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Abstract
Motivation: Long-read assemblers face challenges in discerning closely related viralor bacterial strains, often collapsing similar strains into a single sequence. This limita-tion has been hampering metagenome analysis, as diverse strains may harbor crucialfunctional distinctions. Results: We introduce a novel software, HairSplitter, designedto retrieve strains from a partially or totally collapsed assembly and long reads. Themethod uses a custom variant-calling process to operate with erroneous long readsand introduces a new read binning algorithm to recover an a priori unknown numberof strains. On noisy long reads, HairSplitter recovers more strains while being fasterthan state-of-the-art tools, both in the cases of viruses and bacteria. Availability: Hair-Splitter is freely available on GitHub at https://github.com/RolandFaure/Hairsplitter(https://doi.org/10.5281/zenodo.13753481).
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Introduction
Microbiomes play a crucial roles in many ecosystems, such as soils or human guts, in turn im-

pacting human health (Conlon and Bird, 2014) and soil fertility (Coban et al., 2022). Microbiomes
typically contain sets of organisms with highly similar genomes, the sequences of which are
called haplotypes (short for “haploid genotypes” (Ceppellini et al., 1967)). Distinguishing these
lineages is an important challenge, as small genomic differences between haplotypes can lead to
significant phenotypic changes. For instance, some strains of Escherichia coli can be pathogenic or
commensal while having an Average Nucleotide Identity (ANI) (Konstantinidis and Tiedje, 2005)
of more than 98.5% (Frank et al., 2011). A few mutations also became famous for altering signif-
icantly the infectiousness of some coronaviruses lineages (Magazine et al., 2022).

De novo sequencing and assembling is a central method to characterize microbial communi-
ties. Unlike previous methods, it allows to analyse the composition of a metagenome without
culturing the strains, enabling a wide range of analyses (Ward, 2006). While existing genome
assemblers proficiently reconstruct genomes of abundant species, they struggle to distinguish
viral or bacterial haplotypes. The main difficulty for assemblers lies in the unknown number of
haplotypes in a sample and their uneven coverage (Ghurye et al., 2016).

Many tools have been developed to overcome this problem in the context of short-read
assemblies, such as OPERA-MS (Bertrand et al., 2019), Constrains (Luo et al., 2015), STRONG
(Quince et al., 2021), StrainXpress (Kang et al., 2022) and VStrains (Luo and Lin, 2023). However,
these methods are not designed for long-read sequencing and do not exploit the long-range
information contained in long reads.

Long reads with extremely low error rate, such as PacBio HiFi reads, have been used to dis-
tinguish finely strains with the help of specialized software such as hifiasm (Cheng et al., 2021)
and stRainy (Kazantseva et al., 2023). However, this challenge has not been yet successfully tack-
led in the case of noisier reads such as “regular” PacBio data or Oxford Nanopore Technology
(ONT) reads, the latter of which can be obtained very rapidly on cheap sequencers that are small
enough to be carried into the field (Cesare et al., 2024; Runtuwene et al., 2019).

Several methods have been implemented to deal with haplotype reconstruction from long
reads with high error rates. While the viral and bacterial haplotype assembly problems are iden-
tical in their formulation, the characteristics of the input data vary significantly: the genomes are
generally much shorter and much more deeply sequenced in the case of viruses. This has led
to the emergence of software specialized in either one of the two problems. In the context of
bacterial strain separation, Vicedomini et al. (2021) showed that mainstream assemblers such
as metaFlye (Kolmogorov et al., 2020) and Canu (Koren et al., 2017) failed to distinguish close
bacterial haplotypes and proposed a new tool, called Strainberry, to reconstruct strains. In the
context of viral strain separation, Strainline (Luo et al., 2022) and HaploDMF (Cai et al., 2022)
were presented to tackle specifically the viral haplotype reconstruction problem and need very
high depth of sequencing to work. The method iGDA (Feng et al., 2021) was proposed as a
general approach to phase minor variants while handling high error rates and can theoretically
assemble both bacterial and viral haplotypes. The main shortcomings of all of these methods is
that they struggle to recover haplotypes of low abundance. Additionally, most of these tools are
very computationally intensive.

We present HairSplitter, an efficient pipeline for separating haplotypes in viral and bacterial
context using error-prone long reads. HairSplitter first calls variants using a custom process to
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distinguish actual variants from alignment or sequencing artefacts ; clusters the reads into an
unspecified number of haplotypes ; creates the new separated contigs ; and finally untangles
the assembly. HairSplitter can be used for either metaviromes or bacterial metagenomes.

Methods
Overview of the pipeline

HairSplitter takes as input an assembly (in fasta format) or an assembly graph (in gfa format) as
well as sequencing reads (fasta/q) and produces a new assembly (fasta and gfa). The HairSplitter
pipeline is depicted in Figure 1 and comprises five steps: 1) correcting the assembly, 2) calling
variants on each contig, 3) clustering the reads by haplotype on each contig, 4) reassembling the
strain-specific contigs and 5) unzipping.
Completion of the assembly graph

To work well, HairSplitter needs as input an assembly graph on which all genomic reads align
from end to end, which we define as a “complete” assembly graph. If the assembly was not
provided as a graph, it is turned into a graph with no edges. Collapsed assembly graphs are often
incomplete because of contigs that have been detached from their neighbors and of collapsed
structural variation between strains.

Aligning reads on an incomplete graph reveals locations where a significant number of reads
stop aligning, which we call breakpoints. Breakpoints can occur in the middle or the end of con-
tigs. To complete the initial assembly graph, the reads are aligned on the graph using minigraph
(Li et al., 2020). The assembly is subsequently examined for breakpoints and HairSplitter breaks
the contigs at these breakpoints. Additionally, links are added in the graph between ends of con-
tigs when there is sufficient read support. The process is illustrated in Figure 1a. An evaluation
of this step in terms of misassemblies and contiguity is provided in Supplementary Table 4.

The completed assembly resulting from this process is used throughout the subsequent
stages of the pipeline.
Mathematical model behind variant calling

To sort reads into haplotypes, the intuitive method of clustering reads based on the similar-
ity of their full sequence proves ineffective due to the prevalence of sequencing and alignment
errors, obscuring strain differences. HairSplitter first identifies variant positions, pinpointing loci
where strains exhibit actual differences. The reads are then separated based only on these loci.
We did not find any variant caller suitable for our specific challenge - calling variants with noisy
long reads in a metagenomic context including potentially low-abundance strains while main-
taining high computational efficiency. Thus, we devised our own variant calling procedure.

The naivest procedure to identify polymorphic loci consists in going through the pileup of
the reads on the assembly and identifying loci where at least a proportion λ of reads have an
alternative allele. However, this approach falls short when using error-prone reads. For instance,
in the case of a strain representing only 1% of the total of the reads, λ needs to be less than
0.01 to detect variant positions corresponding to this strain, resulting in the selection of many
artefactual positions if the reads have an error rate > 1%.

Roland Faure et al. 3

Peer Community Journal, Vol. 4 (2024), article e96 https://doi.org/10.24072/pcjournal.481

https://doi.org/10.24072/pcjournal.481


a. assembly graph 
completion

b. variant calling

c. read binning
d. reassembly

e. unzipping

Figure 1 – Illustration of the five steps of the HairSplitter pipeline. Colored rectanglesrepresent contigs, thick blue lines are links in the assembly graph and black lines repre-sent the reads aligned on the assembly. Orange shapes on reads and contigs indicatevariant positions compared to the original sequence.
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Figure 2 – In this pileup of reads, does the submatrix of variants highlighted in red indicatethe presence of two strains? The probability that there exist 3 reads having an alternativeallele at 3 loci if we estimate e = 0.1 is less than 0.02: the variants are thus likely notindependent and probably underline the presence of at least two different strains.

The key lies in taking several loci into account simultaneously, an idea already explored in
Feng et al. (2021) and leveraging the assumption that alignment artifacts occur randomly in the
pileup while genomic variant are expected to be correlated along the alignment. Consequently,
pileups at polymorphic loci are expected to exhibit strong correlation, contrary to pileups at
non-polymorphic loci. HairSplitter introduces a new statistical approach and a new algorithm to
exploit this observation and detect even rare strains, as illustrated below.

Consider a complete pileup of n reads over m positions, which we will model as a matrix of
letters. Let us assume that errors occur independently on all reads and at all positions with a
probability ≤ ϵ and that all errors in a given column are identical (worst-case scenario). We aim
to estimate the probability that there exist a reads that share errors at b different loci: in other
words, the probability that there exist a submatrix of size a∗b containing only errors in the pileup,
defined by selecting a rows (reads) and b columns (loci).

There exist (n
a

)(m
b

) submatrices of size a ∗ b. Each of these submatrix has a probability lower
than ϵab to contain only errors. Therefore, given that expectation is linear (DeGroot and Schervish,
2002), the expectation E of the number of submatrices of size a ∗b containing only errors in the
pileup is lower than (n

a

)(m
b

) ∗ ϵab. Now, to obtain the probability that there exist no submatrix of
size a ∗ b containing only errors, we can use Markov’s inequality, according to which the proba-
bility that a positive random variable be higher than 1 is always smaller than the expectation of
this variable (DeGroot and Schervish, 2002). Here, it tells us that the probability that there exist
a submatrix containing only errors is smaller than E . In other terms, the probability that there
exist somewhere in the pileup a reads sharing errors at b different loci is lower than (n

a

)(m
b

) ∗ ϵab.
Now, let us consider a pileup with n = 1000 reads across m = 5000 positions and ϵ = 0.1.

The probability that there exist a = 10 reads sharing errors at b = 10 different loci is lower than(n
a

)(m
b

) ∗ ϵab = 9.10−44. Therefore, if the error rate is of 10% or less and the pileup indicates 10
reads (1% coverage) sharing an alternative allele at 10 loci (divergence of 0.2%), we can confi-
dently assume that these are not errors, suggesting these reads originate from the same strain,
and the loci are polymorphic sites.

Despite its simplistic nature, this model underscores the statistical power gained by examin-
ing multiple loci simultaneously, enabling the detection of low-abundance, highly similar strains
even in the presence of very noisy long reads. The idea behind the model is illustrated in Figure
2.
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Variant calling
The approach to identifying polymorphic loci capitalizes on the statistical power underlined

above. Specifically, HairSplitter aims to identify clusters of positions featuring alternative alleles
on the same reads.

To generate the pileup, all reads are aligned to the contigs of the completed assembly using
minimap2 (Li, 2018). HairSplitter then traverses the pileup of each contig and determines, for
each position, the majority allele and the main alternative allele (either a base or an indel). Long
indels are treated as multiple adjacent loci. Only positions with a minimum of five reads carrying
alternative alleles are considered as potential polymorphic sites to ensure statistical robustness
(cf. model above). HairSplitter compares each new position to previously observed positions. If
the set of reads with alternative alleles at this position and at a previously encountered position
share more than 90% reads, the new position is clustered with the old one.

After all positions have been considered, clusters are tested using the statistical model de-
scribed above and only clusters with a p-value below 0.001 are kept. The corresponding posi-
tions are outputted as polymorphic sites.

Read binning
The contig is divided into windows with a default size of w (by default, 2000 bases). Reads

are binned into haplotypes sequentially on the windows of a contig. Only reads spanning the
entirety of the window are considered for binning. To cluster reads, HairSplitter operates on the
premise that reads originating from the same haplotype should be identical at all polymorphic
loci. Nevertheless, inherent sequencing and variant-calling errors might introduce unintended
discrepancies among reads from a single haplotype. To address this, HairSplitter adopts a three-
step strategy.

Step one is to correct errors at polymorphic loci. HairSplitter corrects the errors at polymor-
phic loci by performing a k-nearest-neighbour imputation (Fix and Hodges, 1989), with k = 5.
The distance between two reads is defined as the number of different alleles at polymorphic
positions. Each base of the pileup is considered and changed to the most frequent base among
the k nearest neighbours on all reads and all positions until convergence.

Step two is to form clusters of reads, clustering reads together if and only if they exhibit
no differences at any polymorphic loci. Indeed, two reads that bear at least one different allele
originate by definition from two different haplotypes.

In the third step, a last check is run to rescue small clusters that can arise from errors in Step
1. HairSplitter constructs a graph linking each read to its k closest neighbours, including links
between all pairs of reads differing on one position or less. The graph is then clustered using
the Chinese Whispers algorithm (Biemann, 2006), initialising the clustering with the clusters
obtained in the second step. The ChineseWhispers algorithm iteratively assign reads to themost
represented cluster among their neighbors until convergence. The Chinese Whispers algorithm
always converge toward a stable solution, i.e. a clustering where all reads are in the same group
as at least half of their neighbors. There exist many stable clusterings but the algorithm is likely
to converge to a solution close to the initialization: the clusters obtained in the second step are
unlikely to be significantly altered, but very small clusters will likely be merged with other close
clusters.
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Table 1 – Characteristics of the different datasets used for benchmarking on real data.
dataset species # strains strain coverages ANI divergence sequencing technology
HBV-2 Hepatitis B 2 4000x, 9900x 10% Nanopore R.9.4.1norovirus-7 norovirus 7 50, 350, 450, 700, 900, 1150, 1400x 1-3.9 % Nanopore R.9.4.1V. fluvialis Vagococcus fluvialis 5 90x, 136x, 172x, 182x, 206x 0.01-1.51% Nanopore R9.4.1Zymo-GMS Q9 Escherichia coli 5 90x, 90x, 90x, 90x, 90x 0.37-1.51% Nanopore R9.4.1Zymo-GMS Q20 Escherichia coli 5 25x, 25x, 25x, 25x, 25x 0.37-1.51% Nanopore R10.4.1Zymo-GMS HiFi Escherichia coli 5 41x, 41x, 41x, 41x, 41x 0.37-1.51% PacBio HiFi

Reassembly
Across all windows on every contig, the original sequence undergoes repolishing using the

haplotype-specific groups of reads previously identified. The polishing can be executed with
either Racon (Vaser et al., 2017) orMedaka (https://github.com/nanoporetech/medaka), with
the latter being more precise but considerably slower in our experience. By default, HairSplitter
uses Medaka only for short genomes (≤ 1 Mb).
Graph Unzipping

The resulting assembly comprises contigs of length w that can easily be stitched into longer
contigs. For this purpose, a straightforward algorithm is employed, GraphUnzip (Faure et al.,
2021), depicted in Figure 1e. Let us call a contig exhibiting multiple outgoing links with other
contigs at one end a “knot”. Knots generally represent collapsed contigs. GraphUnzip initially
aligns all reads on the assembly graph. Subsequently, GraphUnzip iteratively assess nodes. If
more than three reads traverse a neighbor of the knot (called A), then traverse the knot, and
traverse another neighbor at the opposite end of the knot (called B), the knot is duplicated to
create a new contig that has as unique neighbors A and B. The links from A and B to the original
knot are deleted, preserving only the links to the copy of the contig. This process is repeated
until no further knots can be duplicated.

Results
Datasets

The datasets used in this article are described in Table 1. The accession numbers of the data
in public repositories can be found in section “Reproducibility and data availability".
Bacterial datasets

We used the Zymobiotics Gut Microbiome Standard (abbreviated to Zymo-GMS) and a Vago-
coccus fluvialis dataset (Rodriguez Jimenez et al., 2022) to compare the performance of different
algorithms designed to separate bacterial haplotypes in a metagenomic context. Zymo-GMS is a
mixture of bacteria, archaea and yeast (21 different strains in total) dosed to mimic the composi-
tion of the human gut microbiome. These 21 strains include five Escherichia coli strains, which we
used to evaluate the strain-separation ability of various programs. Three Zymo-GMS sequenc-
ing were used, respectively from a Nanopore R9.4.1 run, a Nanopore 10.4.1 run and a PacBio
HiFi run. The Vagococcus fluvialis dataset consists of a mix of five Vagococcus fluvialis strains that
were sequenced together using barcoded reads, each barcode corresponding to a strain. We did
not use the barcode information for the assemblies, reserving them for validation. Among the
five strains, three had an Average Nucleotide Idendity (ANI) over 99.99%. metaFlye is used to
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assemble the reads, as it yielded better assemblies compared to Canu according to Vicedomini
et al. (Vicedomini et al., 2021).

In addition, we simulated datasets to assess the impact of the number of strains, cov-
erage and divergence on the assemblies. These experiments were directly inspired by
the protocol of Vicedomini et al. (Vicedomini et al., 2021). The genomes of ten strains
of Escherichia coli were downloaded from the SRA, namely 12009 (GCA_000010745.1),
IAI1 (GCA_000026265.1), F11 (GCA_018734065.1), S88 (GCA_000026285.2), Sakai (GCA_
003028755.1), SE15 (GCA_000010485.1), Shigella flexneri (GCF_000006925.2), UMN026
(GCA_000026325.2), HS (GCA_ 000017765.1), and K12 (GCF_009832885.1). These strains
were chosen to be representative of the diversity of E. coli. We simulated Nanopore sequenc-
ing using Badread (Wick, 2019) with the setting “Nanopore2023" to simulate 50x of R10.4.1
reads. Between 2 and 10 strains were mixed to assess how many strains the software could
separate. From the 10-strain mix, the 12009 strain was downsampled to 30x, 20x, 10x and 5x
to assess the impact of the coverage on strain separation. Finally, to assess the impact of the
divergence of sequences on strain separation, 50x of reads were simulated for strain K12 and
for strains of decreasing divergence with K12; assemblies of reads of K12 mixed with reads of
each of these strain were evaluated for separation.
Viral datasets

Two datasets were used to benchmark the performance of the programs tested at separating
viral haplotypes, a ix of two strains of hepatitis B Virus (HBV) from McNaughton et al. (2019)
and an in-silico mix of the sequencing of seven strains of norovirus from Flint et al. (2021).
These datasets were directly taken from the paper of HaploDMF (Cai et al., 2022). The refer-
ence genomes to run reference-based tools were taken as the reference genome in the GenBank
database, GCF_000861825.2 for HBV and MW661279.1 for norovirus.
Performance evaluation

We used MetaQUAST (Mikheenko et al., 2016) to measure assembly features such as as-
sembly length, NG50, misassemblies, mismatches, indels and completeness. MetaQUAST was
run with the –unique-mapping and –reuse-combined-alignments options to prevent a sequence,
whether a contig or part of it, from being mapped to multiple distinct reference locations.

To assess if strains are well separated, the most important metric is the completeness of
the resulting assembly. We chose to assess MetaQUAST completeness but also 27-mer com-
pleteness. MetaQUAST completeness measures the percentage of the solution on which the
assembly aligns, while 27-mer completeness measures the percentage of the 27-mers of the so-
lution that are effectively found in the assembly. Collapsed homozygous contigs typically impact
negatively MetaQUAST completeness but not 27-mer completeness.
Evaluated software

In addition of HairSplitter, we chose to evaluate the programs stRainy (Kazantseva et al.,
2023) and Strainberry (Vicedomini et al., 2021), which have been introduced specifically as bacte-
rial strain separationmethods; hifiasm-meta (Feng et al., 2022), which is themost popular assem-
bler for direct HiFi assembly; Strainline (Luo et al., 2022) and HaploDMF (Cai et al., 2022), which
have been introduced as viral strain separation methods; and finally iGDA (Feng et al., 2021),
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Figure 3 – 27-mer completeness, MetaQUAST completeness and runtime of differentsoftware on the Vagococcus and the three Zymo-GMS dataset. The runtimes are theruntimes of the full assembly pipeline (assembly+strain separation) and are representedin log scale.

which can perform both. Software that purposefully collapse similar strains, such as metaMDBG
(Benoit et al., 2024), were left out of the benchmark.

We tried using all these software on all datasets. Strainline and HaploDMF failed to run in
reasonable time on non-viral datasets and were automatically killed after 15 days of processing.
Strainline failed to perform strain separation on the HBV-2 dataset within its allowed RAM limit
of 50G, probably because of the high coverage. We tried downsampling the dataset but the
problem remained.

The reference-based virus phasing tools (haploDMF, iGDA, HairSplitter) were run with
the same reference genome as in Cai et al. (2022), namely MT622522.1 for Hepatitis B and
MW661279.1 for norovirus.
Benchmarking evaluation
Bacterial haplotypes. The benchmark results on the Zymo-GMS and V. fluvialis datasets are sum-
marized in Figure 3 and detailed in Supplementary Table 1. HairSplitter separated better the con-
specific strains compared to the original metaFlye assemblies, delivering more comprehensive
and accurate assemblies than Strainberry and iGDA. Particularly with Nanopore data, HairSplit-
ter produced the most complete assemblies.

On HiFi reads, the stRainy, hifiasm and HairSplitter assemblies all had a high k-mer com-
pleteness (>98%). However, they showed either a high duplication ratio (for stRainy and hifi-
asm) or low metaQuast completeness (for HairSplitter) because none managed to duplicate re-
peated genomic regions to their correct multiplicities (see Supplementary Table 1). This effect
was also observed in several Nanopore assemblies, where 27-mer completeness remains high
while MetaQUAST completeness is notably lower. Typically, the three almost identical V. fluvialis
strains were collapsed into one.

The completeness of assemblies in the simulated benchmark is presented in Figure 4, with a
detailed evaluation in Supplementary Table 2. The evaluation of iGDA is not depicted because
iGDA inexplicably decreased the completeness of the original metaFlye assemblies. Simulations
indicated that HairSplitter significantly outperformed Strainberry, particularly in scenarios in-
volving a high number of strains in the metagenome or highly similar strains. The relatively high
completeness of the 8-strain Strainberry assembly could be attributed to its high duplication
ratio. The completeness of HairSplitter assemblies decreased with the depth of coverage, espe-
cially below 20x coverage. The completeness also decreased slightly when the divergence of
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Figure 4 –MetaQUAST completeness of assemblies of simulated metagenomes of E. coli.On the left, mix of 2 to 10 strains sequenced with 50x coverage were assembled. In themiddle, strain 12009was downsampled in the 10-strainsmetagenome and completenessof the 12009 strain is measured. On the right, reads of strains of decreasing divergencewere mixed with K-12 reads and assembled.
the strains decreased, though the metaQuast completeness remained high (84%) when assem-
bling two strains with 0.07% divergence. Interestingly, the decline in MetaQUAST completeness
when coverage and divergence decreasedwasmore pronounced than the decline in 27-mer com-
pleteness, highlighting HairSplitter’s effectiveness in separating divergent regions and its difficul-
ties in duplicating identical regions. This corresponds to the results observed in the Zymo-GMS
datasets, where many pairwise divergences of strains were <1%.

The contigs produced by HairSplitter were found to have a lower number of indels and mis-
matches compared to iGDA and Strainberry (Sup. Tables 2 and 3). This can be explained by the
fact that the groups of reads used by HairSplitter to build the contigs were more homogenous in
terms of haplotypes and thus easier to polish. However, all tools produced a significant number
of misassemblies when reconstructing a high number of strains. In the case of HairSplitter, these
misassemblies were primarily caused by the fact that a few small structural variations were not
detected during the graph completion step. In terms of contiguity, all assemblers produced com-
parable results, although HairSplitter appeared to make slightly more conservative choices than
Strainberry, resulting in a slight decrease in contiguity but a lower number of misassemblies (Sup.
Table 2 and 3).
Viral haplotypes. The completeness results of the benchmark on the viral datasets are depicted
Figure 5 and more complete evaluation of assemblies are available in Supplementary Table 3.

HaploDMF and HairSplitter managed to separate completely the HBV strains according to
MetaQUAST. iGDA failed to recover the strains, while Strainberry outputted four different haplo-
types instead of two (see supplementary Table 3). We checked that HaploDMF and HairSplitter
separated the reads adequately, thus the slight differences in 27-mers completeness stem from
polishing errors.
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Figure 5 – 27-mer completeness, MetaQUAST completeness and runtime of differentsoftware on the two viral datasets. Note that the runtime is shown in log scale. TheStrainline assembly of HBV-2 is not shown because Strainline could not finish on thisdataset.

HairSplitter stood out as the sole software capable of successfully recovering all seven strains
in the norovirus mix, even capturing the least abundant strain comprising only 1% of the mix. To
assess the sensitivity limits of HairSplitter in the viral context, we conducted two additional
experiments within the norovirus mix. In the first experiment, we decreased the relative abun-
dance of the rarest strain to 0.1%, while maintaining 50x coverage by uniformly increasing the
coverage of the other strains. Remarkably, HairSplitter still achieved complete recovery (99.99%
MetaQUAST completeness) of the rarest strain. The limited amount of data prevented us to
further reduce the strain’s relative abundance. In the second experiment, we uniformly dimin-
ished the coverage of all strains. The rarest strain was entirely recovered (99.99% MetaQUAST
completeness) when covered at ≥40x, only the most divergent part of the virus was recovered
(26.4% MetaQUAST completeness) at coverage 20x and 30x, and the strain was not recovered
at all at 10x coverage. The primary determinant of HairSplitter’s sensitivity thus seems to be
absolute coverage rather than the strain’s relative coverage.

Discussion
In this manuscript, we introduce HairSplitter, a pipeline to assemble haplotypes separately

using an input assembly and long reads. The pipeline includes two main novelties, a program
that completes an assembly graph and a read separation procedure. HairSplitter proved useful
when dealing with noisy data (≥ 1% error rate), whereas its usefulness on HiFi reads compared
to specialised programs such as hifiasm or stRainy is debatable. We show that HairSplitter can
effectively separate several highly similar strains in both bacterial and viral contexts. Compared
to the state of the art, HairSplitter can deal with a higher number of strains, lower relative abun-
dances and lower strain divergence, while maintaining a low computational cost.

HairSplitter encounters a major limitation when strains have many identical regions. In these
regions, it is not possible to assign reads to specific haplotype groups, making it necessary to
duplicate the homozygous regions to their correct multiplicity in order to fully recover the strains.
This study demonstrates that this is a challenging problem that current assemblers are not able
to successfully address in the HiFi dataset. Further investigation will be needed to solve this
issue. A lead could be to use astutely the topology of the assembly graph.

A direction for future work would also be to generalize the assembly graph completion
module. The idea of the module is to make sure all reads align end-to-end onto the assem-
bly graph. We believe such a module could be useful to improve many assemblies. However,
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the version implemented for now in HairSplitter is very basic and does not perform well in re-
peated, complicated regions of the graph. A more sophisticated module could involve local re-
assembly and iterative graph completion. Such work has started and can be followed on GitHub:
https://github.com/rolandfaure/genometailor

Since HairSplitter is already successful at separating both bacterial and viral haplotypes, we
expect to be able to extend this work naturally towards the phasing of polyploid organisms,
motivated by the fact that for now, polyploid genome assembly requires highly precise illumina or
HiFi reads (Kong et al., 2023). For this particular case, some extra information could be leveraged
to improve the HairSplitter pipeline, such as the fact that all haplotypes are expected to be
equally abundant and that the total number of haplotype is usually known.

Data, script, code, and supplementary information availability
The HairSplitter code can be found on GitHub at https://github.com/rolandfaure/

hairsplitter (https://doi.org/10.5281/zenodo.13753481; Faure et al., 2024)
The experiments were run with Flye 2.9.2-b1786, hifiasm HairSplitter v1.9.4, HaploDMF

commit a07d082c3, Strainline commit 8d26341, iGDA commit 54ecec9, Strainberry v1.1,
stRainy commit 34573cd, hifiasm-meta v0.3-r063.2, minimap2 v2.26-r1175 and Quast v5.2.0.

HBV sequencing reads can be found under accession number ERR3253560 in SRA.
The seven norovirus sets of reads can be found under accession numbers SRR13951181,
SRR13951181, SRR13951186, SRR13951185, SRR13951184, SRR13951165 and
SRR13951160. The Vagococcus fluvialis data are accessible under project PRJNA755170
in SRA. The Zymo-GMS sequencing data can be found under accession numbers SRR17913200,
SRR17913199 and SRR13128013.

All the assemblies, simulated data and command lines used are available on Zenodo (https:
//doi.org/10.5281/zenodo.11639887; Faure, 2024).
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