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Abstract
Wild organisms are likely exposed to complex mixtures of pesticides owing to the large
diversity of substances on the market and the broad range agricultural practices. The
consequences of such exposure are still poorly understood, first because of potentially
strong synergistic effects, making cocktails effects not predictable from the effects of
single compounds, but also because little is known about the actual exposure of organ-
isms to pesticide mixtures in nature. We aimed to identify the number and composi-
tion of pesticide mixtures potentially occurring in French farmland, using a database of
pesticide purchases in postcodes. We developed a statistical method based on a model-
based clustering (mixturemodel) to cluster postcodes according to the identity, purchase
probability and quantity of 279 active substances.We found that the 5,642 French post-
codes can be clustered into a small number of postcode groups (ca. 20), characterized
by a specific pattern of pesticide purchases, i.e. pesticide mixtures. Substances defining
mixtures can be sorted into “core” substances highly probable in most postcode groups
and “discriminating” substances, which are specific to and highly probable in some post-
code groups only, thus playing a key role in the identity of pesticide mixtures. We found
12 core substances: two insecticides (deltamethrin and lambda-cyhalothrin), six herbi-
cides (glyphosate, diflufenican, fluroxypyr, MCPA, 2,4-d, triclopyr) and four fungicides
(fludioxonil, tebuconazole, difenoconazole, thiram). The number of discriminating sub-
stances per postcode group ranged from 2 to 74. These differences in substance pur-
chases seemed related to differences in crop composition but also potentially to regional
effects. Overall, our analyses return (1) sets of molecules that are likely to be part of
the same pesticide mixtures, for which synergetic effects should be investigated further
and (2) areas within which biodiversity might be exposed to similar mixture composi-
tion. This information will hopefully be of interest for future ecotoxicological studies to
characterise the actual impacts of pesticide cocktails on biodiversity in the field.
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Introduction 

Since the mid-20th century, pesticides have become of common use in agriculture and their 
effects on both the environment and human health are a growing concern. For example, systemic 
pesticides are known to affect a broad range of organisms, from invertebrates, both terrestrial and 
aquatic, to amphibians or birds (Humann-Guilleminot et al., 2019; Mahmood et al., 2016; Yang et 
al., 2008), thereby questioning the sustainability of agroecosystem functioning and related services 
(Geiger et al., 2010; Deguines et al., 2014; Dudley et al., 2017; Furlan et al., 2018). Pesticides are 
also identified as a concern for human health, with numerous pesticide poisonings reported across 
developing countries (Boedeker et al., 2020) and recent evidence of relationships between 
diseases such as Parkinson’s or cancers and exposure to organophosphate insecticides (Sheahan 
et al., 2017; Tassin de Montaigu and Goulson, 2020). 

The effect of pesticides on biodiversity are usually demonstrated with a focus on a single 
substance or a limited set of substances in general (e.g. thiamethoxam, clothianidin, imidacloprid, 
thiacloprid or glyphosate (Busse et al., 2001; Botías et al., 2015; Rundlöf et al., 2015; Van Bruggen 
et al., 2018). Yet, wild organisms are exposed to complex mixtures (Dudley et al., 2017), owing to 
the diversity of substances available and used in farmlands. Hence, studying substance mixtures 
is considered a central task for environmental risk assessment (Lydy et al., 2004), notably because 
the effects of pesticide cocktails can strongly exceed the additive effects of single compounds 
(Junghans et al., 2006; Bopp et al., 2016). Laboratory experiments demonstrate synergetic 
interactions among substances within mixtures, affecting the effect of the cocktails in non-additive 
ways (Cedergreen, 2014; Heys et al., 2016; Hernández et al., 2017). While the importance of 
studying the effects of cocktails beyond those of single substances was highlighted as soon as the 
late sixties (Keplinger & Deichmann, 1967), and their evaluation is mandatory in the European 
Union since 2009 (EC No 1107/2009), few attempts to do so exist outside laboratories (Gibbons 
et al., 2015).  

Studies examining the effects of substance cocktails use two approaches: bottom-up or top-
down (Relyea, 2009; Altenburger et al., 2013; Hernández et al., 2017). The bottom-up approach 
aims at testing all possible mixture compositions, starting from pairs of substances to more 
complex combinations. This method makes it challenging to consider more than a handful of 
substances. For example, ten substances represent 45 possible pairs and over a thousand 
possible combinations of three or more substances (Lydy et al., 2004). Moreover, such approach 
might be more suited to experiments in controlled rather than natural environments, as the latter 
are recognized as strongly contaminated (Tang et al., 2021), making the control of mixture 
composition difficult. The top-down approach proposes to compare the effect of cocktails, starting 
from potentially frequent mixtures including a high number of substances, but at the cost of not 
testing all combinations. In addition, the few existing field studies generally focused on the effects 
of pesticide cocktails composed of a restricted number of substances, on specific crops or on 
restricted spatial extent, thereby limiting a broad understanding of cocktail effects (e.g. Brittain et 
al., 2010; Hallmann et al., 2014; Millot et al., 2017, but see Schreiner et al., 2016 & (Fritsch et al., 
2022). The top-down approach makes it critical to identify relevant mixture compositions, i.e. those 
actually occurring in the fields. The number of actual mixtures encountered in agroecosystems 
should be much lower than the number of possible combinations of substances because each 
substance is often intended for a limited set of crops only and because agricultural production is 
regionally specialised on particular crops. Such regional specialisation implies that existing 
mixtures are likely to be spatially structured. However, we still miss an overall picture of the 
pesticide mixture composition and its spatial structure over large spatial extents.  

Here, we introduce a new statistical method to identify relevant pesticide mixtures, i.e. actual 
combinations of substances potentially co-occurring in agroecosystems, across Metropolitan 
France. We overcame the general problem of limited availability of data on temporal and spatial 
use of pesticides (Navarro et al., 2021) by taking advantage of the recent publication of an up-to-
date database on pesticide purchases in France, the French national bank of pesticide sales 
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database (https://www.data.gouv.fr/fr/datasets/ventes-de-pesticides-par-departement/). This 
database has registered mandatory reporting of quantities of active substances purchased in 
France since 2013 (law n°2006-1772) at a relatively fine spatial grain (postcode of the buyer). 
France is also the seventh largest user of pesticides in the world (FAO 2020) and has a wide range 
of agricultural types (Urruty et al., 2016), which makes it a well-suited case country to identify 
pesticide mixtures encountered in the field by wild organisms, as well as their spatial variation.  

Applying an Expectation/Maximization algorithm to a model-based clustering, we aimed to 
cluster French postcodes on the basis of their composition of active substances purchased. We 
addressed three main questions: 1) How many groups of postcodes best describe the patterns of 
pesticide purchase in France? 2) How are these groups spatially distributed? 3) What are the 
mixtures of active substances characterizing these groups? Because pesticide use is at least 
partially related to crop identity, and because of crop regional specialization in France, we expect 
a limited number of postcode groups, that are strongly structured in space. Such groups with 
homogeneous pesticide mixtures could subsequently be used to identify potentially important 
pesticide substances and mixtures deserving further investigation. 

Methods 

Pesticide data 

Data on active substances were obtained from the French national bank of pesticide sales 
(BNV-d; https://ventes-produits-phytopharmaceutiques.eaufrance.fr/). The BNV-d database 
registers active substances under mandatory reporting. The seller indicates the amount of each 
active substance purchased and the postcode of the buyer in the database. This database thus 
indicates the quantity of active substances purchased at the spatial resolution of the postcode of 
the buyer. Postcode are the third level of administrative division in France, lower than the European 
Union NUTS3 level (administrative departments) and range from 0.17 km² to 614.39 km² in 
metropolitan France (median = 62.79 km², Q1 = 19.59 km², Q3 =140.36 km²). Substances are 
identified with their generic name and a unique identifier, the Chemical Abstracts Service number. 
We modified generic names when synonyms were found. We only retained substances with a 
license fee (i.e. under compulsory reporting) because we can expect thorough reporting for these.  

The years registered in the database ranged from 2013 to 2020. We discarded the year 2013 
because of incomplete data during the first reporting year, and the two latest years of the time 
series (2019 and 2020) because additions and changes in the database are allowed for two years 
after reporting. Also, note that the legislation has kept changing until 2016, with consequences for 
the mandatory nature of reporting for some substances or treatments. In particular, until 2016 the 
geographical information associated with seed coating substances was that of the seed coating 
company, not of the buyer. Hence, 2017 can be considered the most accurate and thorough year 
within the period 2013-2020. 

The data provides the total mass (in g) bought per substance with mandatory reporting, of 
which in 2017 there were 279. We analysed these quantitative data at the postcode level, 
assuming that substances purchased in a given postcode would be used within the same postcode 
or in close vicinity. Given the spatial extent of farms, pesticides may not always be spread exactly 
in the postcode where farmers are domiciled, but are unlikely to be used beyond the neighbouring 
postcodes, with one exception that we discarded. Using specific postcodes (CEDEX) that enable 
the identification of private companies, we discarded the data related to the national railroad 
company (SNCF): SNCF is a major buyer with central purchasing bodies that do not use the 
substances within the postcode of purchase. We converted all remaining CEDEX codes to their 
corresponding regular postcodes. We were thus left with 5,642 postcodes with information about 
the quantities (in g) of 279 active substances purchased in 2017. We classified these substances 
into fungicides, herbicides, insecticides following the Pesticide Properties Data Base (PPDB) 
(Lewis et al., 2016) and the European commission pesticide database 
(https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en). There were also 32 
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substances with other target groups (e.g. rodents or molluscs; Table S1 for a complete list) that 
we classified as “other targets”.  

To relate the use of active substances to the area of arable land in postcodes, we extracted the 
total area of cropland from the 2017 French Land Parcel Identification System (LPIS, “Registre 
Parcellaire Graphique”, Agence de Services et de Paiements, 2015). This database is a 
geographic information system developed under the European Council Regulation No 153/2000, 
for which the farmers provide annual information about their fields and crop rotation. We grouped 
the 16 categories of cropland types used in LPIS into 11 sub-groups (Figure S9) (Cantelaube & 
Carles, 2010; Levavasseur et al., 2016). We summed the area of all types of cropland but meadows 
to obtain the total crop area per postcode. 

Model-based Clustering 

Input data 
As described above, the dataset consisted of 𝑛 (= 5,642) postcodes and 𝑝 (=279) substances. 

For each postcode 𝑖 (1 ≤ 𝑖 ≤ 𝑛) and substance 𝑗 (1 ≤ 𝑗 ≤ 𝑝), we denoted by 𝑋!" the 
presence/absence variable, which is 1 if substance 𝑗 is bought in postcode 𝑖 and 0 otherwise, and 
by 𝑌!" the log of the quantity of substance 𝑗 bought in postcode 𝑖 (when used) normalized with the 
cropland area of postcode 𝑖:  

(1) 𝑌!" = log -#$%&'(')	+,	-$.-'%&/0	"	.+$12'	(&	3+-'/+40	!
/5+36%&4	%50%	+,	3+-'/+40	!

. 

(𝑌!" is NA when substance j is not bought in postcode i). 

Model 
We aimed to provide a clustering of the postcodes according to the quantity of the various 

substances bought. Mixture models (McLahan and Peel, 2000) provide a classical framework to 
achieve such a clustering. To avoid any confusion with “pesticide mixtures” we will use “Model-
based Clustering” when referring to the statistical “mixture models”. The model we consider 
assumes that the 𝑛 postcodes are spread into 𝐾 groups and that the respective use of the different 
substances depends on the group they belong to. Mixture models or model-based clustering 
precisely aim at recovering this unobserved group structure from the observed data. 

Groups definition 
We denoted by 𝑍! the group to which postcode 𝑖 belongs. We assumed the 𝑍! are all 

independent and that each postcode 𝑖 belongs to group 𝑘 (1 ≤ 𝑘 ≤ 𝐾) with respective proportions 
𝜋7:  

(2)  𝜋7 = Pr{𝑍! = 𝑘} 

Note that the 𝜋7consists of only 𝐾 − 1 independent parameters, as they have to sum to 1 
(∑879: 𝜋7 = 1). 

Emission distribution 
The model then describes the distribution of the observed data conditional on the group to 

which each postcode belongs. The distribution of the presence/quantity pair (𝑋!" , 𝑌!") is built in two 
stages: first, if postcode i belongs to group 𝑘, substance 𝑗 is used in the postcode with probability 
𝛾7":  

(3)  𝛾7" = Pr{𝑋!" = 1|𝑍! = 𝑘},  

then, if substance 𝑗 is used in postcode i, its log-quantity is assumed to have a Gaussian 
distribution:  
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(4)  (𝑌!"|𝑋!" = 1, 𝑍! = 𝑘) ∼ 𝒩(𝜇7" , 𝜎7"; ) 

with 𝜇7" and 𝜎7";  the mean and variance of the log-quantity of substance 𝑗 used in a postcode 
from group 𝑘, provided that the substance is bought in the postcode. In addition to the (𝐾 − 1) 
proportions 𝜋7 and the 𝐾 × 𝑝 probabilities 𝛾"7, this model involves 𝐾 × 𝑝 mean parameters 𝜇7" and 
as many variance parameters 𝜎7"; . This makes a total of 𝐾 − 1 + 3𝐾𝑝 parameters to be estimated. 

Combining Equations (2) and (3), we defined the conditional distribution 𝑓"7 for substance 𝑗 in 
a postcode from group 𝑘:  

(5) 𝑓"7(𝑥!" , 𝑦!") = 𝑥!"𝛾7"𝜙(𝑦!"; 𝜇7" , 𝜎7"; ) + (1 − 𝑥!")(1 − 𝛾7") 

denoting by 𝜙(⋅; 𝜇, 𝜎;) the probability density function of the Gaussian distribution 𝒩(𝜇, 𝜎;).  
To avoid over-parametrization, we also considered models with constrained variance, 

assuming either that the variance depends on the substance but not on the group: 𝜎7"; ≡ 𝜎";, or 
that the variance is the same for all substances in all groups: 𝜎7"; ≡ 𝜎;. 

Inference 
Model-based clustering belongs to incomplete-data models, which can deal with situations 

where part of the relevant information is missing. For the sake of brevity, we denoted by 𝑌 the set 
of observed variables (i.e. all the (𝑋!" , 𝑌!")) and by 𝑍 the set of unobserved variables (i.e. the 𝑍!). 
We further denoted by 𝜃 the whole set of parameters to be estimated: 𝜃 = ({𝜋7}, {𝛾7"}, {𝜇7"}, {𝜎7"; }). 

A classical way to estimate the set of parameters 𝜃 is to maximize the log-likelihood of the data 
log𝑝(𝑌; 𝜃) with respect to the parameters. An important feature of incomplete-data models is that 
this log-likelihood is not easy to compute, and even harder to maximize, as its calculation requires 
integrating over the unobserved variable 𝑍. However, the so-called ’complete’ log-likelihood, which 
involves both the observed 𝑌 and the unobserved 𝑍, log𝑝(𝑌, 𝑍; 𝜃) is often tractable. 

Expectation-Maximization algorithm 
The Expectation-maximization (EM) algorithm (Dempster et al., 1977) resorts to the complete 

log-likelihood to achieve maximum-likelihood inference for the parameters. More specifically, 
because log𝑝(𝑌, 𝑍; 𝜃) cannot be evaluated (as 𝑍 is not observed), EM uses the conditional 
expectation of the complete likelihood given the observed data, namely 𝔼[log𝑝(𝑌, 𝑍; 𝜃)|𝑌; 𝜃], as an 
objective function, to be maximized with respect to 𝜃. 

The EM algorithm alternates the steps ’E’ (for expectation) and ’M’ (for maximization) until 
convergence. It can be shown that the likelihood of the data log𝑝(𝑌; 𝜃) increases after each EM 
step. The reader may refer to Dempster et al. (1977) or McLahan and Peel (2000) for a formal 
justification of the procedure. 

E step 
This step aimed at recovering the relevant information to evaluate the objective function. In the 

case of model-based clustering, the E steps only amounts to evaluating the conditional probability 
𝜏!7 for the postcode 𝑖 to belong to group 𝑘 given the data observed for the postcode and the 
estimate of the parameter 𝜃!7 after iteration ℎ − 1:  

(6) 𝜏!7
(=>:) = Pr{𝑍! = 𝑘|{(𝑋!" , 𝑌!")}:@"@A; 𝜃(=>:)} 

The calculation of 𝜏!7 simply resorts to Bayes formula. In the following, we drop the iteration 
superscript (ℎ) for the sake of clarity, and we use the notation 𝜃R to indicate the current estimate. 
Because the substance are assumed to be independent, we get  

(7) 𝜏̂!7 = 𝜋T7∏
A
"9: 𝑓V"7(𝑥!" , 𝑦!")/X∑

8
ℓ9: 𝜋ℓY∏A

"9: 𝑓V"ℓ(𝑥!" , 𝑦!")Z. 
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M step 
The M step updates the parameter estimate by maximizing 𝔼\log𝑝(𝑌, 𝑍; 𝜃)|𝑌; 𝜃(=>:)] with 

respect to 𝜃. The objective function can be calculated using the conditional probabilities 𝜏!7s  

(8) 𝔼\log𝑝(𝑌, 𝑍; 𝜃)|𝑌; 𝜃(=)] = ∑C!9: ∑879: 𝜏̂!7Xlog𝜋7 +∑
A
"9: log𝑓7"(𝑥!" , 𝑦!")Z. 

The maximization of this function yields in close-form update formulas for all parameters. All 
estimates can be viewed as weighted versions of intuitive proportions, means or variance. Let us 
first define  

(9) 𝑁_7 = ∑C!9: 𝜏̂!7 , 𝑀_7" = ∑C!9: 𝜏̂!7𝑥!" . 

𝑁_7 is the current estimate of the number of entities belonging to group 𝑘; 𝑀_7" is the current 
estimate of the number of entities from group 𝑘 where substance 𝑗 is bought. For the proportions 
and probability of use, we get the following updates:  

(10) 𝜋T7 = 𝑁_7/𝑛	, 𝛾T7" = 𝑀_7"/𝑁_7. 

For the quantitative part of the model, we get additionally:  

(11) 𝜇̂7" =
:
DE!"

∑C!9: 𝜏̂!7𝑥!"𝑦!" 𝜎T7"; = b :
DE!"

∑C!9: 𝜏̂!7𝑥!"𝑦!"; c − (𝜇̂7);	. 

Similar estimates of 𝜎"; and 𝜎; can be derived for the models with constrained variances. 

Model selection 
To select the number of groups K and to choose between the models with unconstrained and 

constrained variances, we used the Bayesian Information Criterion (BIC, Schwarz, 1978). We 
adopted the same form as in Fraley and Raftery [1999], that is: 

(12) 𝐵𝐼𝐶 = log𝑝(𝑌; 𝜃R) − C
;
log(#independent	parameters). 

As indicated above, the number of independent parameters is:   
• 𝐾 − 1 + 3𝐾𝑝 with unconstrained variances 𝜎"7; ,  
• 𝐾 − 1 + 2𝐾𝑝 + 𝑝 with constant variance for each substance 𝜎"7; ≡ 𝜎";,  
• 𝐾 + 2𝐾𝑝 with constant variance 𝜎"7; ≡ 𝜎;.  

Estimated parameters  
The output of the model-based clustering yielded K groups with their corresponding estimated 

parameters, that is 𝜏̂!7	, 𝛾T7" 	, 𝜇̂7" , 𝜎T7"; , with 𝑘 one of the K groups obtained, 𝑗 an active substance and 
𝑖 a postcode. These estimated parameters gave information on groups of postcodes and 
substances bought per group. 

𝜏̂!7was the conditional probability that a postcode 𝑖 belongs to each group 𝑘 given the quantities 
of substances bought in the postcode. We used this probability to associate each postcode to its 
most probable group.  

𝛾T7" 	was the probability of a substance 𝑗 to be used in a postcode of group 𝑘. We used this 
probability to study the composition of active substances in each group 𝑘.   

𝜇̂7" and 	𝜎T7";  were the estimated mean and variance of the log-quantity of substance 𝑗 per square 
meter of cropland purchased in a postcode from group 𝑘. These quantities were used to refine our 
understanding of the subtance composition of postcode groups. 
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Analyses on estimated parameters  

Spatial structure of postcode groups 
To characterise the spatial structure of postcode groups, we quantified the spatial spread of 

postcodes belonging to a same group via the area of the convex hull of the group. The convex hull 
of a group is the smallest convex set that contains all postcodes of the group. Regardless of their 
spatial aggregation, most groups contain a few scattered postcodes, such that the convex area of 
all groups generally contains most of France, making comparisons of the area irrelevant. To 
circumvent this difficulty, we merged all contiguous postcodes within a group into single polygons 
and retained only the largest polygons, representing 80% of the total area of a group. This 
eliminated the scattered postcodes outside the main core of postcodes within a group.  

We also characterized the similarity among the K groups in terms of substance use via 
hierarchical clustering on distances between groups. To obtain a matrix of between-group 
distances, we used results from the model-based clustering and calculated a maximum-likelihood 
inference when two randomly chosen groups were merged (see method in 1.2). We repeated this 
step for each possible group pair. We thus obtained a matrix of between-group distances, 
characterized as differences in likelihood between clusterings. Using this matrix, we computed an 
agglomerative nesting clustering, using Ward criterion, implemented in the R package cluster 
(Maechler et al., 2019, R Core Team, 2021).  

Searching for the drivers of the substance composition of groups  
We tried to identify some of the possible drivers of the substance composition of groups using 

two complementary approaches. First, we tested whether the groups obtained with the model-
based clustering, which by construction differ in terms of active substances purchased, also 
differed in terms of crop composition. To compare the proportion of area covered with different 
crops among groups, we performed a log-ratio analysis (LRA). This approach was implemented in 
the R package easyCODA (Greenacre, 2019, R Core Team 2021). Second, we used Mantel tests 
(Mantel & Valand 1970) to estimate the correlations between three distance matrices among 
postcode groups: distances in the composition of substances purchased in the group (see above), 
distances in crop composition, and geographic distances. We used a spearman method and used 
9999 permutations, computed with the vegan package (Oksanen & Simpson, 2022) 

Test of the temporal robustness of the model-based clustering  
To test robustness of the results of the model-based clustering run on the pesticide purchase 

data from the year 2017 vs. a longer time period, we also run the clustering on BNV-d data over 
the period 2015 to 2018. To do so, we aggregated all purchase data from 2015 to 2018 and 
analysed these data in the same way as those from 2017. In the following, the groups obtained 
with the model-based clustering applied on the 2017 data (respectively 2015-2018 data) are 
referred to as the “2017 groups” (respectively the “2015-2018 groups”). 

We used postcode probabilities to be in group 𝑘 (i.e. 𝜏̂!7) to compare results from the two model-
based clusterings, with the 2017 groups as a reference. We compared each 2017 group with all 
2015-2018 groups by calculating the proportion of postcodes in each 2017 group that belong to 
each 2015-2018 group. We thus obtained a matrix with the percentage of postcodes from 2017 
groups that were found in the various 2015-2018 groups (Gelbard et al., 2007). 

Results  

The model-based clustering yields a small number of groups of postcodes  

The model-based clustering with unconstrained variances had the highest BIC and classified 
the 5,642 postcodes into 19 groups on the basis of 2017 purchase data for 279 active substances 
(Figure S2). Most postcodes were unambiguously attributed to a single of these groups, as shown 
by the bimodal distribution of the probability for a postcode i to belong to group 𝑘, with most values 
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close to 0 or 1 (Figure S3). Only 13 out of 5,642 postcodes had a maximum probability to be in a 
group lower than 0.7.  

Most groups of postcodes identified by the model-based clustering were spatially aggregated, 
albeit of contrasting sizes (Figure 1). The number of postcodes per group ranged from 135 to 493 
(median = 270, Q1 = 215.5, Q3 = 378.5), which translated into a cropland area per group ranging 
from 38.7 km2 to 24,184 km2 (median = 5,573.7 km2, Q1 = 1,547.55 km2, Q3 = 13,959 km2). The 
cropland area of groups was negatively related to the area of the convex envelop encompassing 
it, such that groups with the largest cropland area tended to be the most spatially clustered (Figure 
2). Such a spatial clustering of postcodes purchasing similar pesticide substances was expected 
as agricultural practices are spatially structured (see below) but keep in mind that the model-based 
clustering did not incorporate spatial information. 

 

Figure 1 - Map of France split into postcode groups obtained from the model-based 
clustering on the basis of active substances purchased within postcodes in 2017. 
Postcodes within a group share the same colour. The dendrogram was obtained 
using an agglomerative hierarchical clustering. 

Postcode groups corresponded to specific geographical and/or agricultural regions. For 
example, group i corresponded mostly to Brittany (the western peninsula) and group b was 
predominantly located in Northern France. Groups e and d were more scattered across the country 
but overlapped almost perfectly with wine regions (Figure 2). Note that a couple of groups were 
composed of a limited number of postcodes spatially scattered across France (e.g. groups m and 
o in Figure 2). In particular, group m represented less than 39 km2 of cropland and is generally 
discarded in the following.  

The groups identified by the model-based clustering were relatively robust to a change in the 
temporal range of the data, as shown by the results of the clustering on the 2015-2018 data (Figure 
S7). This second clustering yielded 24 groups and the percentage of shared postcodes between 
the 2017 groups and their most similar 2015-2018 groups varied between 41% and 80% (median 
= 62%, Q1 = 53%, Q3 = 66%). For example, groups in Normandie (group a vs. group 15) or part 
of the Languedoc region (group k vs. 10) were stable over time (Figure S7). The higher number of 
groups obtained with the 2015-2018 model-based clustering (24 vs. 19) was often due to the split 
of some 2017 groups into two 2015-2018 groups. For example, for 2017 group i, there was 53% 
similarity with 2015-2018 group 16 and 40% similarity with group 20 (Figure S7). Because of this 
temporal consistency in the clustering, we only present in the following the analyses on the 2017 
dataset, which is thought be more accurate (see 1.1).  
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Figure 2 - Relationship between cropland area (log scale) and convex area, a proxy 
for spatial extent, of groups. The spatial distribution of each group is plotted around 
the relationship, with one map of France per group, in which postcodes forming each 
group are highlighted in black. Groups are ordered clockwise from top left in 
decreasing cropland area. Note that the focus on cropland area (not total area) in a 
postcode makes some groups with little cropland (e.g. mountain areas, q or m) 
appear with a relatively large black area on the maps, although they are ranked low 
in terms of cropland area. 

Substance composition of postcode groups: core and discriminating substances 

Postcode groups differed in terms of the composition of substances purchased (Figure 3), as 
expected from the clustering algorithm, but may also share common substances. Group 
composition was inferred, and can be characterised by, (1) the probability of a substance to be 
purchased in a postcode from a given group (𝛾T7"), and, if the substance is purchased, (2) the 
estimated mean quantity purchased (	𝜇̂7") as well as (3) the estimated variance in the latter quantity 
(𝜎"7; ). In the following, for the sake of simplicity, we chose to focus on the probability of substances 
to be purchased, knowing that this probability was positively related with the estimated mean 
quantity (Figure S4 and Figure S6, r = 0.2) and negatively related with the estimated variance 
(Figure S4, r = -0.07). For a given substance, this probability can also vary substantially across 
groups, and we used this variability to distinguish two main types of substances with interest for 
the definition of postcode groups and for the identification of relevant pesticide mixtures : core 
substances and discriminating substances (Figure 4). 

Core substances, defined as substances with a high average and low variance of probability to 
be purchased across groups, were by definition found in most groups; they were widespread 
molecules that were likely to form the backbone of mixtures encountered by living organisms in 
farmland. Using an arbitrary threshold value of mean purchase probability of 0.85, we found 12 
such core substances with high probabilities (Figure 3 and Figure S5): two pyrethroid insecticides 
(deltamethrin, lambda-cyhalothrin), six herbicides of different chemical families (glyphosate, 
diflufenicanil, fluroxypyr, MCPA, 2,4-d, triclopyr) and four fungicides (fludioxonil, tebuconazole, 
difenoconazole and thiram). Because they were found with high probability in most groups, these 
substances were unlikely to weight strongly in the definition of postcode groups, although they can 
contribute via differences in the mean quantities used across groups. For example, the average 
estimated amount of glyphosate purchased ranged from 19 to 928 kg/ m2 of cropland (median = 
44, Q1 = 38, Q3 = 35) among groups. 

Milena Cairo et al. 9

Peer Community Journal, Vol. 4 (2024), article e100 https://doi.org/10.24072/pcjournal.472

https://doi.org/10.24072/pcjournal.472


 

Figure 3 -  Heatmap of the probability γkj in each group, in each of four categories 
of substances: insecticides (green), herbicides (blue), fungicides (orange), other 
targets (grey). Within each category, substances are ordered in increasing average 
probabilities of use across groups. For readability, substance names are not 
displayed and can be found in Figure S8. On the right of the figure, column A 
corresponds to the mean probability of use and column B corresponds to the scaled 
(0,1) variance in probability of use across groups. 
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Discriminating substances are defined as substances with medium to high mean probability of 
purchase, mechanically associated with a large variance across groups in this probability (Figure 
S5). Because of their contrasting probability of purchase across groups, discriminating substances 
were likely to contribute greatly to the formation of groups. We used the arbitrary range of average 
probabilities from 0.5 to 0.85 to define discriminating substances. Using these thresholds, we found 
a set of 84 discriminating substances, including 45 herbicides, 25 fungicides, 10 insecticides and 
4 with other targets (Supplementary information 2). In the following, we focus on discriminating 
substances that are highly probable (𝛾T7" > 0.85) in at least one postcode group, i.e. substances 
that are likely major components of pesticide mixtures occurring in a given group. We found seven 
widespread discriminating substances purchased with a probability higher than 0.85 in at least 12 
out of 19 groups: azoxystrobin, boscalid, cypermethrin, mesotrione, metsulfuron-methyl, 
pendimethalin and prothioconazole. These substances are very close to core substances. 
Conversely, four substances were highly specific, being purchased with high probability (> 0.85) 
in less than four groups (e.g. metribuzin in groups d and b). Within a group, the number of 
discriminating substances with high probability of purchase (> 0.85) varied strongly among groups, 
from 2 for group r to 80 for group g (mean = 43 ± 27). This cross-group variation in the number of 
highly probable discriminating substances has implication for the composition and complexity of 
pesticide mixtures in French agroecosystems: from relatively “simple” (12 core substances and 11 
discriminating substances in group q) to highly complex (12 core substances and 74 discriminating 
substances in group g). 

The 156 remaining substances, with a low average probability to be purchased (< 0.5), also 
had a role in group identification, but were seldom purchased and will not be described further 
(Figure 3).  

Postcode groups differ in terms of crop composition, but active substance purchase may 
not be solely driven by crop identity  

Groups of postcodes, which by construction are composed of different mixtures of substances, 
also differed in terms of proportions of cropland grown with various crops, such that groups with 
close pesticide composition sometimes, but not always, also exhibited similar crop usage (Figure 
4). The possible relations between pesticide composition and crop composition can be visualized 
either on Figure 4, where crop composition of groups similar in terms of pesticides purchases are 
plotted next to each other, or on the biplot of the log ratio analysis (Figure 4B), in which groups 
with similar crop composition are plotted next to each other. 
For example, groups k and l, characterized by a large proportion of vineyards, were close to each 
other both in the log-ratio analysis, which is indicative of similar crop compositions (Figure 4) and 
in the hierarchical clustering, which is indicative of similar pesticide purchases (Figure 4). The 
same was true for groups b, c and i, and, to a lesser extent, a, characterized by an appreciable 
proposition of crops from the legume/flower category. However, some groups such as h and g 
were different in terms of substances (not in the same sub-group, Figure 4) while exhibiting 
comparable proportions of crop types (Figure 4). Alternatively, some groups that were closely 
related in terms of substance purchases, such as groups i and h, could be characterized by 
dissimilar crop compositions. The latter patterns may suggest regionalisation of substance use, 
such that neighbouring regions tend to use similar products or substances even with variations in 
crops grown (e.g. i and h). 

Despite the abovementioned associations between crop composition and active substance 
compositions of groups, we found no significant correlation between distance matrices: the 
distance in substance composition among groups was not correlated with the distance in crop 
composition, although the relationship was marginally significant (Mantel test, r = 0.13, P = 0.057). 
Neither did we found a correlation between the geographic distance and active substance 
composition of groups (Mantel test, r = -0.01, P = 0.53) indicating that adjacent postcode groups 
do not necessarily exhibit similar composition of active substances adjacent.  
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Figure 4 - A. Distribution of crop type area across groups. The top grey histogram 
shows the distribution of total cropland area across groups (in 104 km²). The 
dendrogram was obtained using an agglomerative hierarchical clustering on the 
basis of Ward’s method among groups (see 1.3.2). B. Biplot of the log ratio analysis 
relating the proportion of crop types in each group. Only groups identified as spatially 
coherent are displayed (see 1.3.1). For readability, the groups and crop types are 
displayed on two different scales: black for crop types, green for groups. The size 
of arrows corresponds to the contribution of each group. Groups that appear close 
to each other on the biplot have similar crop composition, which can be inferred from 
the contribution of each crop type to the axes. 

Discussion  

A major challenge in pesticide risks assessment is to characterise mixtures of pesticides used 
in the field (Lydy et al., 2004), partly because of the large number of substances used but also 
because of the limited information on the combinations of substances contaminating the 
environment. Here, we developed a methodology to analyse a newly available database on 
pesticide purchases across France. It aimed to identify groups of postcodes with similar 
compositions of pesticide purchases and characterise their spatial structure, two critical pieces of 
information to unravel the composition of pesticide mixtures. Our method resulted in the clustering 
of the 5,642 French postcodes into a relatively low number of groups. These groups represent as 
many potential pesticide mixtures, which is much lower than the possible combinations among the 
279 substances included in the data. In the following, we discuss how our findings can help 
understand the impacts of pesticides in the environment (e.g. by identifying relevant pesticide 
mixtures), how this approach can be improved in the future, and the possible mechanisms 
underlying the groups. 

Significance of the identification of highly probable active substances, and of mixtures of 
active substances characteristic of postcode groups, for the study of the impacts of 
pesticides in the environment  

The identification of active substances that are purchased with high probability in all (core 
substances) or a subset (discriminating substances) of postcode groups might contribute to 
reducing the potential street light effect, whereby most research efforts focus on molecules that 
are either easy to study (Hendrix, 2017) or that were popularized by previous studies (Tsvetkov & 
Zayed, 2021). Unsurprisingly, most core substances identified here are already well-known, 
widely-used substances. Glyphosate is the most widely used broad-spectrum herbicide (Jatinder 
Pal Kaur Gill et al. 2017; Myers et al. 2016), with associated concerns regarding pervasive direct 
and indirect effects (Van Bruggen et al., 2018). Tebuconazole and difenoconazole, two triazole 
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fungicides, are widely used and studied (Zubrod et al., 2019). Deltamethrin and lambda-
cyhalothrin, two pyrethroids impacting nervous systems (Soderlund & Bloomquist, 1989; Ray & 
Fry, 2006), are known to have adverse effects on a large range of non-target species such as fish, 
birds and amphibians (Ali et al. 2021). Yet, a preliminary literature search on these 12 core 
substances suggests that the research effort on their adverse effects on biodiversity is still highly 
variable. For core herbicides, a simple search of the molecule name together with “biodiversity” or 
“ecotoxicology” in the abstract of articles on ISI Web of Science yields more than two hundred 
research articles for glyphosate and around seventy for 2,4-d, but only 2 to 17 articles for 
diflufenican, fluroxypyr, MCPA, triclopyr and pendimethalin. For core insecticides, the same search 
returns ca. 40 articles for lambda-cyhalothrin and deltamethrin. The four core fungicides were no 
exception, with a number of research articles below ten for thiram, fludioxonil and difenoconazole 
and around thirty for tebuconazole. Ultimately, our method eases the bottom-up approach in the 
laboratory by providing a selection of understudied substances deserving further attention. 

Studying all possible (combinations of) substances is prohibitive (Wolska et al., 2007); beyond 
the identification of single substances, our approach chiefly contributes to identifying combinations 
of active substances that are likely to be encountered in farmland environments, i.e. pesticide 
mixtures. The model-based clustering identified a relatively small number of postcode groups (19 
to 24 depending on the temporal coverage of pesticide data). Each group is characterized by a 
specific combination of purchases of active substances and can be interpreted as a potential 
mixture of pesticides occurring in the location of the postcodes, under the assumption that all 
purchased substances are used within the buying area during the year of purchase (see 
“Limitations and perspectives” below). Among the 279 active substances considered in these 
analyses, we highlighted the core substances included in most mixtures and the discriminating 
substances specific to particular mixtures. Within each postcode group, both types of substances 
might be a good starting shortlist of substances within which one can investigate potential 
interactive effects on biodiversity. Indeed, these substances are purchased with high probability in 
at least some large groups of postcodes, hence are potentially part of widespread mixtures. 
Although this list is much shorter than the total list of authorized active substances, it still contains 
12 core substances, plus 2 to 80 discriminating substances depending on the postcode group. 
Since our approach to identifying core and discriminating substances was based on probability of 
purchase only, this shortlist of substances could be narrowed down further by selecting active 
substances bought in large quantities (see also “Limitations and perspectives”) or with high toxicity. 
The appreciable number of core and discriminating substances composing mixtures is anyway 
consistent with surveys showing that active substances are rarely found alone in the environment 
(Silva et al., 2019). It also further substantiates the need for a broader assessment of the 
synergistic effects of pesticides on biodiversity, often completed on a limited set of substances only 
(Schreiner et al., 2016; Silva et al., 2019). For core substances, for example, some cocktail effects 
have already been studied but mostly on pairs of substances (Brodeur et al., 2014; Peluso et al., 
2022) and more rarely for cocktails of three or more substances (Cedergreen, 2014; Glinski et al., 
2018; Van Meter et al., 2018). Focusing on the reasonable number of relatively complex mixtures 
identified by the present approach would contribute to improve our understanding of the synergistic 
effects of realistic cocktails on organisms.  

Limitations & perspectives  

Limited spatio-temporal resolution of the BNV-d data  
The first limitation of our study is associated with the BNV-d database, which provides 

information on quantity and year of pesticide purchase, as well as on the administrative location of 
the buyer, but not on the actual date and location of pesticide treatments, nor on the actual 
pesticide contamination of the various postcodes. For simplicity, we assumed that the pesticides 
were used in the year of purchase and in the postcode of purchase and that all substance are 
equally likely to contaminate the environment. These assumptions may not be verified under all 
circumstances because farmers are sometimes known to store some pesticide products despite 
their high prices, e.g. to anticipate increased taxes, and because farms are sometimes spread 
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across several postcodes. Further, not all substances are equally likely to contaminate the 
environment, e.g. because they vary in terms of degradability or because weather conditions such 
as wind and rain can affect the way they contaminate the environment. The relationships between 
pesticide purchase and the ensuing environmental contamination will therefore need further 
investigation. Yet, there are a couple of indications that the assumption of immediate and local use 
of pesticides is generally correct. For example, our results are consistent with those of an extensive 
European study on soil contamination (Silva et al., 2019) which identified glyphosate and the 
fungicides boscalid, epoxiconazole, and tebuconazole as the most frequent and most abundant 
contaminants. These substances either belong to the core substances we identified (glyphosate 
and tebuconazole) or to discriminant substances (boscalid and epoxiconazole) with a high 
probability of being used over half of the postcode groups.  

Although our estimation of pesticide mixture composition may be roughly correct at the 
resolution of a postcode and of a year, the actual use of pesticides in space and time varies at 
much finer scales than those of available data. Pesticide substances bought within a given 
postcode and year may be spread in contrasting fields and times and may not be found together 
in the environment, depending on their half-life and transport in the environment. The actual 
mixture composition of a site hence depends, among others, on the crop cover in the landscape 
and associated farming practices. In particular, the amount of organic farming within the identified 
postcode groups may affect local heterogeneity in the quantity and composition of substances 
used, although pesticides approved for organic farming were generally not part of our analysis and 
may add up to pesticides used for conventional farming. Downscaling the BNV-d database to the 
field scale is challenging (Ramalanjaona, 2020), but it might reveal other patterns than the ones 
we highlighted here, probably decreasing the number of substances that are part of local mixtures. 
Such fine-grained data on pesticides might be more relevant to assess the impact of pesticide 
contamination on biodiversity.   

Going beyond the use of purchase probabilities and arbitrary thresholds to identify the substances 
of interest for risk assessment 

The method we developed is continuous, with quantitative estimates of purchase probabilities, 
as well as mean and variance of quantities purchased per postcode group. Still, we used arbitrary 
thresholds to identify core and discriminating substances. The mixture compositions we highlighted 
here are thus dependent on the chosen thresholds. Depending on the question of interest, these 
thresholds can and should be adapted. For example, by changing the threshold to 0.80, there are 
nine more core substances, and among these substances there are, for example, imidacloprid and 
boscalid, both known for high use and effects on biodiversity (Yang et al., 2008; Lopez-Antia et al., 
2015; Simon-Delso et al., 2017; Qian et al., 2018). 

In addition, most of our interpretation of pesticide mixture composition relies on the estimated 
purchase probabilities, but these mixtures were also identified using information on the mean and 
variance of purchased amounts within postcodes, hence mixtures differ for these variables as well. 
For example, glyphosate, a core substance with high purchase probability in all postcode groups, 
was bought in contrasting quantities across postcode groups: the average amount was 53.9 kg/km2 
and ranged from 7.8 kg/km2 in group p to 146 kg/km2 in group i. Although the purchase probability 
was positively correlated to the mean purchased quantity and negatively to its variance, the 
correlation is not strong, and further analysis is needed to fully uncover variation in substance 
quantities within the mixtures we identified. 

Taking into account the yearly variation in pesticide use  
Our analysis appeared relatively robust to the time period of the pesticide purchase data, as 

suggested by the comparison of postcode groups obtained with the 2017 and the 2015-2018 
datasets. This strong correlation between the 2017 and the 2015-2018 analysis is not entirely 
surprising because of the presence of the 2017 data in both analyses. Yet, adding three years of 
data into the analysis did not affect much the composition of postcode groups, which suggests 
relatively stable patterns of pesticide purchase in France over a short time period. Nonetheless, 
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we observed some differences, mainly due to the split of some groups, which were also expected 
due to climatic variation, changes in legislation on pesticide use (Urruty et al., 2016) or changes in 
crop areas (Levavasseur et al., 2016). A better integration of the temporal dynamics of pesticide 
purchases in the characterisation of pesticide mixtures is needed if we are to monitor pesticide 
mixtures across France. This can be achieved by applying the model-based clustering to each 
year of data separately. Investigating the spatial stability of groups and mixture compositions 
across years would contribute to either estimate annual mixtures or to find temporarily stable 
mixtures. Finding recurrent mixtures could facilitate risk assessment over years. Indeed, this could 
provide key information on the frequency of mixtures encountered by organisms as repeated 
contact might increase risks (Stuligross & Williams, 2021). 

Postcode groups are related to the crop they grow, as well as to other regional factors, but 
the underlying mechanisms remain to be fully identified 

Although no spatial information was included in the model-based clustering analysis, the 
postcode groups exhibited a strong spatial structure, in which most groups are strongly aggregated 
and only a few small groups are scattered across France. Such spatial structure was expected 
since pesticide use is strongly crop-dependent. For example, acetamiprid, a substance used to 
protect fruit trees or grapevine against aphids, is bought with high probability in groups l, e and 
d,with high proportion of fruit orchards and grapevines. Similarly, cyproconazole, a substance with 
a broader spectrum of use, is bought with high probability in several groups with contrasting crop 
compositions (a, b, e, f, g, h, j, k, l, n, o, q, r , Figure 4). However, deviations from this pattern were 
found: some adjacent postcode groups can have different sets of crops but similar substance 
purchases or some spatially distant postcode groups can have similar sets of crops but different 
substance purchases. This observation suggests that local conditions, such as climate or pests, 
or some regional patterns in the pesticide market and/or distribution, can drive the purchase of 
active substances more than the set of crops grown (Storck et al., 2017; Silva et al., 2019). Hence, 
the differences among postcode groups were related to a combination of crop identity effects and 
other regional effects that will need additional analysis to be identified. A straightforward 
perspective for the msodel-based clustering approach would thus be to incorporate environmental 
covariates in the model, and evaluate how clusters are modified. 

Conclusion 

This study shows that a reasonably low number of substance mixtures can be identified at the 
scale of France. Pursuing ecotoxicological studies on the synergistic effects of mixtures will make 
it possible to identify risks and better understand the effects of pesticides on organisms. The 
mapping of these pesticide mixtures enables the identification of regions under different regimes 
of pesticide contamination. This might be particularly useful to plan in situ tests for both pesticide 
contamination and effects on biodiversity. Here we did not investigate the effects of cocktails on 
wild organisms, and further work should be done on this aspect.  
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