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Abstract
Cells modulate their metabolism according to environmental conditions. A major chal-lenge to better understand metabolic regulation is to identify, from the hundreds orthousands of molecules, the key metabolites where the re-orientation of fluxes occurs.Here, a method called ISIS (for In Silico Identification of Switches) is proposed to locatethese nodes in a metabolic network, based on the analysis of a set of flux vectors (ob-tained e.g. by parsimonious flux balance analysis with different inputs). A metabolite isconsidered as a switch if the fluxes at this point are redirected in a different way whenconditions change. The soundness of ISIS is shown with four case studies, using bothcore and genome-scale metabolic networks of Escherichia coli, Saccharomyces cerevisiaeand the diatom Phaeodactylum tricornutum. Through these examples, we show that ISIScan identify hot-spots where fluxes are reoriented. Additionally, switch metabolites aredeeply involved in post-translational modification of proteins, showing their importancein cellular regulation. In P. tricornutum, we show that Erythrose 4-phosphate is an im-portant switch metabolite for mixotrophy suggesting the importance of this metabolitein the non-oxidative pentose phosphate pathway to orchestrate the flux variations be-tween glycolysis, the Calvin cycle and the oxidative pentose phosphate pathway whenthe trophic mode changes. Finally, a comparison between ISIS and reporter metabo-lites identified with transcriptomic data confirms the key role of metabolites such asL-glutamate or L-aspartate in the yeast response to nitrogen input variation. Overall,ISIS opens up new possibilities for studying cellular metabolism and regulation, as wellas potentially for developing metabolic engineering.
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Introduction
Despite huge developments in the last decades, deciphering cellular metabolism remains a

great challenge, essential for a wide range of fields (including biotechnology, health, ecology,
etc.). The analysis of metabolic networks plays an important role in addressing this issue. More
and more networks are now available, with a more complete coverage of the metabolism (Gu
et al., 2019). There are also a growing number of methods for analyzing and exploiting these
networks (O’Brien et al., 2015; Vijayakumar et al., 2018). Among them, one of the most common
approaches is Flux Balance Analysis (FBA), which aims to predict the metabolic fluxes (Orth et
al., 2010b). This method corresponds to a linear programming problem, where one wants to
maximize or minimize an objective function such as biomass synthesis or ATP production, given
steady-state conditions and a set of flux constraints on e.g. substrate uptake.

Although FBA and all its derivatives have been successfully used, the size of the networks
(now often with several thousands metabolites and reactions) makes their analysis or even the
exploitation and visualization of the results more and more complex (Chubukov et al., 2014;
Lacroix et al., 2008). To help explore these networks, the identification of key metabolites is a
major concern (Wagner and Fell, 2001). Here, we will focus on the nodes in the networks where
the fluxes are redirected when culture conditions vary. Actually, the cellular response to environ-
mental changes such as nutrient inputs leads to a reorganization of metabolism, which can be
difficult to map given the scale of the network. By highlighting where the main changes in me-
tabolism occur, the identified switching nodes will give us a better picture of cellular response to
environmental variations and could help in the modelling, monitoring or control of cell systems.

The identification of key metabolites has been the subject of many studies (e.g. Kim et al.,
2007; Laniau et al., 2017; Ma and Zeng, 2003; Riemer et al., 2013), although there is no general
agreement about the definition of what a key metabolite is. Following approaches developped
for network analysis, key metabolites can be defined by their degree, i.e. the number of reac-
tions in which they are involved (Wagner and Fell, 2001). Other aspect of the network topology
can also be used, such as node centrality (Ma and Zeng, 2003). On the other hand, Kim et al.
(2007) and Laniau et al. (2017) have focused on essentiality: a metabolite is essential if biomass
cannot be produced if this metabolite is removed from the metabolic network. More in line
with my vision of switch points, i.e. a point where the fluxes are reoriented in response to envi-
ronmental changes, Patil and Nielsen (2005) provide a useful method to identify the so-called
reporter metabolites. They correspond to nodes around which the enzymes are subject to the
most significant transcriptional changes. Nonetheless, reporter metabolites are identified from
experimental data and a purely theoretical method (based only on the metabolic network) is still
lacking.

Here, I propose to identify switch nodes based on the analysis of a set of flux solutions
under different conditions, obtained e.g. by parsimonious flux balance analysis (pFBA) (Lewis
et al., 2010). The key idea is to determine mathematically the metabolites around which the
most significant metabolic rewirings occur. To do so, for each metabolite, we consider the flux
vectors (including stoichiometry) of the reactions involving this metabolite (as a substrate or a
product) for all the conditions. The metabolite is considered as a switch node if the dimension
of the vector space generated by this set is greater than one, i.e. if the flux vectors involving
this metabolite for different conditions are not co-linear, reflecting a reorientation of the fluxes
in response to changing conditions. After explaining in details how the switches are identified,
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Figure 1 – Principle for switch node identification in metabolic networks. The circles xiand the arrows vj represent respectively metabolites and reactions. The colored barsshow reaction fluxes (computed e.g. by pFBA) for different conditions (each color repre-sents a condition). Case A: the redistribution of fluxes aroundmetabolite x1 occurs alwaysin the same way, i.e. the flux vectors are collinear, so x1 is not a switch point. Case B: theincoming flux is rerouted according to conditions, so x1 is a switch point.
the core metabolic network of Escherichia coli will be used to illustrate the method. Then, we
will show that ISIS brings out metabolites involved in post-translational modification (PTM) of
proteins in E. coli. ISISwill also be used to decipher howmetabolism is impacted by trophicmodes
in the diatom Phaeodactylum tricornutum, and by nitrogen limitation for Saccharomyces cerevisiae,
in comparison with the reporter metabolite method. Finally, we will assess the robustness of ISIS
with respect to flux sampling.

Results
ISIS principle

Our objective is to identify switch nodes in ametabolic network, corresponding to keymetabo-
lites where flux reorientations occur when environmental conditions change. ISIS is based on the
analysis of a set of flux vectors for a range of environmental conditions (e.g. different inputs, dif-
ferent objective functions reflecting different metabolic stages, etc.). A metabolite is considered
as a switch if the fluxes at this point are redirected in a different way when conditions change.
This is illustrated in Figure 1. On the top, the fluxes around metabolite x1 are distributed always
in the same way (i.e. one third of the incoming flux v1 goes to v2, the remaining goes to v3), so
x1 is not a switch node. On the contrary, in the bottom example, the incoming flux is rerouted
according to conditions, so x1 is considered in this case as a switch point. This simple principle
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can be evaluated numerically using linear algebra (see SectionMethod), by evaluating the dimen-
sion of the vector space generated by the set of reaction flux vectors. More precisely, a singular
value decomposition is carried out and a score between zero and one is computed from the sin-
gular values. A score of zero means that the vectors are collinear (Fig. 1, on top): the fluxes are
always distributed in the same way. This already concerns all the metabolites involved in only
two reactions. The higher the score, the more the metabolite can be considered a switch. All
metabolites are then ranked according to their score, to highlight the most significant ones on a
case-by-case basis.
A toy example: E. coli under aerobic vs anaerobic conditions

The principle of ISIS is first illustrated by studying the transition from aerobic to anaero-
bic conditions in E. coli. We use its core metabolic model, composed of 72 metabolites and 95
reactions (Orth et al., 2010a), and estimate flux vectors with and without oxygen using pFBA
(see Fig. 2). The switching scores of all the metabolites are given in SI1. ISIS has identified as
switch nodes the junctions of glycolysis with the TCA cycle (pyruvate and acetyl-coA) and with
the oxydative pentose phosphate pathway (glucose 6-phosphate). This is in line with what we
could expect given that these last two pathways are shut down in absence of oxygen (Orth et
al., 2010a; Sauer and Eikmanns, 2005). We also observed that several currency metabolites (e.g.
ATP, NADPH), involved in many reactions, are also identified as switch points. Most of these
metabolites have already been recognized on the basis of their degree (Ma and Zeng, 2003) or
centrality (Wagner and Fell, 2001). On the other hand, some metabolites with a high degree or
centrality such as glutamate (Wagner and Fell, 2001) have a low score with ISIS when focus-
ing on aerobic vs anaerobic growth. This simple example shows the soundness and capacity of
ISIS to identify nodes around which the metabolism is rerouted taking into account the specific
conditions laid down.
ISIS brings out metabolites involved in protein PTM in E. coli

Given that the switch metabolites are by definition nodes where fluxes are reoriented, these
metabolites can potentially be involved in cellular regulations, such as PTM. To investigate this
aspect, we follow Brunk et al. (2018), by considering the growth of E. coli under 174 different
nutrient inputs. Using a network composed of 2382 reactions and 1668 metabolites (Feist et
al., 2007), we first define the flux vectors for each input using pFBA. We then analyze all these
fluxes with ISIS. The list of the switching points is given in SI2. Among the top score, we find key
branching points between the main pathways, such as Fructose 6-Phosphate, Pyruvate, Acetyl-
CoA, etc.

On Fig. 3, we plot the proportion of metabolites known to be ligands of protein (i.e. involved
in PTM), according to their switching score. Ligands are clearly enriched among the top switching
metabolites (hypergeometric test, p=6.10−8). For the class ofmetaboliteswith the highest scores
(>0.3), 74% of the metabolites are ligands, compared to 25% for the class with the lowest scores
(<0.1).

Based on a comparison of FBA fluxes, Brunk et al. (2018) have identified highly regulated
reactions, which appear to account for a significant proportion of the known proteins with PTM.
By contrast, here we clearly show the key role of the switching metabolites identified by ISIS in
protein PTM. Overall, the identification of switch nodes could help in deciphering the complex
roles of metabolites in the regulation of protein activity (Wagner et al., 2021).
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Figure 2 – Switch nodes for E. coli under aerobic vs anaerobic conditions. Overview ofmetabolic fluxes under aerobic (A) and anaerobic (B) condition (see C for the name ofmetabolites and reactions). C: Comparison between these two conditions. Switch nodes(dark dots) have been identified at the junctions of glycolysiswith the TCA cycle (pyruvateand acetyl-coA) and with pentose phosphate pathway (glucose 6-phosphate). See SI10for a high quality version of the figure.
Shedding light on mixotrophy in the diatom P. tricornutum

We study the effect of trophic mode in P. tricornutum. The fluxes for autotrophic, mixotrophic
and heterotrophic1 growths have been estimated in Kim et al. (2016), considering a genome-
scale metabolic network composed of 587metabolites and 849 reactions. This study highlighted
the importance of flux rerouting between chloroplasts and mitochondria, depending on the
trophic mode. Using this set of fluxes, ISIS identifies as switch nodes glycerone-P (dihydroxy-
acetone phosphate), fructose-6-phosphate, fructose 1,6-bisphosphate, fumarate, pyruvate, etc.
(see SI 3). These metabolites are key branching points between chloroplast and mitochondria
1mimicking night-time metabolism, as P. tricornutum do not grow normally on glucose.
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Figure 3 – Percentage of metabolites identified as ligand in protein PTM as a functionof their scores in ISIS for E. coli, based on the fluxes for 174 different inputs with thegenome-scale metabolic network iAF1260 (Feist et al., 2007). Metabolites identified asswitch point are much more involved in PTM, highlighting their role in cellular regulation.
(as shown in Fig. 1 from Kim et al. (2016)). Additionally, we also identify erythrose 4-phosphate,
which is actually a major hub of the metabolism to balance the fluxes between the main path-
ways (in particular glycolysis, the Calvin cycle and the oxidative pentose phosphate pathway).
Thus, ISIS contributes to our understanding of trophic modes by suggesting the overlooked role
of a key metabolite in the non-oxidative pentose phosphate pathway in orchestrating changes
between the energetic pathways.
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Figure 4 – Metabolic fluxes in the non-oxidative pentose phosphate pathway for differ-ent trophic modes in the diatom P. tricornutum. Alongside dihydroxyacetone phosphate(dhap) and fructose-6-phosphate (f6p), erythrose 4-phosphate (e4p) appears as a keyhub to balance the fluxes between glycolysis, the Calvin cycle and the oxidative pentosephosphate pathway, showing the role of the non-oxidative pentose phosphate pathwayin orchestrating the energy balance of the cell.
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ISIS identifies reporter metabolites for Saccharomyces cerevisiae under nitrogen limitation
Given that our definition of switch nodes is close to reporter metabolites (Patil and Nielsen,

2005), we compare bothmethods, usingUsaite et al. (2006) as a case study. To do so, we consider
the growth of S. cerevisiae under three different nitrogen limitation: ammonium (NH+

4 ), alanine(Ala), and glutamine (Gln). For each input, the flux vectors are computed with pFBA using the
metabolic network YeastGEM v8.1.1 composed of 2241 metabolites and 3520 reactions (Her-
rgård et al., 2008). ISIS is then applied by paire-wise comparison (Gln vs NH+

4 , Ala vs NH+
4 , andAla vs Gln), following what have been done in Usaite et al. (2006). The score of all the metabo-

lites for the three comparisons are given in SI 4. Switch metabolites with a score above 0.1,
corresponding to between 11 and 16 metabolites out of 2241, are shown in Fig. 5 together with
the ten first reporter metabolites given in Usaite et al. (2006). Many of the switch metabolites,
common between the different cases, are involved in amino acid synthesis. We also observe
that reporter metabolites are enriched among the top switch metabolites (hypergeometric test,
p=0.048, 0.061, and 3.10−5 for respectively Gln vs NH+

4 , Ala vs NH+
4 , and Ala vs Gln). When

comparing Ala versus Gln limitations, glutamate, aspartate and 2-oxoglutarate are depicted with
both methods. The first two metabolites are closely related to the sources of nitrogen. The last
one points out the importance of the TCA cycle in the synthesis of amino acids, as reported
in Usaite et al. (2006). Finally, several reporter metabolites - in particular those highlighted in
Usaite et al. (2006) - appears in the top of the switch metabolite list (see SI 4), even if they
do not appear in Fig. 5. For example, in the comparison between Ala versus NH+

4 , the reporter
metabolites pyruvate and Acetyl-CoA are ranked respectively 19 and 46 over 2241 metabolites
by ISIS. On the other hand, some reporter metabolites are not identified as switch, pointing out
some differences between the two approaches. As a striking example, allantoin was reported as
the reporter metabolite with the highest score in the Ala vs NH+

4 comparison, without however
figuring out why it emerges. This metabolite is involved in only two reactions in our metabolic
network, so it cannot be identified as a metabolic switch by ISIS. Other reporter metabolites
present a low switch score, such as those involved in lipid metabolism in the Gln vs NH4 com-
parison. This suggests that the nitrogen input change leads to a modification of lipid metabolism
that pFBA does not predict.

To conclude, this case study shows that some key metabolites can be identified in silico, with-
out requiring experiments. ISIS can also complement the reporter metabolite approach, which
requires transcriptomic data. Comparison between the two methods can confirm the role of a
number of key metabolites and identify doubts about some of them, or more indirect effects
that are difficult to predict.
Robustness to flux sampling

The identification of switch points is based on a set of flux vectors obtained in silico. Nonethe-
less, different solutions can give the same objective, evenwith pFBA. In the following, we explore
how this variability can impact the identification of switch points. Instead of taking one solution
per condition, we sample the flux spaces and compute switch scores for several combinations
of flux vectors chosen randomly. We test this approach with two previous case studies: the
core metabolic network of E. coli with or without oxygen and the genome-scale network of S.
cerevisiae with different nitrogen sources. In the first case, the switch scores obtained with flux
sampling are very similar to those with pFBA (see Fig. 6 ans SI 5). Nonetheless, they show a high
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Figure 5 – The main switch nodes identified by ISIS for Saccharomyces cerevisiae undernitrogen limitation, in comparison with reporter metabolites computed from transcrip-tomic data (Usaite et al., 2006).

standard deviation, reflecting the effect of flux sampling, although this does not affect switch
identification. Given the small size of this network, the flux variability is limited so the switch
points remain the same. For the genome-scale network of S. cerevisiae, the results are more dif-
ferent. Figure 6 shows the comparison for Ala vs Gln. The other cases are given in SI 7 and 8, as
well as the list of switch metabolites in SI 6. On one hand, most of the switch points identified
previously have still a high score (e.g. L-glutamate and 2-oxoglutarate for Ala vs Gln), pointing
out their key role in redistributing fluxes. On the other hand, several metabolites that were not
considered as switch points present a high score when considering flux sampling. However, it is
necessary to assess the relevance of these new candidates. Large-scale network present several
variants of the same pathway, which creates multiple switches if for each condition a different
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variant is used for the same pathway. For example, in lipid synthesis, many reactions can be in-
terchanged, including alterations of compartments. This results in the emergence of numerous
lipid intermediates with high switching scores that are not relevant for the change of condition
under investigation (see Fig. SI 9). Exploring the flux space is therefore useful to confirm the
identification of switch points, but it also leads to switch point candidates that warrant further
examination.

Figure 6 – Comparison of the switch scores obtained with pFBA (on the x-axis) versusflux sampling (on the y-axis, with error bars showing standard deviation). A significantcorrelationwas observed for the coremetabolic network of E. coliwith orwithout oxygen(left, Spearman correlation: ρ = 0.82, p = 5.10−19), but not for the genome scale networkof S. cerevisiaewith different nitrogen sources (right, for Ala vs Gln, Spearman correlation:
ρ = 0.26, p = 3.10−43).

Discussions
A method - called ISIS - has been proposed to identify switch nodes, i.e. metabolites around

which fluxes are rerouted when environmental conditions change. These points are determined
in silico using linear algebra: the reaction fluxes involving the metabolite under different condi-
tions generate a vector space whose dimension reflects whether a reorientation of fluxes occurs
at this node. The method is fast and scalable, e.g. it takes just a few seconds with a standard
computer for a metabolic network of a few thousand reactions. ISIS gives sound results on the
different case studies developed in this article. As a proof of principles, by comparing aerobic
and anaerobic conditions in E. coli, ISIS has identified the metabolites at the junction of the main
pathways, including pyruvate as one can expect (Sauer and Eikmanns, 2005). A further analysis
for the same species with 174 different substrates revealed that metabolites with the highest
switching score are particularly involved in cellular regulation via PTM. Another important find-
ing concerns the diatom P. tricornutum. When considering different trophic modes, metabolic
modifications occur at different nodes to maintain the energetic balance, in particular in the
non-oxydative pentose phosphate pathway with Erythrose 4-phosphate.

The analysis of metabolic networks has been the subject of several developments. Among
them, a method which, like ISIS, analyses the dependencies between the fluxes is flux coupling
analysis (Burgard et al., 2004). Two reactions are fully coupled if a flux for one of these reactions
implies a fixed flux for the other, and vice versa. If all the reactions in which a metabolite is in-
volved belong to a fully coupled set, that metabolite is not a switch. Flux coupling analysis can
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therefore be used to eliminate candidate metabolites, but does not provide a sufficient condi-
tion for identifying switches. Several methods dealing with the identification of key metabolites
have also been proposed (e.g. Kim et al., 2007; Laniau et al., 2017; Ma and Zeng, 2003; Riemer
et al., 2013). A comparison between them is not straightforward, given that the definition of
key metabolites is not necessarily the same between the different studies. One of the closer
definition is that of reporter metabolites (Patil and Nielsen, 2005). The results on a case study
with S. cerevisiae have shown similarities, confirming the role of some metabolites such as L-
glutamate or L-aspartate as switch in response to different nitrogen inputs. Nonetheless, other
reporter metabolites have low switching score. Metabolic simulations predict that no reorien-
tation of fluxes occur at these nodes, while changes of gene expression are observed around
it. This calls for future work to clarify the discrepancy on the role of these metabolites and to
ascertain whether metabolic alterations occur at these points.

The main advantage of ISIS, in particular in comparison with the reporter metabolite ap-
proach, is that it does not require experimental data. The downside is that it entirely relies on
flux estimations, which suffers from uncertainties at different levels (in the network reconstruc-
tion, in the definition of the biomass or the objective function, in the computation of fluxes...)
(Bernstein et al., 2021). A first step to overcome this limitation is to use ISIS with flux sampling,
as illustrated here with E. coli under aerobic vs anaerobic conditions and S. cerevisiae under ni-
trogen limitations. This approach could confirm the role of some switch metabolites, but new
candidates can also appear, particularly in large-scale networks, with possibly some false posi-
tives. This points out that the flux quality can strongly affect overall results. These estimations
can benefit from all the recent progresses in metabolic network reconstruction and constraint-
based modeling (Fang et al., 2020), in particular with the development of enzyme constraint or
resource allocation methods (Goelzer and Fromion, 2017; Zeng et al., 2021). Additionally, the
soundness of flux estimations can potentially be increased by integrating experimental data (e.g.
transcriptomic, proteomic, fluxomic) (Ramon et al., 2018), although losing the ease of a purely in
silico approach.

Given the crucial role of switch metabolites in cellular metabolism, several applications can
be considered. First, ISIS could be used to select key metabolites to monitor when studying the
response of an organism to a change of environment. In the same vein, theses switch nodes
can also be useful to study cellular regulations, as already illustrated by the high proportion of
switch metabolites involved in PTM. The identification of switch points would also be of great
interest in biotechnology: they correspond to potential targets to reorient the metabolism of the
cell for a given purpose (such as the production of a metabolite of interest), either by controlling
environmental conditions or by genetic manipulations. Finally, ISIS could also be used to decom-
pose the whole network into different modules connecting the switch nodes, in order to analyze
the metabolism or to develop dynamical model as proposed in Baroukh et al. (2022, 2014). This
would give a new approach for network splitting, complementing a set of methods (reviewed
in Rezvan and Eslahchi (2017)) based on network topology, flux coupling, or elementary flux
mode. A specificity of our approach in that case is that the set of selected conditions defines the
node identification. Thus, the same metabolic network can be decomposed in different ways
depending on which conditions are considered.

To conclude, the metabolites around which fluxes are switched in response to environmental
changes are key points in themetabolic network. By identifying them in silico, ISIS allows a better
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comprehension of cellular metabolism and regulation, as highlighted in this article with the stud-
ies of E. coli, S. cerevisiae, and P. tricornutum under different substrate inputs or trophic modes.
This method can be easily applied to many organisms, as it only requires their metabolic net-
work. It offers several perspectives, from fundamental studies on metabolism to biotechnology
applications through metabolic engineering.

Method
Framework

The metabolism of a cell can be represented by its metabolic network, composed of nmmetabolites and nv reactions. It is generally described by a stoichiometric matrix S(nm × nv ),where each row corresponds to a metabolite and each column to a reaction. The metabolic
fluxes through this network are given by the reaction rate vector v ∈ Rnv . To estimate these
fluxes, FBA makes two main assumptions (Orth et al., 2010b). First, the metabolism is consid-
ered at steady-state (corresponding to balanced growth condition):

Sv = 0.

Additionally, some bounds on the metabolic fluxes are defined:
v ≤ v ≤ v .

These bounds are used in particular to define nutrient inputs and to specify the reversibility of
each reaction. Finally, an objective function to be maximized or minimized is considered (e.g.
biomass synthesis or ATP production), defined by an objective vector c ∈ Rnv . The metabolic
fluxes are then the solution of a linear optimization problem (also called LP problem, for Linear
Programming), which can easily be solved numerically:
(1) max

v∈Rnv
c · v s.t.

∣∣∣∣∣
Sv = 0,

v ≤ v ≤ v .

One limitation of FBA is that it can have several solutions (with the same objective value). To
tackle this problem, Lewis et al. (2010) have proposed pFBA, which consists in two steps. First,
FBA is used to find the optimal value of the objective function. Then, we determine the solution
with the same objective value that minimizes the sum of fluxes. This tends to reduce the solution
space, and it had been shown that it is consistent with gene expression measurements (Lewis
et al., 2010).
ISIS principle

Switch nodes will be identified based on the analysis of a set of reaction fluxes under ncdifferent conditions, e.g. different nutrient inputs. For each condition j ∈ {1, ... , nc}, the cellular
metabolism is characterized by the flux vector v j obtained by pFBA (or another method). Each
vector is normalized, by dividing by its quadratic norm, to give each condition the same weight
in the analysis.

Then, for each metabolite i and each condition j , we consider the flux vector (including stoi-
chiometry) of the reactions involving thismetabolite (as a substrate or a product) in this condition,
i.e.:

S ′
i ,: ◦ v j
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where ◦ stands for the Hadamard product (i.e. element-wise). Now given all the conditions, we
consider the vector spaceMi (nv × nc) generated by all the flux vectors for metabolite i :

Mi := S ′
i ,: ◦

(
v1, ... , vnc

)

If the dimension of this vector space is greater than one, i.e. if the flux vectors involving this
metabolite for different conditions are not collinear, the metabolite is considered as a switch
node (see Fig. 1).

From a practical point of view, the dimension of Mi is evaluated by singular value decompo-
sition (SVD), so we get:

Mi = UiΛ
iV ∗

i ,

where Ui (nv ×nv ) and Vi (nc ×nc) are unitary matrices and Λi (nv ×nc) is a diagonal matrix whose
diagonal entries Λi

k,k correspond to the singular values of Mi (ordered in descending order). We
compute a score which represents the significance of each switch node:

ri = 1 −

(
Λi
1,1

)2

nc∑

k=1

(
Λi
k,k

)2
.

If all the vectors are collinear, then all the Λi
k,k for k > 1 are almost null, so ri ≃ 0. The closer

the score is to one, the more the metabolite corresponds to a switch. The metabolites with the
highest scores are finally selected.
ISIS implementation

ISIS has been implemented under Python 3.10 within the COBRApy framework (Heirendt
et al., 2019). The vector fluxes for all the conditions are computed with pFBA using as objective
the maximization of biomass production. A loop on all the metabolites is carried out, running
for each metabolite the SVD and then computing the score. To speed up the program, all the
zero rows in Mi are removed before running the SVD. Finally, all the metabolites are ordered
following their scores. A threshold can be set above which the metabolite is considered a switch.
This threshold must be adapted to each case study, in particular according to the number of
conditions considered which will affect the dimension ofMi and therefore the overall scores.
Case studies

ISIS has been carried out on four examples. Unless otherwise stated, the procedure described
above was applied. Some specificities for each case study are given below.
E. coli (core metabolic model). As a first case study, we consider the core metabolic network of E.
coli (Orth et al., 2010a). We simulate growth on glucose in aerobic and anaerobic conditions (i.e.
with or without oxygen). Figure 2, which compares the fluxes between the two conditions and
highlights the switch metabolites, was drawn with Escher (King et al., 2015).
E. coli (genome-scale model). E. coli network iAF1260 (Feist et al., 2007) has been used with 174
different inputs, as done in Brunk et al. (2018). ISIS was applied by comparing all the conditions at
the same time, i.e. nc = 174. The objective was then to evaluate the role of switch metabolites
in cellular regulation. If a metabolite is present in several compartments, its highest score is
considered. We then checked the presence of the metabolites in the list of all the metabolites
involved in PTM, taken from Brunk et al. (2018) (Dataset S2).
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P. tricornutum. The metabolic network of P. tricornutum was taken from Kim et al. (2016). Four
different trophic modes were considered: autotrophy, mixotrophy with or without inorganic car-
bon, and heterotrophy. The flux vectors, computed by FBA coupled with Euclidean norm mini-
mization, were taken from the same article (Table S1).
S. cerevisiae. Themetabolic network YeastGEMv8.1.1 (Herrgård et al., 2008) has been used, sim-
ulating aerobic growth on glucosewith three different nitrogen sources: ammonium, alanine, and
glutamine. This mimicks the experiments carried out in Usaite et al. (2006). The switch metabo-
lites are computed by comparing the nitrogen sources two by two (i.e. nc = 2), to follow the
aforementioned article. All the currency metabolites (ATP, NADPH, etc.) were removed to plot
Fig. 5, as they are not taken into account in Usaite et al. (2006). For each case, the results are
compared with the ten reporter metabolites given in Usaite et al. (2006).
Robustness to flux sampling

Instead of using just one vector flux, we sample the flux space for each condition using optG-
pSampler algorithm (Megchelenbrink et al., 2014) from COBRApy, leading to ns flux vectors percondition (we use typically ns = 104). We randomly define ns combinations, taking one solution
from the samples for each condition, and calculate the switching scores of all metabolites for
each combination. Finally, we calculate for each metabolite the mean and standard deviation of
the score over all the combinations. The robustness analysis has been carried out for two of the
case studies: the E. coli core network and the S. cerevisiae genome-scale network.
Statistics

The hypergeometric test was used to test for over-representation of successes, i.e. ligand for
E. coli and reporter metabolites for S. cerevisiae, in the list of identified switch metabolites. The
hypergeometric p-value is computed as the probability of randomly drawing k or more successes
in n total draws (i.e. the number of switch metabolites), from a population of N metabolites
containing K successes.

Spearman rank correlation coefficient (ρ) was computed to assess the relationship between
the switch scores obtained with pFBA versus those obtained with flux sampling.
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