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Abstract
One of the more difficult challenges in community ecology is inferring species interac-tions on the basis of patterns in the spatial distribution of organisms. At its core, theproblem is that distributional patterns reflect the ’realized niche’, the net result of a com-plex interplay of processes involving dispersal, environmental, and interaction effects.Disentangling these effects can be difficult on at least two distinct levels. From a statisti-cal point of view, splitting a population’s variation into contributions from its interactionpartners, abiotic environment and spatial proximity requires ’natural experiments’ whereall three factors somehow vary independently from each other. On a more conceptuallevel, it is not even clear how to meaningfully separate these processes: for instance,species interactions could depend on the state of the abiotic and biotic environment,and these two processes may combine in highly non-additive ways. Here we show thatthe latter issue arises almost inescapably, even in a simple theoretical setting designedto minimize it. Using a model of competitive metacommunity dynamics where directspecies interactions are assumed to be context-independent, we show that inferringthese interactions accurately from cross-species correlations is a major challenge un-der all but the most restrictive assumptions. However, we also find that it is possible toestimate the statistical moments (mean value and variance) of the species interactionsdistribution much more robustly, even if the precise values cannot be inferred. Conse-quently, we argue that study of multi-species spatial patterns can still be informativefor theoretical approaches that build on statistical distributions of species parametersto predict macroscopic outcomes of community assembly.
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A central issue in community ecology is to identify which processes and mechanisms are
most important in determining species presence and abundance across space and time in given
communities. While this can be accomplished by carefully designed experimental methods, this
is often logistically impractical and indirect inference is used: we attempt to infer parameter
values for a process-based model via the analysis of naturally-occurring patterns of species dis-
tributions. While early work focused on the direct analysis of co-distributions (i.e. correlations)
in the abundances or occurrences of species, there has, over time, become apparent that this
can be misleading and an increasingly sophisticated set of analytical tools that try to do this has
emerged.

To give context to this issue, we examine the challenges in using distribution patterns to eval-
uate species interactions in the critiques and subsequent debate in response to Diamond’s ‘As-
sembly Rules’ (Diamond, 1975) that were proposed to explain coexistence patterns in relation
to interspecific competition in community and biogeographic data. Diamond’s assembly rules
focused especially on looking at the significance of negative co-distributions in community pat-
terns among potentially competing species (i.e. so called ‘checkerboard’ patterns of coexistence).
While a long-lasting debate ensued on the statistical significance of these patterns (Connor and
Simberloff, 1979; Gotelli and McCabe, 2002) and the use of ‘null models’ (Gotelli and Graves,
1996), few, if any, questioned the basic hypothesis that negative co-distributions were in fact
robust indicators of competition until much later.

More recent work has increasingly recognized the confounding roles of environment, dis-
turbance, isolation and dispersal and proposed more sophisticated methods for the study of
co-distributions, e.g. (Leibold and Mikkelson, 2002; Patterson and Atmar, 1986; Peres-Neto et
al., 2006). These issues have been resurfacing especially in microbial ecology due to a tide of
data (Berry and Widder, 2014). Additionally, there has developed a broader focus on other
types of species interactions (e.g. Cazelles et al. 2015). The analysis of species interactions in
general, and accounting for environmental, space and dispersal have been merged by the more
recent development of more sophisticated methods such as joint species distribution models
e.g. (Ovaskainen et al., 2017) and related methods that aim to partition distribution patterns
in relation to ‘abiotic’ (environmental), ‘biotic’ (involving interactions among species) and ‘move-
ment’ (involving spatial effects mediated by dispersal effects). While the sophistication of such
methods is rapidly developing, especially in addressing computational and statistical issues, this
work is increasingly revealing that inferring process from pattern is not trivial (Barner et al., 2018;
Blanchet et al., 2020; Poggiato et al., 2021; Thurman et al., 2019).

In parallel with these developments in biogeographic ecology, issues have arisen in work that
is more narrowly focused on inferring species interactions from relative abundance patterns in
a homogeneous setting (Lawlor, 1979; Levine, 1976). That work ignores confounding effects
of environment and dispersal, usually by focusing on situations where these are constrained
(experimentally) or assumed to be negligible (by the selection of data). It typically attempts to
infer pairwise interactions by comparing abundances across different overlapping sets of species,
see e.g. (Barbier et al., 2021). Two questions have been at the heart of that work: what do we
mean by species interactions, and do they depend on their biotic context? We wish to argue
here that these two questions are connected, and that ecological dynamics inescapably give rise
to some context dependence in species interactions.
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To clarify, interactions in the statistical sense can be readily observed in species abundance
patterns, but from a causal point of view, abundances do not directly affect each other. Rather,
abundances control processes (e.g. inducing mortality in a competitor), and these processes in
turn determine changes in abundances in the short or long term. The former have been termed
‘direct effects’, and the latter ‘net effects’ (Lawlor, 1979). Even if the direct effects of one species
on another’s dynamics were context-independent, its net effects on abundances in the long term
can be mediated many other species, along chains of indirect impacts playing out over time, and
can thus depend on the whole community’s composition (Schaffer, 1981; Zelnik et al., 2024b).
Wemust therefore carefully define direct and net effects and specify which we are trying to infer.
It has been proposed that co-distribution patterns across space can be used to deduce a fixed
matrix of net effects between species (Ovaskainen et al., 2017), but this assumes that species
composition does not change over the metacommunity. This method is consequently not likely
to be sufficiently robust to apply except under very highly controlled or limited conditions.

Nevertheless, the analysis of distribution and co-distribution patterns of species in metacom-
munities suggests that, while obtaining exhaustive parameter estimates is still challenging (e.g.
(Blanchet et al., 2020; Leibold et al., 2022; Poggiato et al., 2021), some broader features can
be related to the processes that generate them (Leibold et al., 2022; Ovaskainen and Abrego,
2020; Ovaskainen et al., 2017). For instance, it may be possible to obtain good estimates of
the average competition strength in a community (Fort, 2018). A body of theoretical work on
so-called “disordered systems” (Barbier et al., 2018) proposes that, when biotic interactions are
numerous enough and sufficiently independent from each other (unstructured, contrary to e.g.
a competitive hierarchy), they can be treated as random-like, and only their mean and variance
matter in determining outcomes of community assembly such as diversity or stability. Inspired
by this theory, we hypothesized that statistical features (e.g. mean and variance of either direct
or net effects) may be a more robust inference target than the precise network of interactions.
We further wondered if these statistical properties might also be robust to some of the other
concerns outlined above such as the existence of composition change, the amount of dispersal
and degree of environmental variation.

Here, we propose to explore limits to inference that stem from the very nature of the dynam-
ical processes, which entangle contributions from the environment and from multiple species in
ways that might or might not be possible to disentangle at all. We use process-based simulations
of community assembly in disordered communities (as defined above) to generate simulated
data under different conditions involving species niches, environmental gradients, dispersal and
interaction strength. We consider predominantly competitive interactions, because our simple
Lotka-Volterra model can be unstable under strong facilitation, although we believe that many
of our results would otherwise extend to any interaction type. We then infer parameters from
the analysis of resulting patterns to evaluate how well they can be used under these various
scenarios.

Given that previous studies have already established that biotic interactions can strongly
bias our estimates of species’ environmental preferences (Poggiato et al., 2021), we go one step
further to show that, even in a setting where we could assume a good estimate of these environ-
mental preferences, we may still be unable to correctly extract species’ interactions from their
spatial co-occurrence. Yet we find that, even when species interactions cannot be estimated in
detail, it remains possible to correctly infer their community-level statistics, i.e. how strong and
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diverse biotic interactions are overall in the ecological dynamics of the community. This suggests
that we may extract more robust information out of spatial patterns by asking for a less detailed
description of the underlying processes.

1. Methods
To evaluate how we might infer processes involving species interaction coefficients from

patterns in species distributions in a landscape or metacommunity, we considered a highly sim-
plified modeling framework as a limiting case. We assumed that species interacted in a spa-
tially continuous lattice in which local (within cells) interactions could be described by simple
Lotka-Volterra equations connected by dispersal from nearby cells. Previous work on inferring
species interactions from possible distribution patterns suggested that this could work under
similar assumptions, at least under some limiting conditions) (Lawlor, 1979; Levine, 1976). We
assume that more complex assumptions (e.g. non-linear interactions, heterogeneous dispersal
etc), would make the inferences we are interested in even less likely and our approach should
thus be seen as an ‘optimistic’ evaluation. In essence, we are asking “how well can we hope to
do in making such inferences with current approaches?"

We intuit that a significant obstacle to inferring the details of species interactions is the co-
variation between the abundances of all interaction partners, and between each of them and the
environmental factors: we cannot discriminate how strongly each of these factors impacts the
presence of any given species if our observations do not provide ‘natural experiments’ where
they vary independently (or actual experiments that impose various species compositions in the
same environmental conditions (Barbier et al., 2021)). Therefore, we start by focusing on two
highly contrasting cases. In one case, we model a scenario that is most likely to be successful
in inferring interactions parameters from distributions, because many species compositions are
realized for each environmental condition in the absence of local dispersal. We then contrast
this with a scenario that includes dispersal that allows environmental tracking by species in the
metacommunity.

Within these two scenarios, we analyze a number of simulations that vary in the mean and
variance of species’ interaction strengths. We know from prior literature (e.g. Hu et al., 2022;
Roy et al., 2020), that our simulation model may exhibit complex dynamics, such as chaotic fluc-
tuations, when species interactions are sufficiently strong. To situate ourselves in the most fa-
vorable setting for inference, we avoid strong interactions or strong dispersal, so as to select a
dynamical regime where species reach a globally stable equilibrium that reflects how favored
they are in their local abiotic and biotic environment. In each simulation, we then attempt to
infer interactions in detail, as well as derive their mean and variances.
1.1. Model setting

We consider a metacommunity on a 2D landscape of 64 × 64 pixels, each represented by
a coordinate vector x . At each point, we model a single environmental factor E (x) whose val-
ues range in [−50, 150] (Fig. 1). We then simulate Lotka-Volterra dynamics with dispersal from
neighboring patches y

dNi (x , t)

dt
= Ni (x , t)


Ki (x) + AiiNi (x , t) +

∑

j 6=i

AijNj(x , t)


 + D

∑

y∈nei(x)
(Ni (y , t)− Ni (x , t))(1)
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Figure 1 – Environmental factor and final species abundances across the landscape in anexample simulation run. (a) Landscape E (x) with x a two-dimensional coordinate vector(64× 64 pixels called patches). (b) Histogram P(E ) of values of the environmental factor.(c) Centers ci (dots) and width wi (bars) of abiotic niches for all 20 species. (d-e) Equilib-rium abundancesNi (x) for all species (rescaled by extinction thresholdNc = 10−3 so thatvalues less than 1 indicate local extinction). The two colonization scenarios described inSec. 1.2 are represented here: (d) environment tracking, where every species is initiallyseeded in every patch (or are allowed moderate dispersal), and (e) dispersal limitation,where species are seeded independently in 50% of patches at random, and cannot dis-perse. In the latter case, species that would outcompete others in a given environmentalcondition might be absent by chance in some patches with that condition. Thus, severalspecies go fully extinct at the landscape level due to competition in the environmenttracking scenario (d), while all species are present in at least part of the landscape in (e).Parameters: 〈wi 〉 = 50, 〈Aij〉 = −0.3, std(Aij) = 0.09, D = 0.

Furthermore, species are considered extinct when Ni < Nc = 10−3, but are allowed to invade
again: their growth rate dNi/dt is replaced by max(0, dNi/dt), which may allow them to regrow
above the extinction threshold if this rate remains positive. At the end of the simulation, the
abundances of species under the threshold are set to zero, to be ignored in our analyses.

Intra-specific competition is set to Aii = −1 for all species, while inter-specific interaction
coefficients Aij are independent of the environment and drawn randomly for each species pair
(i , j) from a normal distribution with prescribed mean 〈A〉, standard deviation stdA, and sym-
metry symA = corr(Aij ,Aji ). We typically take a large negative mean, so that coefficients are
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predominantly competitive, to avoid the breakdown of the Lotka-Volterra model with strong
facilitation.

The coefficients Ki determine each species’ carrying capacities (equilibrium abundance in
monoculture) since Aii = −1, and thus Ni = Ki at equilibrium in the absence of other species
and of dispersal. These carrying capacities are modelled using a unimodal “niche” function of the
environmental factor:
(2) Ki (x) = e−(E(x)−ci )2/2w2

i − µi
with "mortalities" µi drawn uniformly between 0 and 0.5, niche centers drawn uniformly ci ∈
[0, 100] and widths wi normal i.i.d. (see parameters in SI). The addition of µi ensures that Ki < 0

when the environment deviates enough from species’ optimum, i.e. species may not grow at all
in sites that are too unfavorable.

As noted above, drawing on previous theoretical and numerical work (Bunin, 2017; Zelnik et
al., 2024a) we choose parameters in this model that select a global equilibrium regime: species
abundances reach a stable equilibrium in each site based only on the pool of species that can
access that site, their local environment and interactions. This requires that stdA is small enough
to avoid loss of stability leading to complex nonequilibrium dynamics (Bunin, 2017), and D is
small enough to avoid significant source-sink dynamics and mass effects, i.e. situations where
local abundance are strongly driven by fluxes from neighboring sites (Leibold et al., 2004; Zelnik
et al., 2019). These other situations may also be of ecological relevance, but the regime consid-
ered here was the most appropriate considering the questions we wish to tackle, as argued in
Discussion.
1.2. Colonization scenarios and dispersal

We expect that interactions can be inferred more successfully in biodiversity experiments
where different species compositions are imposed in the same environmental conditions (Barbier
et al., 2021). This suggests testing two distinct scenarios for how species are distributed in the
landscape (Fig. 1):
(DL) “Dispersal limited” scenario where each species is only seeded (i.e. given positive initial

abundance) in half of the patches at random, and cannot disperse between patches.
(ET) “Environment tracking” scenario where all species are initially seeded in every cell (or

can freely disperse, usually setting D = 10−3, see below), and survive or go extinct de-
terministically because of abiotic and biotic conditions.

We will also vary the dispersal coefficient D , to check whether the DL scenario disappears and
ET prevails as soon as D > 0 or at some higher value of dispersal.
1.3. Defining direct and net effects

Thematrix Aij represents direct effects, i.e. the instantaneous impact of species j ’s abundance
Nj on the dynamics (per capita growth rate) of species i at a given time t . By assumption, in
the generalized Lotka-Volterra equation (1), these effects are context-independent – they are
characteristic of each species pair, and constant across environmental conditions and across the
landscape. This provides an important test case for our ability to infer species interactions, since
it entails that we can truly assign a ‘ground truth’ value to these interactions that we may hope
to recover through some inference method.
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However, these direct effects are not necessarily what we try to infer from empirical meta-
community data, where we rarely have access to per capita growth rates. Instead, we typically
care about how the presence of a species influences another’s abundance. Since this influence
could change over time, we must specify this question further, e.g. ask how a species affects
another’s abundance in the long term, at dynamical equilibrium. The roots of this question can
be found in early work (Lawlor, 1979; Levine, 1976) who recognized that pairwise species in-
teractions could be separated into direct effects (where species affected each other directly by
proximate effects on birth or death rates) and indirect effects (mediated by chains of direct ef-
fects from one species to another). This work highlighted that observable effects of species on
each other were most often related to ‘net effects’, that involved the entire network of possi-
ble indirect and direct effects, and may have little similarity to the direct interactions that drive
them.

For mathematical reasons presented briefly here and explained in detail in (Zelnik et al.,
2024b), Levine and later authors proposed that net interactions could be derived as the coef-
ficients in the inverse of the matrix of direct interactions. In the absence of dispersal (D = 0), the
equilibrium condition for the subset s(x) of species that coexist at location x is given by equation
(1) with the content of the parentheses set to 0 (since dNi/dt = 0 but Ni > 0)
(3) 0 = Ki (x) +

∑

j∈s(x)
AijNj(x , t).

This linear system of equations can therefore be inverted (Levine, 1976) to yield the equilibrium
abundances
(4) N∗i (x , t) = −

∑

j∈s(x)
(A∗(x))−1ij Kj(x)

with A∗(x) the submatrix of A restricted to the survivors at site x . As a consequence, we can
define
(5) V (x) = − (A∗(x))−1

the matrix of net effects1 at site x , which represents the long-term consequences of interactions:
how permanently changing the carrying capacity Kj of species j (making the local environment
more or less favorable to it, e.g. via an experimental treatment) will modify the equilibrium abun-
dance of another species i . More broadly, we can define Vij as how any permanent change in
the dynamics (per-capita growth rate) d logNj/dt modifies the equilibrium N∗i .Clearly net and direct effects are not immediately comparable, since A represents the in-
stantaneous impact of one species’ abundance on another’s dynamics, whereas its inverse V

represents the long-term impact of one species’ dynamics on another’s abundance. Yet it can be
shown that, properly defined, net effects can be understood as the sum of all chains of direct
effects that connect i and j via any number of intermediate species in the community (Zelnik
et al., 2024b).

1We note that net effects as defined by Lawlor (Lawlor, 1979) are not the Vij but
(6) Γij = −Vij

Vjj
= − ∆Ni

∆Nj

i.e. the ratio of how much species i responds to how much species j responds in the long term after a press pertur-bation on species j .
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1.4. Context-dependence of net effects
Schaffer pointed out that the inverse of amatrix depends sensitively on all its elements (Schaf-

fer, 1981), and thus, even for context-independent direct interactions Aij , the specific compo-
sition of surviving species can strongly modify the value or nature of net interactions Vij . Forinstance, adding a third species may cause two competitors to facilitate each other indirectly
through their competition with a common enemy. While it may seem counter-intuitive that, say,
net effects between two dominant species might change drastically even from adding a rare
third species, it is important to point out that these effects are fully realized only in the long
term: the inverse matrix appears naturally when computing equilibrium abundances (4) so that
even a rare or slow-growing species has time to exert or mediate significant impacts on others.
Observing abundances out-of-equilibrium could lessen the importance of very indirect paths,
and limit context dependence (Zelnik et al., 2024b).

Clearly, if species composition s(x) depends on environmental conditions, then so will net
effects, even assuming fixed direct effects Aij across the entire landscape. Fig. 2 demonstrates
this context-dependence of net effects.

For non-negligible dispersalD > 0, there is no simple linear relationship between abundances
and carrying capacities. Therefore, net effects at each site depend not only on local species
composition, but also on species abundances in other sites as well as the local abundances. A
generalization of V near equilibrium can still be made using the inverse of the Jacobian matrix
for the full multi-patch dynamics (Gravel et al., 2016). Here we always retain very small values
of dispersal D and this issue does not arise.
1.5. Inferring abiotic niches

A frequent objective whenmodelling species distributions in space is ascertaining the impact
of environmental factors, also understood as the ‘fundamental niche’ of a species (i.e. what range
of abiotic conditions it tolerates), often seen as a prior step to deciphering the impact of species
interactions. It is however understood that biotic interactions transform this fundamental niche
into a ‘realized niche’ which can bias our perception of species’ environmental preferences: for
instance, certain species might only occur in extreme environments because other competing
species prevent them from occupying the more temperate environments that they would pre-
fer (Poggiato et al., 2021).

Since our focus is rather on the challenges of inferring biotic interactions even under favor-
able conditions, we do not delve deeply into the problem of simultaneously determining abiotic
niches and interactions, which is central in joint Species Distribution Models (Ovaskainen et al.,
2017).

Nevertheless, using our simulated data, we could simply try to fit the parameters of equation
(2), i.e. the true functional form used to generate the data, ignoring species interactions. This
amounts to modelling abiotic niches as carrying capacities Ki that have a Gaussian dependence
in the environmental factor E , with species-specific optima andwidths (Fig. 1). As we show in Ap-
pendix, within the dynamical regime and parameter range considered in our simulations, species
interactions are indeed distorting the apparent relation between abundance and environment
(Fig. S1 and S2).

Yet this distortion remains sufficiently limited in our case that an observer would get a pass-
able estimate of each species’ environment preferences, i.e. the center of its fundamental niche
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Figure 2 – Net effects vary throughout the landscape due to changes in species compo-sition, as illustrated here in one example simulation with dispersal (environment trackingin Fig. 1). While direct effects Aij (instantaneous impact of species j on growth of i ) arefixed by assumption in our model (1), net effects Vij (long-term impact of species j onequilibrium abundance of i ) are context-dependent and vary due to the presence or ab-sence of other species. (a)Anumber is assigned to each species composition, andmappedthrough the landscape. Rare compositions are assigned number 0. (b) The fixed matrix ofdirect effects A, and two examples of submatrices restricted to locally surviving speciesfrom two different sites. (c) Inverting these two submatrices gives local matrices of neteffects, Vij(x) at each site x , where individual elements are now different between local-ities even for pairs that appear in both localities. (d) Histogram of local net effects forthe most abundant species pair in the metacommunity (species 3 and 4). The net effect
V3,4(x) is computed at every site x in the landscape. The mean of these values over thewhole landscape gives the spatial average V ij referenced in Fig. 3 and 4.

and a lower bound on its width, simply by fitting a Gaussian curve to the maximum abundance
seen in each environmental condition (details in Appendix).

Therefore, in the rest of the main text, we entirely bypass the issue of inferring abiotic niche,
and investigate inference challenges that remain even assuming that we perfectly know the car-
rying capacities of every species at every location.

Matthieu Barbier et al. 9
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1.6. Inferring biotic interactions
We infer biotic interaction effects through multilinear least squares regression in two distinct

ways. On one hand, we can infer estimates of net effects V̂ij as the multilinear coefficients in
(7) Ni (x) =

∑

j

V̂ijKj(x)

On the other hand, following (Barbier et al., 2021; Xiao et al., 2017), we can infer direct effects
Âij as the multilinear coefficients in
(8) Ni (x) = Ki (x)−

∑

j 6=i

ÂijNj(x)

In the first case, we need to know the abiotic niches, i.e. carrying capacities Ki (x) across thelandscape. In the second, we can either use known carrying capacities, or infer them as the (site-
or environment-dependent) intercept of the relation between the abundance of species i and
other species.

Since we noted above that deducing environmental preferences is not the most severe ob-
stacle in our chosen simulation setting, we hereafter assume that carrying capacities Ki (x) de-termined by the abiotic factor E (x) are known prior to inferring interactions (e.g. if they are mea-
sured in experiments or can independently be estimated from species distributions). We aim to
show that even this favorable case presents considerable difficulties, that exist independently
from the problem of inferring environmental effects (see Appendix for further discussion).

2. Results
2.1. Direct and net effects

Modern inference methods, e.g. (Ovaskainen et al., 2017), attempt to simultaneously deduce
species’ interactions, environmental preferences andmigration effects from noisy or limited data.
Yet significant methodological or conceptual difficulties may arise even with less ambitious goals.
Here, wemainly discuss the possibility of estimating species interactions under optimal data con-
ditions: sampling the whole landscape at equilibrium, without any measurement error, and hav-
ing full knowledge of carrying capacities Ki (x) (i.e. environmental preferences) for each species.

We break down this issue into the inference of direct effects and net effects whose defini-
tions we recall here (see Methods for more details). Direct effects correspond to the matrix Aijin (1) which describes how the current abundance of species j influences the instantaneous dy-
namics (growth or mortality rate) of species i . Net effects are given by the matrix Vij in (5) whichdescribes how a permanent change in species j ’s dynamics (e.g. a change of carrying capacity, or
removal from the community) would impact the abundance of species i in the long term (Zelnik
et al., 2024b). Direct effects are not usually what we try to infer in a biogeographic context since
we rarely have access to the population growth rates, but they mediate and explain net effects
on abundances.

We see in Fig. 3 (a,c) that the inference of direct effects still depends on the colonization
scenario: it is successful with dispersal limitation (DL), but not with environment tracking (ET). In
the DL scenario, the inferred matrix Âij is very similar to the ground truth matrix Aij , missing only
a few interactions for species that are never present together in the landscape. In the ET scenario,
estimates Âij are usually wrong and may even have the wrong sign, though the inference tends

10 Matthieu Barbier et al.
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Figure 3 – Inferring the full matrix of direct or net effects in the example simulationrun under optimal conditions (noiseless data, full knowledge of the abiotic niche ofeach species, no dispersal, see Methods). Each point corresponds to a pairwise effectof species j on species i . Dashed lines indicate linear regressions. Each row correspondsto a colonization scenario (see Fig. 1 and Sec. 1.2). (a,c) Direct effects. On the y-axis,values Âij inferred through hyperplane regression of Ni (x) against Nj(x); on the x-axis,
ground truth matrix, Aij . (b,d) Net effects Vij . On the y-axis, values V̂ij inferred throughhyperplane regression of Ni (x) against Kj(x). On the x-axis, “ground truth” obtained byspatial average over local matrices, V ij (see Methods).

to improve here for stronger interactions (as this leads to fewer species coexisting, and thus a
simpler inference task).

As for net effects, in our Lotka-Volterra model they are ill-defined at the landscape scale: the
value Vij depends on species composition, i.e. the set of surviving species, which varies across
the landscape (Fig. 2). Still, we could hope that the average value 〈Vij〉 across the landscape
(Fig. 2c) is meaningful. In that case, we expect it should correlate with the apparent net effect,
defined as the regression slope of Ni against Kj (putting together values measured across the
whole landscape).

We find in Fig. 3 (b,d) that this is not the case, which can be explained by the fact that the
value of Vij and Kj are actually very correlated across the landscape, so a spatial average of Vijis not representative of local net effects (Fig. 2). We conclude that inferring landscape-scale net
effects is an ill-posed problem, as they are not well defined evenwhen direct effects are assumed
constant.
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Figure 4 – Inferring all interactions or only statistics across many simulation runs withdifferent parameters. Each point is a simulation run, corresponding to one of two col-onization scenarios (ET: orange circles, DL: blue crosses) and various values of groundtruth statistics 〈A〉 ∈ [0.01, 0.03, 0.05, 0.3] (symbol size) and std(A) (symbol color satura-tion, obtained by multiplying each value of 〈A〉 by a value in [0.001, 0.01, 0.1, 1]). (a,b) R2

of full matrix inference (see e.g. Fig. 3 for one simulation run) is only successful for directeffects under dispersal limitation. However, the statistics of inferred interactions are ro-bustly related to ground truth statistics, for both inferred direct and net effects, Âij and
V̂ij . This relationship is very strong for mean interaction (c,d), and weaker for standarddeviation (e,f).

2.2. Interaction statistics
While the full matrix inference is unsuccessful in many cases, we see in Fig. 4 that interaction

statistics are more robustly estimated. Indeed, there is a very strong correlation between the
ground truthmean interaction strength 〈A〉, and themeanmeasured over our empirical estimates〈
Â

〉, even when the individual elements Âij are unsuccessfully estimated.
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Likewise, there is a strong relationship between 〈A〉 and average net effects across the land-
scape, 〈V 〉 (Fig. 4d). These two quantities are not equal even in principle, but a robust relation-
ship suggests that we could use one to infer the other. Standard deviations are also correlated
between ground truth and inferred values, though more weakly (Fig. 4e,f). We notice that they
are more sensitive to the colonization scenario (DL or ET) and thus we can only roughly deduce
the true std(A) from its empirical estimate (especially at small values, stdA < 10−2) without
knowing which dispersal scenario we are observing. Finally, symmetry is perfectly estimated in
the DL scenario, but entirely incorrect in the ET scenario (see Appendix, Fig. S4).

To summarize, it may be possible to infer the full matrix of direct effects for abundant data,
with dispersal limitation or some other phenomenon decoupling species composition from the
environment. The full matrix of net effects is not well-defined, and no inference method is suc-
cessful. Under broader conditions, we can likely only estimate statistical features, most reliably
the mean interaction strength.
2.3. Influence of dispersal

We show in Fig. 5 that, as we increase dispersal coefficient D from zero, the transition be-
tween dispersal limitation (DL) and environment tracking (ET) scenarios is abrupt in our model,
occurring for D ≈ 10−3.

When dispersal becomes able to overcome the initial absence of a species in a patch, by
creating a migrant flux above the extinction threshold Nc and thus allowing species that can
invade the patch to reach a nonzero equilibrium, local species composition becomes entirely
determined by each site’s biotic and abiotic environment (rather than initial conditions and dis-
persal) and the ability to separate the influence of various species decreases abruptly, as their
abundances co-vary much more strongly (which may be seen in Fig. S5 in Appendix).

The abruptness of the transition is due to the fact that our model has a sharp extinction
threshold Nc = 10−3. Thus, patches where dispersal cannot bring the abundance above the
threshold cannot be colonized by the species. Many different species compositions in neigh-
boring patches are preserved until dispersal allows crossing this threshold systematically for all
species. However the total number of observed species compositions across the landscape is
not sharp in D (Fig. S6 in Appendix), suggesting that the ability to correctly infer detailed inter-
actions is not tied to the diversity of compositions over the whole landscape, but rather simply
to the existence of diverse compositions in close proximity.

3. Discussion
Many statistical and theoretical methods have been proposed to infer ecological interactions

between species from their spatial co-distributions. The best-studied obstacle to this inference
is the possible confounding effect of other factors that impact spatial distributions, e.g. the fact
that species may appear positively associated because they have similar environmental prefer-
ences (Ovaskainen et al., 2017). Recent studies have discussed issues with methods devised to
overcome this obstacle, for instance, that interactionsmay prevent us from correctly understand-
ing species’ environmental preferences (Poggiato et al., 2021) Here, we have mainly focused on
two further obstacles to the precise inference of species interactions, arising even when we are
in the most favorable conditions to address the problems noted previously.
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Figure 5 – Effect of dispersal on the ability to infer the full matrix of direct species inter-actions Aij . On the x-axis we represent the dispersal coefficient D in log 10 scale. On they-axis we show the Pearson R2 of the fit between true and inferred net effects. Each sym-bol is a simulation out of sets (all sets share the same landscape, each set has a distinctinteraction matrix, and each simulation within a set differs by its value of dispersal). Be-low, we show the final abundance of one species across the landscape in one simulationset, for values of dispersal right below and above the transition from dispersal limitationto environment tracking. The patchy appearance of the left-hand inset is due to migrantfluxes from neighboring patches being too weak in many cases to overcome the localextinction threshold, as explained in Section 2.3.

3.1. Statistical issues and non-identifiability
One obstacle is statistical in nature, i.e. difficulties in identifying the model due to multi-

colinearity. We find that we can successfully infer direct species interactions only in scenarios
where species composition is forced to vary substantially and independently from the environ-
ment, for instance due to dispersal limitation or experimental manipulation (as in biodiversity
experiments). We cannot do so if the same environmental conditions predictably lead to the
same species composition, a situation that we call “environment tracking”.

The issue is not only that effects of interacting with particular species may be confounded
by environmental effects, but they may also be confounded by each other, as the abundances
of multiple interaction partners tend to covary positively or negatively based on their similar
or dissimilar environmental preferences. That latter problem decreases when interactions have
more variance (Fig. 4a) or when species are differently influenced by many independent environ-
mental factors (see Appendix, Fig. S7), but this does not suffice here to completely eliminate the
problem of model identifiability.

All our results were obtained in a setting that should be highly favorable to the detection and
estimation of species interactions: there are context-independent parameters defining direct in-
teractions, species often coexist, they reach stable abundances that reflect their preferences,
dispersal is small and intervenes mainly to allow species to colonize patches where they were
not seeded initially (but does not significantly distort equilibrium abundances). Despite all these
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favorable assumptions, we found that it may not always be possible to precisely infer the de-
tails of species interactions. Relaxing some of these assumptions to consider stronger or more
context-dependent interactions (e.g. priority effects, environmental modification), more complex
dynamics (chaos, transients, external perturbations), stronger spatial fluxes, and observational is-
sues (data limitation, errors and biases), is likely to introduce further difficulties but perhaps also
different opportunities for the inference of interactions. Indeed, we speculate that various ob-
stacles could work against each other: stronger non-linearities may somewhat alleviate model
non-identifiability; conversely, having a large number of species and parameters may end up
being the main challenge in model fitting and override the importance of details of how each
interaction is modelled; finally, other dynamical settings, such as species abundances fluctuating
chaotically rather than being at equilibrium, may require entirely distinct methods with different
challenges.

A more conceptual problem lies in the context-dependence of interactions: there might not
exist any constant number that would adequately represent “the effect of species j on species i”
across a whole metacommunity, in which case our inference problem is ill-posed from the start.
On the one hand, the Lotka-Volterra model used here (1) can be thought of as giving a lower
bound on the amount of context-dependence we can expect in a plausible ecological setting.
The model assumes total context-independence of all direct effects (per-capita instantaneous
impacts on growth rates) between species. Yet, the ‘net effects’ between species, defined to in-
clude all indirect impacts arising over time and through intermediates (e.g. indirectly helping a
species by directly hindering its competitors), are found to be highly context-dependent as soon
as interaction strength is not very small (Zelnik et al., 2024b). On the other hand, our choice of
looking at long-term abundance patterns, letting species reach an equilibrium, is giving maximal
opportunity for such indirect effects to play out – even a rare or slow-growing species has time
to exert ormediate significant impacts on others, hence the fact that thematrix of net effects can
change drastically when we remove a species, no matter how rare. Thus it may be that observing
abundances out of equilibrium, driven by more complex ecological dynamics or external pertur-
bations, and tracking temporal (or spatio-temporal) rather than purely spatial co-distributions,
could lessen the interference that might be due to this context dependence and entanglement
arising in communities at equilibrium.

Our work stresses the importance of correctly specifying which concept of biotic interaction
one is trying to infer: for instance, estimating context-independent direct effects is sometimes
possible even when net effects vary dramatically across the landscape. This is of particular rel-
evance to statistical approaches focusing on the co-distribution of species, e.g. joint Species
Distribution Models (Ovaskainen et al., 2017). The residual covariance between species across
the whole landscape can be understood as the spatial aggregation of locally varying net effects
which we believe (see Appendix: Estimating interactions from residual species co-variation) is
not an appropriate path to deduce direct effects.
3.2. Getting more from less

Despite these two obstacles, we also found that the community-wide statistical properties,
i.e. mean and variance, of direct interaction coefficients could be relatively well inferred from the
observed species distribution patterns, even when our detailed estimates of pairwise interac-
tions were entirely incorrect. We did not attempt here to develop novel techniques specifically
for the purpose of inferring moments of the distribution of interaction strengths. Instead, we
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used simple methods to estimate all pairwise interactions, and then computed the moments of
these estimates, even when they were individually wrong. It is likely that methods that would
be tailored to capture statistical moments directly would be even more robust. But it is rather
striking that applying the ‘wrong’ method still provides reasonable estimates of the moments:
it suggests that, even when observational or experimental attempts at measuring interaction
strengths (e.g. (Barbier et al., 2021)) yield incorrect numbers, these numbers might still have the
right statistics to characterize how important and diverse species interactions are overall in the
community-level ecological dynamics.

From an empirical point of view, our results thus carry encouraging as well as cautionary
notes. Species-level questions may require the precise inference of a given pairwise interaction,
and our work comes here as a warning to keep in mind possible barriers to that inference when
we do not have grounds to assume ‘natural experiments’ such as permitted here by strong disper-
sal limitation. On the other hand, we feel that for empiricists interested in estimating the intensity
of biotic interactions in a community as a whole, e.g. to know whether community composition
is a better indicator of environmental states or internal dynamics, our findings are encouraging
and a suggestion to turn to methods that strive to estimate community-wide statistics rather
than individual pairwise species interactions.

Finally, wemust consider the empirical relevance of our study’s assumption that direct species
effects are context-independent and simply additive with each other and with environmental ef-
fects. This may seem like a highly restrictive assumption, limiting the value of trying to infer such
direct effects. We nevertheless speculate that two facts make this assumption less restrictive
than it seems: first, additivity is more likely to hold approximately in direct effects, which occur
over a short time, than in long-term net effects; and second, the congruence of many causal
factors (species, environmental variables) hopefully means that the details of each and how they
interact matter less, and additive effects may be a mechanistically wrong but phenomenologi-
cally useful abstraction, at least when focusing on community-wide statistics and outcomes as
we are suggesting here.
3.3. Conclusions

In conclusion, metacommunity ecology provides a more comprehensive conceptual frame-
work than the approaches that set the stage for inferring species interactions from co-distributions
(Connor and Simberloff, 1979; Diamond, 1975). Work to date relating metacommunity ecology
to species co-distribution patterns (Leibold et al., 2022;Morueta-Holme et al., 2016; Ovaskainen
et al., 2017; Terry et al., 2023) is providing some exciting new tools, but the connection between
distribution patterns and ecological mechanisms remains elusive. This is, in large part, because
correlations between species are highly sensitive, entangling multiple ecological processes and
potentially the entire biota, as put forward by Schaffer (Schaffer, 1981).

We find that progress might be made by focusing on less detailed and more robust descrip-
tions of distribution patterns. While it may rarely be possible to infer the full set of parameters
describing a metacommunity, it might be more feasible to parameterize models inspired by sta-
tistical mechanics, e.g. (Bunin, 2017; Gravel et al., 2016), in which only overall statistics of pa-
rameters are used to predict a variety of ecological outcomes such as abundance distributions,
dynamics and stability. In these so-called “disordered systems” models, outcomes are robust to
changing many details of interaction coefficients, as long as species are not organized in a well-
ordered structure such as a strict competitive hierarchy. Further refinements of these models
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have been proposed to capture important large-scale features of the ecological structure of in-
teractions (Barbier et al., 2018). First steps toward parameterizing such models from empirical
species co-distributions are being taken in very recent studies (Camacho-Mateu et al., 2024) and
we expect that continued progress along these lines will prove timely and useful.
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