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Abstract
Ancestry estimation from genotype data in unrelated individuals has become an essen-tial tool in population and medical genetics to understand demographic population his-tories and to model or correct for population structure. The ADMIXTURE software is awidely used model-based approach to account for population stratification, however, itstruggles with convergence issues and does not scale to modern human datasets or thelarge number of variants in whole-genome sequencing data. Likelihood-free approachesoptimize a least square objective and have gained popularity in recent years due to theirscalability. However, this comes at the cost of accuracy in the ancestry estimates inmore complex admixture scenarios. We present a new model-based approach, fastmix-ture, which adopts aspects from likelihood-free approaches for parameter initialization,followed by a mini-batch expectation-maximization procedure to model the standardlikelihood. In a simulation study, we demonstrate that the model-based approaches offastmixture and ADMIXTURE are significantly more accurate than recent and likelihood-free approaches. We further show that fastmixture runs approximately 30× faster thanADMIXTURE on both simulated and empirical data from the 1000 Genomes Project suchthat our model-based approach scales to much larger sample sizes than previously pos-sible.
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Introduction
For the past two decades, unsupervised ancestry estimation has been a crucial element in

studies on human evolutionary genetics and genome-wide association studies (Marchini et al.,
2004; Novembre et al., 2008). Estimating global ancestry proportions in unrelated individuals
and corresponding ancestral allele frequencies has been a classic way of correcting for popula-
tion structure and understanding demographic processes that have shaped the evolutionary his-
tory of modern populations. Ancestry estimation from genotype data emerged with the model-
based clustering approach proposed with STRUCTURE (Pritchard et al., 2000), where individuals
are proportionally assigned to an assumed number of ancestral populations. They modeled the
probability of the observed genotype data given ancestry proportions and ancestral allele fre-
quencies using a Bayesian approach. Due to scalability issues, the Bayesian approach was later
replaced by maximum likelihood models, which were optimized using expectation-maximization
(EM) and block relaxation algorithms,which include thewidely used software ADMIXTURE (Alexan-
der et al., 2009; Tang et al., 2005).

In the era of big data, where ever-growing cohorts contain thousands of individuals with
genotype data for millions of genetic variants, classic state-of-the-art model-based approaches,
such as ADMIXTURE and STRUCTURE, fail to scale due to computational intractability. Over the past
decade, there have been multiple attempts to scale unsupervised ancestry estimation. These
efforts have primarily been rooted in likelihood-free approaches, with a few exceptions that
have attempted to scale the standard model-based approach. Model-based and likelihood-free
approaches have been shown to be connected within the framework of matrix factorization,
where both approximate an observed genotype matrix by lower rank matrices under different
assumptions and constraints (Engelhardt and Stephens, 2010). In likelihood-free approaches, it
is common to optimize a different least square objective using either non-negative matrix factor-
ization (NMF) (Frichot et al., 2014; Meisner and Albrechtsen, 2018) or alternating least square
(ALS) (Cabreros and Storey, 2019; Chiu et al., 2022). The SCOPE software (Chiu et al., 2022)
has gained increased popularity due to its efficient implementation of an ALS approach, which
is well-suited for biobank-scale datasets. Meanwhile for the model-based approaches, a sto-
chastic variational inference algorithm (Gopalan et al., 2016) and a neural network autoencoder
(Dominguez Mantes et al., 2023) have also been proposed in recent times.

As large-scale cohorts begin to expand and include more cosmopolitan representations of
individuals around the globe, obtaining accurate ancestry estimates has become a crucial task
of modern genomics. This is essential to properly correct for population structure in genome-
wide association studies and mitigate the bias in the over-representation of European-descent
samples in current cohorts due to the ever-increasing focus on genomics for population health
applications (Martin et al., 2019;Wang et al., 2022).While convergence within a reasonable time
frame is highly desirable for these extensive datasets, recent attempts to improve scalabilitymost
often compromise accuracy in the ancestry estimation, as demonstrated here. The field still lacks
a method that scales to larger datasets while being as accurate as the classic state-of-the-art
approaches.

We introduce fastmixture, a novel model-based method for estimating ancestry propor-
tions and ancestral allele frequencies in unrelated individuals. We leverage randomized singular
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value decomposition (SVD) for initializing the ancestry proportions and ancestral allele frequen-
cies, followed by a mini-batch accelerated scheme to speed up the convergence of the EM al-
gorithm. We demonstrate in an extensive simulation study and on real data that fastmixture
significantly outperforms the original ADMIXTURE software in terms of speed while maintaining
higher accuracy compared to recently developed approaches for ancestry estimation.

Material and methods
We define a diallelic genotype matrix of N individuals and M variants or single-nucleotide

polymorphisms (SNPs) as G ∈ {0, 1, 2}N×M , which corresponds to the minor allele counts. We
describe the estimation of ancestry proportions and ancestral allele frequencies with K ances-
tral sources as a low-rank matrix factorization problem such that G ≈ 2QPT , withQ ∈ [0, 1]N×K

and the constraint ∑K
k=1 qik = 1, for i = 1, ... ,N , and P ∈ [0, 1]M×K . The matrix factorization

problem can also be interpreted as the estimation of individual allele frequencies from the geno-
type matrix, H = QPT . Here, hij =

∑K
k qikpjk is the individual allele frequency of individual i

at variant j assuming K ancestral sources. The individual allele frequency will correspond to the
underlying parameter in a binomial sampling process of a genotype conditioned on population
structure.
Likelihood model

We estimate ancestry proportions and ancestral allele frequencies by maximizing the likeli-
hoodmodel introduced in ADMIXTURE (Alexander et al., 2009). The log-likelihoodmodel is defined
as follows, assuming independence for individuals and variants:
(1) L(Q,P) =

N∑

i

M∑

j

gij log(hij) + (2− gij) log(1− hij) .

We utilize the expectation-maximization (EM) algorithm of frappe (Tang et al., 2005) and
ADMIXTURE (Alexander et al., 2009) to maximize the log-likelihood, where the EM updates at
iteration t for entries of Q and P are defined as follows, respectively:
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The EM algorithm is notorious for its slow convergence rate and to expedite this process,
we employ a quasi-Newton (QN) acceleration scheme (Zhou et al., 2011). The QN acceleration
scheme combines multiple EM updates into a larger jump in parameter space at the expense
of an increased computational cost per iteration. More details on the acceleration scheme can
be found in the supplementary material and Algorithm S1. The convergence criteria of the EM
algorithm is defined by the difference in log-likelihood between two successive iterations:
(4) L(Q(t+1),P(t+1))− L(Q(t),P(t)) < ϵ ,

with ϵ being a user-defined threshold.
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SVD initialization
Multiple approaches for inferring population structure are connected under the umbrella

of matrix factorization, each incorporating different conditions and constraints (Engelhardt and
Stephens, 2010). Therefore, we leverage the efficiency and speed of likelihood-free approaches
to provide a better initialization of Q and P to aid the convergence rate of the EM algorithm in
comparison to a standard random initialization.

We initialize Q and P using individual allele frequencies estimated from randomized singular
value decomposition (SVD) performed on the genotype matrix, combined with an alternating
least squares (ALS) approach. SVD is a widely used dimensionality reduction approach in pop-
ulation genetics, which infers continuous structure by extracting axes of genetic variation. The
randomized SVD is defined as GC ≈ U[1:D]S[1:D]V

T
[1:D], which extracts the top D singular values

and singular vectors, withGC being the centered genotypematrix. The individual allele frequency
of individual i at variant j is then approximated using the SVD as ĥij = fj+

1
2

∑D
d=1 uidsdvjd , where

fj is the minor allele frequency of variant j . We use D = K − 1, as the top K − 1 singular vec-
tors will capture the population structure of K distinct populations (Patterson et al., 2006). By
initializing P randomly, we can then factorize the individual allele frequency matrix, Ĥ, using an
ALS approach to iteratively estimate both Q and P, which minimizes the following least square
objective:
(5) min

Q,P
∥Ĥ−QPT∥2F ,

where ∥.∥F is the Frobenius norm. The concept is similar to ALStructure (Cabreros and Storey,
2019) and SCOPE (Chiu et al., 2022), which instead rely on latent subspace estimation for ap-
proximating the individual allele frequencies. The convergence criteria of the ALS approach is
defined by the root mean square error (RMSE) ofQmatrices between two successive iterations:
(6)

√√√√ 1

NK

N∑

i=1

K∑

k=1

(
q
(t+1)
ik − q

(t)
ik

)2
< δ ,

with δ being a user-defined threshold. The initialization ofQ andP is fully described in Algorithm
1.
Algorithm 1 fastmixture initialization
Given: G, f , D , K
1: GC ← center(G, f) ▷ Centered genotype matrix
2: U[1:D], S[1:D], V[1:D] ← randomizedSVD(GC , D) ▷ Randomized SVD
3: Ĥ = 1

2U[1:D]S[1:D]V
T
[1:D] + f ▷ Individual allele frequencies based on SVD

4: P ∈ [0, 1]M×K initialized randomly
5: while not converged do ▷ Alternating least squares for solving equation 5
6: Q← ĤP(PTP)−1

7: P← ĤTQ(QTQ)−1

8: if rmse(Q,Qprev ) < δ then ▷ Convergence criteria for ALS
9: break
10: end if
11: Qprev ← Q

12: end while
Return: Q, P
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Mini-batch optimization
To further accelerate the convergence rate of the EM algorithm, we introduce simple mini-

batch updates inspired by stochastic gradient descent and stochastic EM algorithms (Ruder,
2016). In each iteration, we randomly split theM variants into B batches, and perform QN accel-
erated EM updates sequentially in each of the B batches. The strategy of sub-sampling variants
was also explored in TeraStructure (Gopalan et al., 2016). This results in the entries ofQ being
updated B times across the batches, while the entries of P are still only updated once per cy-
cle. Following the mini-batch updates, full QN accelerated EM updates are applied to stabilize
the parameters in every iteration. Given the stochastic nature of our mini-batch updates, we
halve the number of batches B every time the log-likelihood estimate (Equation 1) fluctuates
between iterations. The algorithm will therefore gradually converge towards a standard QN ac-
celerated algorithm forB → 1. Our proposedmini-batch setting resembles a mini-batch gradient
descent approach, where the batch size is increased over time. For a detailed description of the
fastmixture method, please refer to Algorithm 2.
Algorithm 2 fastmixture estimation
Given: G, f , K , B
1: Q, P← initialization(G, f , K ) ▷ Algorithm 1: SVD initialization
2: Lprev ← L(Q,P) ▷ Log-likelihood (Equation 1)
3: while not converged do
4: Randomly splitM variants into B batches
5: for b = 1, ... ,B do
6: Q,P[b] ← QN(G[b],Q,P[b]) ▷ Mini-batch updates (Algorithm S1)
7: end for
8: Q,P← QN(G,Q,P) ▷ Full updates (Algorithm S1)
9: if L(Q,P) < Lprev then
10: B = B/2 ▷ Halve the number of batches
11: end if
12: if B = 1 and L(Q,P)− Lprev < ϵ then ▷ Convergence criteria for EM
13: break
14: end if
15: Lprev ← L(Q,P)

16: end while
Return: Q, P

Implementation details
The fastmixture software is implemented as a multithreaded command-line tool written in

Python and Cython, which takes binary PLINK (Chang et al., 2015) files as input. It utilizes the
NumPy library (Harris et al., 2020) for efficient array manipulation. We assume that the user has
performed standard quality control and preprocessing, (e.g., variant filtering based on a minor
allele frequency threshold and to only include unrelated samples). The genotype matrix is stored
in an 8-bit integer format. For Algorithm 1, we read the centered genotypes in chunks to reduce
the memory consumption and perform randomized SVD as introduced in PCAone (Li et al., 2023).
This approach minimizes the memory footprint of fastmixture, which is primarily dominated by
the genotype matrices of MN + 8CN bytes, with C being the chunk size of variants used in the
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randomized SVD. This allows our method to handle large-scale datasets effectively. The individ-
ual allele frequency matrix obtained in the randomized SVD, Ĥ, is computed implicitly through
the singular matrices in the ALS approach to further reduce the memory footprint. Throughout
the study, we use a starting point of B = 32 mini-batches to speed up the convergence of the
EM algorithm, which works well across all the tested scenarios. We set the convergence criteria
of the ALS approach and the EM algorithm to δ = 1.0 × 10−4 and ϵ = 0.5, respectively. Given
the computational expense of the log-likelihood estimation step (Equation 1), which requires a
full pass over the data, we only evaluate it every fifth iteration along with convergence checks
to reduce the number of computations. If the entries of Q and P are out of domain during the
ALS or accelerated EM updates, we simply map them back to their domain through truncation
and projection procedures.
Simulations

We simulate genotypes using the msprime (Baumdicker et al., 2022) backwards-in-time coa-
lescent model and infer true ancestral tracts using tspop (Tsambos et al., 2023). To evaluate the
capabilities of fastmixture, we assume different demographic models in four different scenar-
ios, all featuring a single or multiple admixture events where the true ancestry proportions are
known. In each scenario, we simulate a genetic segment of 250 Mb using a constant recombi-
nation rate of 1.28 × 10−8 (The International HapMap Consortium, 2007) and a mutation rate
of 2.36 × 10−8 (Gravel et al., 2011). We visualize the different demographic models in Figure
1A, S1A, S2A, and S3A. A census event precedes the first admixture event in all simulations to
track the true ancestry of the inherited segments in the sampled individuals. The lengths of the
segments each individual has inherited from each source population are then aggregated to esti-
mate the ground truth ancestry proportions using tspop. Scenarios A, B, and C are constructed
from simple demographic models, where we assume a constant population size of 10,000 for
all simulated populations, while Scenario D extends the out-of-Africa model (Gravel et al., 2011)
with an additional admixture event (American-Admixture) (Browning et al., 2018). In Scenario A,
B, and D, we sample 1,000 individuals, while in the more complex Scenario C, we sample 1,600
individuals. We perform standard filtering on minor allele frequencies at a threshold of 0.05,
resulting in datasets consisting of 689,563 SNPs, 687,107 SNPs, 685,592 SNPs, and 500,114
SNPs for Scenario A, B, C, and D, respectively. An overview of the simulated datasets is provided
in the supplementary material.
1000 Genomes Project

We also evaluate our fastmixture software in the phase 3 release of the 1000 Genomes
Project (1KGP) (The 1000 Genomes Project Consortium, 2015). The dataset consists of geno-
type data of 2,504 individuals from 26 populations across the world, assigned to five super-
populations: AFR (African ancestry), AMR (American ancestry), EAS (East Asian ancestry), EUR
(European ancestry), SAS (South Asian ancestry). We keep diallelic SNPs with a minor allele fre-
quency greater than the standard threshold of 0.05, resulting in a total of 6,864,700 SNPs. Due
to computational complexity and runtime considerations for comparative analyses, we also con-
struct a downsampled dataset, which we refer to as “1KGP Down". This dataset is obtained by
random downsampling or thinning the number of SNPs from the full dataset by a factor of ten,
such that the downsampled dataset consists of 686,470 SNPs.
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A.

B.

POP1 POP2 POP3 POP5POP4 ADMIX1 ADMIX2 ADMIX3

Figure 1 – A. Demographic model of Scenario C with 200 individuals sampled from eachof the eight populations. B. Admixture plots of the ancestry proportions in the simulatedindividuals for K = 5with the ground truth at the top followed by the different softwareusing their run with the highest log-likelihood.
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Results
We evaluate and compare the performance of fastmixture (v0.93) against widely used soft-

ware for estimating ancestry proportions: ADMIXTURE (v1.3.0) (Alexander et al., 2009), Neural
ADMIXTURE (v1.4.1) (Dominguez Mantes et al., 2023) and SCOPE (Chiu et al., 2022). All soft-
ware are executed with their default parameters. ADMIXTURE and Neural ADMIXTURE are model-
based approaches, like ours. ADMIXTURE maximizes the likelihood model using a block relax-
ationmethod combinedwith a similar quasi-Newton acceleration scheme to fastmixture, while
Neural ADMIXTURE employs a neural network autoencoder approach. On the other hand, SCOPE
is a likelihood-free approach that estimates the ancestry proportions and ancestral allele frequen-
cies using an ALS method, differing from the maximum likelihood approaches of the other tools.
In our simulation study, we assess these tools based on the root mean square error (RMSE) (Table
1) and the Jenson-Shannon divergence (JSD) (Table S2) between the estimated ancestry propor-
tions and the ground truth ancestry proportions. We also report the log-likelihood estimates
(Equation 1) (Table S3) for both the simulated and the empirical datasets of the 1000 Genomes
Project. The different measures of assessment in the simulation study are further detailed in the
supplementary material.

Additionally, we compare the computational runtimes of fastmixture to the three other
software (Figure 3 and Table S1). Notably, ADMIXTURE exhibits significant scalability issues, being
approximately 30 times slower than fastmixture across all evaluated datasets. For instance,
ADMIXTURE needs more than 40 hours to complete a single run for K = 5 on the full 1KGP
dataset. In contrast, fastmixture has comparable runtimes to the two other faster approaches in
the simulation study. SCOPE is the fastest of all evaluated approaches, showcasing the appealing
choice of optimizing the least square objective, a step also used for parameter initialization in
fastmixture.
Ancestry estimation in simulation studies

Under the simple demographic model of Scenario A (Figure S1), ADMIXTURE and fastmixture
were the two most accurate software followed by SCOPE. When only considering the scalable
methods, fastmixture clearly outperformed SCOPE in terms of RMSE (Table 1) and JSD (Table
S2), where SCOPE appeared to produce highly noisy ancestry proportions in individuals of the
unadmixed populations. On all accounts, Neural ADMIXTURE severely underperformed in esti-
mating the ancestry proportions of the admixed individuals. Notably when admixture was intro-
duced from more than three sources, as in Scenario B (Figure S2), Neural ADMIXTURE failed to
detect POP4 as a separate population from POP3 and modeled the ADMIX population incor-
rectly as a separate unadmixed population. For Scenario B, both ADMIXTURE and fastmixture
were again more accurate than SCOPE, while fastmixture was ∼34× faster than ADMIXTURE
(Figure 3 and Table S1). The noise introduced by SCOPE only increased for K = 4 in comparison
to K = 3 in the simpler Scenario A.

We further evaluated the different software in a more complex simulation scenario, Scenario
C, which includes five ancestral sources (K = 5) with symmetric migration patterns and three
admixed populations (Figure 1). Consistent with results from the simpler scenarios, fastmixture
and ADMIXTURE outperformed the two other approaches, with fastmixture being ∼28× faster
than ADMIXTURE. Due to the increased complexity of the simulation scenario, SCOPE exhibited
an even greater increase of noise in its ancestry estimates, while Neural ADMIXTURE again failed
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Table 1 – Root mean square error (RMSE) measures for estimated ancestry proportionsin the four different simulation scenarios for the evaluated methods against the groundtruth. The mean across five different runs is reported with the corresponding standarddeviation in parenthesis.
Scenario fastmixture Neural ADMIXTURE ADMIXTURE SCOPEA 0.0364 (1.0e-4) 0.1289 (0.0200) 0.0367 (3.1e-7) 0.0677 (7.8e-5)B 0.0278 (4.5e-5) 0.3690 (0.0022) 0.0279 (2.2e-7) 0.0661 (8.2e-5)C 0.0255 (8.7e-6) 0.3094 (0.0044) 0.0256 (1.9e-7) 0.0658 (3.2e-5)D 0.0085 (4.3e-7) 0.1010 (0.0372) 0.0085 (4.5e-8) 0.0186 (3.3e-6)

to detect one of the unadmixed population sources and modeled two admixed populations as
ancestral sources. Examining the accuracy of the ancestry estimates in each of the eight popula-
tions, we observed that fastmixture and ADMIXTURE performed similarly across the unadmixed
and admixed populations, whereas SCOPE inferred more accurate ancestry estimates in the ad-
mixed populations in comparison to the unadmixed populations (Table S4 and S5).

Using the American-Admixture demographic model in Scenario D (Figure S3), we still consis-
tently observed that ADMIXTURE and fastmixture perform similarly in terms of accuracy and log-
likelihood, outputting results closest to the ground truth (Table 1 and Table S2), with fastmixture
being ∼28× faster than ADMIXTURE. While across all scenarios SCOPE exhibited the fastest run-
times, it also consistently underperformed in accuracy as measured with RMSE and JSD, how-
ever, markedly better than Neural ADMIXTURE.
Testing hyperparameters. The number of initial batches in fastmixture, used for its mini-batch
optimization, is a hyperparameter. We tested the effect of changing the number of mini-batches
in the more complex simulation scenario, Scenario C, having multiple admixture events and five
source populations. We utilized B = {8, 16, 32, 64, 128}, including the default choice of B = 32,
and reported the computational runtimes, log-likelihoods, RMSE, and JSDmeasures. Our results
showed that fastmixture was robust to changes in B , as all evaluated choices consistently
captured the same solutions with highly comparable assessment measures (Figure S4 and Table
S6). Based on these findings, we conclude that B = 32 was an optimal choice, balancing both
fast runtimes and highly accurate ancestry estimations.

We further evaluated the effectiveness of our SVD initialization by comparing it to random
parameter initialization inside the fastmixture framework for Scenario C. We reported compu-
tational runtimes, log-likelihoods, RMSE, and JSD measures in Table S7, where the two initializa-
tions performed similarly but the SVD initialization approximately halves the runtime on average
in comparison to having a random initialization. Therefore, our observed runtime gains relative
to ADMIXTURE could largely be attributed to our proposed mini-batch optimization.
Robustness to model misspecification. For most scenarios in ancestry estimation, the true num-
ber of ancestral sources is rarely known. We, therefore, tested and compared all software and
their capabilities to deal with model misspecifications related to the number of ancestral sources
used for Scenario C, which had a ground truth of K = 5. Here we would expect the ancestry
estimations to capture older events in the demographic model for K < 5. The results comparing
the software for K = {2, 3, 4} are displayed in Figures S6, S7 and S8, respectively, and their
corresponding log-likelihoods are reported in Table S8. We note that ADMIXTURE only found the
optimal solution in four out of five runs, thus showcasing its vulnerabilities due to random pa-
rameter initialization and a standard optimization approach. Due to the increased complexity
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AFR EUR EAS AMR SAS

Figure 2 – Admixture plots of the estimated ancestry proportions for K = 5 in the fullversion of the 1000 Genomes Project dataset (1KGP) by the different software usingtheir run with the highest log-likelihood. AFR: African, EUR: European, EAS: East Asian,AMR: American, and SAS: South Asian ancestry.
of the simulation scenario, SCOPE exhibited an even further increased noise level in its ancestry
estimates across all three values of K .
Ancestry estimation in the 1000 Genomes Project

In addition to our simulation study, we also applied fastmixture to empirical data of the
1000 Genomes Project (1KGP), using both a downsampled version and the full set of variants.
Specifically, the downsampled version was the only way to properly assess the performance of
ADMIXTURE over multiple runs due to scalability issues (Figure S9). Here we observed, as in the
simulation study, that fastmixture and ADMIXTURE performed comparably and the twomethods
achieved the highest log-likelihoods, followed by SCOPE and then Neural ADMIXTURE (Table S3),
even though Neural ADMIXTURE maximizes the log-likelihood in its optimization approach.

For the full 1KGP dataset, we only performed a single run for ADMIXTURE due to its excessive
computational runtime of > 40 hours, in comparison to the other software with runtimes of
< 2 hours (Figure 3 and Table S1). Here fastmixture was ∼30× faster on average than the
ADMIXTURE run. We demonstrated again that fastmixture was the best performing method in
terms of achieving the highest log-likelihood (Figure 2). Strikingly, Neural ADMIXTURE failed to
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Figure 3–Runtime (inminutes) for the different softwaremeasured across five runs in thefour simulated scenarios (A, B, C, and D), and in the two 1000 Genomes Project datasets:one including all individuals (1KGP), and the downsampled dataset (1KGP Down). Theintervals display the full range of runtimes across the six runs. On the left, a zoomed-inversion highlights the runtime differences between the software with more similar times.The results are also described in Table S1. All analyses have been performed on a clusterwith an Intel(R) Xeon(R) Gold 6152 CPU using 64 threads.
accurately distinguish ancestral contributions in the AMR and SAS super-populations in both
the full dataset and in 1KGP Down. Moreover, we saw a correlation of r2 = 0.72 between the
estimated ancestry proportions in the downsampled and the full dataset for Neural ADMIXTURE,
indicating poor robustness. This is in strong contrast to fastmixture, ADMIXTURE and SCOPE
where the results between the full dataset and the downsampled one were highly correlated
(r2 ≈ 1). We observed the same pattern of increased noise in the estimated ancestry proportions
of the unadmixed individuals from SCOPE, which was consistent across the two 1KGP datasets.

Discussion
We have presented, fastmixture, our novel method and software for ancestry estimation in

genotype data using our extended model-based approach. We demonstrate that our approach
performs comparably to ADMIXTURE while being ∼30× faster on average across all evaluated
datasets. Among the four methods assessed, ADMIXTURE and fastmixture stand out as the most
accurate approaches as shown in our simulation study. In general, fastmixture estimates fast
and accurate solutions that are robust to changes in model parameters and hyperparameters,
such as initialization and number of initial mini-batches, which can be attributed to both its SVD
initialization and acceleratedmini-batch optimization procedure. It is well known that ADMIXTURE
has scalability issues for large sample sizes and whole-genome sequencing data, which we also
demonstrate using the 1KGP datasets. The results of ADMIXTURE are only based on a single seed
in the full 1KGP SNP set due to a prohibitively excessive computational runtime of more than
40 hours, in contrast to ∼74 minutes using fastmixture. We have therefore evaluated all soft-
ware on a downsampled version as well, with 10× less SNPs, which is a common procedure in
population genetic studies.
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fastmixture has runtimes comparable to the recently introduced Neural ADMIXTURE soft-
ware, which employs an autoencoder framework for speeding up the ancestry estimation. Note
that the testing of the software has exclusively been conducted in a CPU-based setup. However,
Neural ADMIXTURE struggles across all evaluated datasets and consistently performs the poor-
est among the evaluated methods, as it can only manage to model unadmixed populations in
simpler demographic models. In Scenario B and C, Neural ADMIXTURE fails to detect unadmixed
populations and models admixed populations incorrectly as ancestral sources. SCOPE emerges as
the fastest approach across all evaluated datasets, demonstrating excellent scalability. However,
its optimization of a simpler least squares objective compromises its ability to accurately esti-
mate ancestry proportions, where it can be difficult to distinguish real admixture signals from
noise.

When optimizing a different objective, it is expected that the log-likelihood estimates for
SCOPE would be lower compared to model-based approaches. However, based on the RMSE
and JSD measures against the ground truth in the simulation study, our results showcase that
the least square objective used in likelihood-free approaches, such as SCOPE, is not an optimal
choice in comparison to the likelihood model. Our findings suggest that the added noise in the
ancestry proportions estimated in SCOPE are likely to increase further in scenarios with a larger
K or more complex demographic models, as demonstrated in Scenario C. This limits the utility of
SCOPE in association studies and precision medicine. Furthermore, we observed a general trend
of major optimization issues for the Neural ADMIXTURE software across all evaluated scenarios.
A critical issue appears to be in their convergence evaluation, where log-likelihood estimates are
normalized across individuals and variants in their mini-batch training setup, causing premature
convergence. This premature convergence negatively impacts their performance, despite Neural
ADMIXTURE erroneously reporting faster runtimes than it would achieve at optimal solutions.

While our fastmixture software does not entirely solve the scalability issues ofmodel-based
approaches, it represents a significant step by enabling researchers to estimate accurate ancestry
proportions for much larger sample sizes and whole-genome sequencing data. It will also facili-
tate a more feasible exploration of increased numbers of ancestral sources. We anticipate that
fastmixture will be the preferred alternative to ADMIXTURE in future population genetic studies,
and it will also allow researchers to correct for population structure in genome-wide association
studies of moderate sample sizes, leveraging our accurate estimates of ancestry proportions.
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