using deep learning for SDMs in the open ocean

This method holds promise in helping researchers uncover new correlations between theoceanic conditions and species distributions: implicit feature extraction allows the use of morenumerous and more complex features. Indeed we showed that the convolutional part of themodel was taking advantage of spatial data, which lead to significantly higher accuracy thanusing data only from the point of occurrence. In this study, we showed the variables that hadthe most influence on average. This needs to be complemented by a deeper study of the natureof the determining features.We noted three main limitations of our method, namely performance metrics, biases in theinput data and some undetected patterns.
4.2.1. Accuracy metric. The present model is a classifier and as such, it behaves differently fromusual SDMs. In particular, outputs are predicted probabilities, relatively to the set of 38 taxa.Therefore, prediction maps cannot be interpreted as the usual results of SDMs. For example, ifa species is obviously present in some environmental conditions, probabilities for other specieswill be lower. A solution to this shortcoming would be to include a large number of species intothe study (e.g. 4,520 in (Deneu et al., 2021)), which is a priority for any reproduction of this work.The accuracy of the model could still be improved, depending on the ecological feasibility.Indeed, as individuals, members of a species may explore, behave erratically, or in any otherway exercise their free will or at least their individual preference (Cerqueira et al., 2016). Theirresponse to environmental predictors may even depend on the environment itself (Muñoz et al.,2015). As such, dynamic SDMs will never provide a perfect prediction of their distribution.Furthermore, if some species are frequently seen together, the model cannot discriminatebetween the two. In that case, this uncertainty will show as a .5 mistake rate even though itis the correct result. A way to improve the final accuracy score would be to group species byhabitat preferences, but this would remove the possibility of studying differences between suchspecies. For example, the confusion matrix in Figure 4 shows that Xiphias gladius and Coryphaenaare often predicted instead of each other. This may be the result of these two taxa having similarhabitats, and the low resulting score does not necessarily mean that the predictions are wrong.Consequently, accuracy is not an ideal metric for this use case, as we use a classifier to bypassthe scarcity of training data, in particular the fact that almost all available data are presence-only.This should not be a deterrent as previous research showed that presence-only occurrence datacould yield satisfactory results (Elith et al., 2006). This is why we provide a Top-N score in Table3 for a more complete performance assessment.
4.2.2. Observer bias. Most observation data in the open ocean come from fishing vessels, whichtarget certain species. This causes observations to mostly include target species or frequentlyassociated species. Furthermore, fishing boats tend to target some areas based on outputs offishing guidance models so it creates an artificial correlation between the parameters used inthese models and the presence of animals (Clegg et al., 2022).The fact that the model has limited access to geographical information (only hemisphere andocean basin) partly compensates for sampling effort heterogeneity. Indeed, only environmentalconditions guide the predictions. But this is not flawless when various stocks of the same species

18 Gaétan Morand et al.

Peer Community Journal, Vol. 4 (2024), article e93 https://doi.org/10.24072/pcjournal.471

https://doi.org/10.24072/pcjournal.471


have different behavior relatively to environmental conditions. This is the case of Thunnus thyn-nus which has two separate stocks (West and East Atlantic) (Viñas et al., 2011). When samplingis biased between stocks, the model might not fully learn the various responses to environmen-tal responses. This explains why the model failed to extrapolate from West Atlantic data and topredict high probabilities in the Mediterranean Sea and the Bay of Biscay.Finally, some data may come from scientific tracking of individual animals, so these individ-uals may be over-represented in our data and reflect their preferences rather than the generaltendency of their species. The large amount of occurrences that we used help tackle this bias.These biases would be better tackled with more available data, which is a serious issue inthe open ocean. Little data is produced relative to the size of the oceans and a large part of thisdata is not shared publicly. More data is key to better models and more trustworthy distributionmaps, as previous research even showed that more data was more important than spatial bias inour context (Gaul et al., 2020).
4.2.3. Undetected patterns. Detection of seasonal migrations is incomplete. For instance, weshould see the Megaptera novaeangliae distribution spreading north during the southern winter(Rizzo and Schulte, 2009). The model also did not catch the Thunnus thynnus seasonal spawningin summer in the Mediterranean Sea.The causes of these shortcomings are unclear, so we offer a range of possible explanationsand ways to improve the present method, in the hope that these will help future research obtainhigher quality results.
4.3. Suggestions to further improve the modelling methods
4.3.1. Occurrence data. As a first experiment, occurrence data were selected randomly for thisstudy. Even though the aim should not be to have a perfect fit between observation data andmodel predictions, observer bias could be reduced by selecting data sources more appropriately.In particular, redundant data sets should be avoided and more importance should be given tothe diversity of sampling methods.As previously discussed, this method would probably benefit from including a large numberof taxa. In particular, planktonic species may prove valuable as they are less prone to samplingbiases (Gregg et al., 2017) and data sets are widely available (Righetti et al., 2020).Further, It could be interesting to run the model on two separate occurrences data sets: onewith fast moving species only and the other with sedentary or sessile species only. This wouldallow testing the efficiency of dynamic SDMs in two different contexts: real-time environmentalconditions preferences and long-term distribution shifts, respectively.
4.3.2. Environmental data. For some variables, it could be beneficial to use other sources. Forexample the chlorophyll data that we used was quite incomplete and using the Copernicus prod-uct instead (European Union-CMS, 2022) could yield better results. It has also been suggestedto include 3D environmental data, as most variables vary with depth and occurrence data arenot limited to the surface (Duffy and Chown, 2017). Such data could easily be included in theinput data with no change to our method. Finally, additional data may be beneficial, in particularthe distance to the nearest coastline or level of anthropisation.The encoding of variables could also be experimented with. In particular, vectors (FSLEs,wind and current) could be encoded with three variables instead of two: strength, cos(angle) andsin(angle). This would make the North-South and East-West components, as well as the totalstrength explicit.
4.3.3. Model training. Several choices could be made differently during the training phase. Forexample, Acropora presence is predicted in the open waters of the Pacific (too much to corre-spond to Pacific atolls), even though it is only present at very low depths in both the training andtesting data sets. This may be the result of overfitting, due to autocorrelation between the train-ing and validation data sets (Nurunnabi and Teferle, 2022). This is not visible in the covariancematrix because in that case the testing data set is also correlated with the two others. To remedythis, the split between the training, validation and testing data sets could be more sophisticated,
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by using block cross-validation or withholding a region/period only for testing, or even morecomplex methods such as adding a time lag to some observations (Zeraati et al., 2022).Second, although we experimented with loss functions, this can be continued to try and findalternatives more adapted to this context.
4.3.4. Removing artefacts. Three types of graphical artefacts are present in our results:

• The sharp divide between geographical areas caused by our binary geographical vari-ables (see the Indian Ocean in Figure 5a for instance). Ideally, for a given species, onlybarriers outside of its range should be significant and therefore barriers should not affectthe maps. Indeed, we included these artificial barriers as proxies of the historical zoogeo-graphical barriers to colonization (Briggs, 1974). But the imperfections of the model andthe low number of species (see third point) contributed to this flaw in the maps.This type of artefact could be mitigated by using a gradient between correspondingbinary variables in the zones where theses areas meet. A more drastic solution wouldbe to fully remove the binary geographical variables. This would imply either 1. usingthe model only on smaller regions with full connectivity or 2. accepting that the modelpredicts theoretical habitat suitability, independently from actual species presence.
• The spotted aspect of the map, which shows that the model uses small scale featuresfor its prediction. Further investigations need to be conducted to determine whetherthey are justified by the environmental preferences of taxa or if they are the result ofoverfitting.
• The third one is less visible, but it is a consequence of our predicted probabilities beingrelative to the 38 species. When an area is favorable to species A, but species B domi-nates in part of this area, the distribution map for species A shows variations over thearea (regardless of actual variations in suitability to species A). Figure 9 shows an exam-ple of this phenomenon where the presence of Katsuwonus pelamis causes a hole in thedistribution of Caretta caretta.This makes it harder to interpret the maps, and a solution would be to increase thenumber of species, as previously suggested in other sections. This way the variation ofsuitability to one species would only marginally influence probabilities for other species.The present study shows that N = 38 is not enough to avoid this type of artefact.

(a) Caretta caretta (b) Katsuwonus pelamis (c) Both species
Figure 9 – Example of how one species distribution can influence results for an other.

4.3.5. Other use cases. The present method could be used at different scales, in particular incoastal areas. This would require a significant change in the input variables, as the resolution ofglobally available environmental data is a limiting factor. They could be replaced by satellite ordrone images, as well as locally available (more precise) environmental data.
5. Conclusion

5.1. Main findings and their significance
Dynamic SDMs provide a way to estimate species presence at all dates and all areas, pro-vided environmental data is available. In addition, the present method leverages environmental
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data around occurrences, including complex patterns. While the dynamic nature makes it dif-ficult to judge accuracy (available reference data are static), it provides a baseline that can becalculated for any species (that have enough existing observations). Researchers working on ter-restrial plants have also shown that such models may be used to infer species distribution forrare species, by extrapolating results from co-occurring species (Deneu et al., 2021).
5.2. Implications for management and conservation of offshore species

We hope this method will be developed further and used on other endangered species, to-gether with existing methods and field observation. The technique that we presented would beespecially useful in the hands of scientists who are experts in the life cycle of specific species.It would help them increase scientific knowledge of their distributions, which is essential fordecision-makers to target areas of interest for conservation. Our method would also greatlybenefit from their input, as we do not have the species-specific expertise that is necessary tofine-tune training and predictions.
5.3. Recommendations for future research and potential applications

While the accuracy of our distribution maps is difficult to assess, there is exceptional roomfor improvement and further research. All the blocks in Figure 1 can be modified, either to adaptthe process to a different use case or to try to improve the quality of the results. Here are someexamples of potential changes:
• To study other species, the initial choice of species can be changed, for example, to focuson sedentary species or a specific area.
• To improve accuracy, the occurrence data may be selected in other ways that are notrandom.
• To investigate the influence of other variables, they may be added to the variable set.
• To study the long-term effect of environmental conditions, some variables may be in-cluded with a longer time lag such as months or years.

Finally, we expect that experts of different taxa will rightfully criticize the maps we provide.We wish they did not have to, but developing such a model inevitably includes a trial and er-ror phase, so we welcome their remarks which will lead to investigating issues and proposingimprovements for subsequent studies.The results we presented in this article are a small part of what can be achieved with thismodel. Many other scientific questions can be investigated both with the model we provide(already trained) or with other models trained with the same method.
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Data, script, code, and supplementary information availability
Code

The code that was used to prepare the data, train the model and export the outputs is avail-able on GitHub in the IRDG2OI/deep-sdm-oceans repository and on Zenodo (https://doi.
org/10.5281/zenodo.10809445) (Morand, 2024).
Input data

The input data include the CSV file describing the geographical points, the standardizednumpy arrays of corresponding environmental data and the standardization factors. They areavailable on Zenodo (https://doi.org/10.5281/zenodo.8188512) (Morand, 2023a) for eachuse case:
• Training data (includes train+validation+test)
• Prediction data for the world at 4 dates
• Prediction data for the Western Indian Ocean at 53 dates

Modelling
Weprovide themodel checkpoint and configuration file (https://doi.org/10.5281/zenodo.

8202914) (Morand, 2023b), so researchers can make predictions with the presently describedmodel.We also provide the code that was used for training so researchers can adapt it to theirneeds and retrain a newmodel (https://doi.org/10.5281/zenodo.10809445) (Morand, 2024).It consists of Python files based on a custom version of Malpolon.
Results

The distribution maps were uploaded to Zenodo for easy visualisation, in two repositories:
• Global predictions as PNGs andGeoTIFFs (https://doi.org/10.5281/zenodo.8202261)(Morand, 2023d)
• Western Indian Ocean predictions as GIFs and GeoTIFFs (https://doi.org/10.5281/

zenodo.8202056) (Morand, 2023c)
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