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Abstract
Many traits show plastic phenotypic variation across environments, captured by theirnorms of reaction. These reaction normsmay be discrete or continuous, and can substan-tially vary in shape across organisms and traits, making it difficult to compare amountsand types of plasticity among (or even within) studies. In addition, the evolutionary po-tential of phenotypic traits and their plasticity in heterogeneous environments criticallydepends on how reaction norms vary genetically, but there is no consensus on how thisshould be quantified. Here, we propose a partitioning of phenotypic variance acrossgenotypes and environments that jointly address these challenges. We start by distin-guishing the components of phenotypic variance arising from the average reaction normacross genotypes, genetic variation in reaction norms (with additive and non-additivecomponents), and a residual that cannot be predicted from the genotype and the en-vironment. We then further partition the genetic variance of the trait (additive or not)into an environment-blind component and a component arising from genetic variancein plasticity. We show that the additive components can be expressed, and further de-composed according to the relative contributions from each parameter, using what wedescribe as the reaction norm gradient. This allows for a very general framework ap-plicable from the character-state to curve-parameter approaches, including polynomialfunctions, or arbitrary non-linear models. To facilitate the use of this variance decom-position, we provide the Reacnorm R package, including a practical tutorial. Overall thetoolbox we develop should serve as a basis for a unifying and deeper understandingof the variation and genetics of reaction norms and plasticity, as well as more robustcomparative studies of plasticity across organisms and traits.
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Introduction
The phenotype of a given genotype can vary in response to its environment of developmentor expression, through a phenomenon broadly described as phenotypic plasticity (Bradshaw1965; Schlichting and Pigliucci 1998). Phenotypic plasticity is currently attracting considerableinterest in the context of rapidly changing natural environments (Chevin et al. 2010; Gienappet al. 2008; Merilä and Hendry 2014). While the mere existence (and even prevalence) of pheno-typic plasticity is uncontroversial, its relative contribution to observed or predicted phenotypicchange in the wild (Bonamour et al. 2019; Gienapp et al. 2008; Merilä and Hendry 2014; Teplit-sky et al. 2008), as well as the extent of its interplaywith population-level processes such as natu-ral selection and population dynamics (de Villemereuil et al. 2020; Reed et al. 2010; Schaum andCollins 2014; Vedder et al. 2013), are very active research areas. Answering these questions re-quires biologists to be able to dissect and compare phenotypic plasticity in detail in a wide rangeof traits, environmental contexts and species. This requires a methodology that is appropriatefor each context, while being general enough to be comparable across contexts.
The relationship between the phenotype and the environment is captured by the reactionnorm (or norm of reaction), which is defined at the level of genotypes (Schlichting and Pigliucci1998; Woltereck 1909). Reaction norms encompass phenotypic responses to both continuousenvironments (such as temperature, salinity, etc.) and categorical/discrete ones (such as hostplant for a phytophagous insect). Within a simple model of reaction norm, quantifying plasticitymay be straightforward. For instance, both empirical (Charmantier et al. 2008;Nussey et al. 2005)and theoretical (Gavrilets and Scheiner 1993a; Lande 2009) work have extensively relied onthe assumption of a linear reaction norm, whose slope is used as a metric of plasticity, since itquantifies how much phenotypic change is induced per unit environmental change. However,regression slopes are signed and have units of trait per environment, so even in this simple casesome standardisation is needed in order to compare the magnitude of plasticity among studies.Beyond this simple scenario, drawing robust conclusions about phenotypic plasticity requiresbeing able to quantify and compare its magnitude across organisms, traits and environments, ina way that is applicable across the statistical frameworks used to study plasticity.
Beyond how much phenotypes change with the environment, how they change can also beof importance. First, different reaction norm shapes may come with different biological inter-pretations. For instance, a bell-shaped (eg quadratic, Gaussian) reaction norm may indicate thatsome mechanism underlying a measured trait is maximized at an intermediate value of the envi-ronment. This is often expected for traits that are direct components of fitness, or that can beinterpreted as proxys for performance, for which the reaction norms are generally termed toler-ance or performance curves (Angilletta 2009; Deutsch et al. 2008; Lynch and Gabriel 1987). Asigmoid shape, on the other hand, may indicate that plasticity is directional but that the range ofpossible phenotypes is constrained, or that selection favors discrete-like variation (Chevin et al.2013; Hammill et al. 2008; Moczek and Emlen 1999; Suzuki and Nijhout 2006). Second, mosttheoretical models on the evolution of plasticity, especially those based on quantitative genet-ics which are most directly comparable to empirical data, assume a given reaction norm shape -often linear for simplicity (Lande 2009; Scheiner 1993b; Tufto 2000). The extent to which the-oretical predictions on the evolution of plasticity apply to any particular empirical system thusdepends on how well the reaction norm shape assumed in the models conforms to observationsin this system. In other words, we need some metric for whether a reaction norm is "mostly lin-ear"or "mostly curved", for instance. In addition, when fitting a particular model of reaction normshape to an empirical dataset, we would like to know how well this model captures the overallplastic variation of the trait across environments.
A third crucial question regarding reaction norms is how (and how much) they vary genet-ically. It has long been recognized that plasticity can evolve if reaction norms vary genetically(Bradshaw 1965), and theory has predicted how different aspects of reaction norm shape are ex-pected to respond to selection in a variable environment (de Jong 1990; Gavrilets and Scheiner1993a; Gomulkiewicz and Kirkpatrick 1992). However this theory has been little applied empir-ically, except for predictions about the slope of linear reaction norms (or phenotypic differences
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between two environments). But beyond this, it should also be of interest to identify which as-pects of reaction norm shape are more likely to evolve, based on how they vary genetically. Forinstance, a reaction norm may be highly curved (e.g. quadratic) but have little genetic variabilityin curvature, instead mostly varying in position, height, or local slope. Distinguishing betweenthe genetic variance of the trait, marginalised across environments, and the genetic variance ofplasticity itself, can also be a conceptual and methodological challenge. There is thus a need tocompare genetic variation in different components of reaction norm, but previous attempts todo so (in a meta-analysis) were limited by methodological obstacles (Murren et al. 2014, see theAppendix). In fact, comparing genetic variation in the slope versus curvature of a reaction norm,for instance, is not straightforward, as these parameters have different scales and even units(trait per environment, vs trait per squared environment). Moreover, even the notion of averageslope and curvature can have different meanings depending on the assumed distribution for theenvironment. Genetic variation in reaction reaction norm shape can be analyzed by estimatingvariation in the parameters of a continuous function of the environment, as done by the flex-ible framework of function-valued traits (Gomulkiewicz and Kirkpatrick 1992; Kirkpatrick andHeckman 1989; Stinchcombe et al. 2012). In addition, it would be useful to be able to comparethe relative contributions of variation in different aspects of reaction norm shape to the overallvariance arising from plasticity of a trait.We herein propose a theoretically justified and generally applicable framework to estimateand partition the phenotypic variance of reaction norms, towards three main goals: (i) quantifythe contribution of plasticity to the total phenotypic variance in reaction norms; (ii) evaluate thecontribution of different aspects of reaction norm shape, and of the full assumed reaction normmodel, to overall plastic phenotypic variation; and (iii) quantify heritable variation in the traitand its plastic component, due to the different aspects of the reaction norm. We provide thisframework as a new R package Reacnorm, including a tutorial to guide users in applying it. Ourhope is that this will stimulate more quantitative investigations of the ways in which phenotypicplasticity contributes to phenotypic variation and evolutionary change.
Reaction norm models

In the broadest sense, a reaction norm is a decomposition of phenotypic variation amongknown (often controlled) versus unknown sources of environmental variation. In this sense, wecan start by decomposing the phenotypic trait z into two components:
(1) z = ẑ + z̃.

The first term ẑ is the reaction norm, that is, the component of phenotypic variation that canbe predicted (hence the hat notation) from knowing both the genotype (which we will note gthroughout) of an individual and the environment (which we will note ε throughout) in which itdeveloped. Note that by “environment”, we mean either an experimentally controlled environ-mental variable, or a focal variable (e.g. temperature) within a naturally occurring environmentalcontext. The second term z̃ is the component of the measured phenotype that cannot be pre-dicted from genotype and environment, and arises from unknown environmental factors (usuallydescribed as micro-environmental variation), developmental noise, and measurement error.Types of reaction norms ẑ can be further categorised according to the type of environmentalvariation. The environment may be inherently categorical and unordered, such as host plant fora herbivore insect. It may be ordered but with no (or unknown) quantitative value, such as low,medium, and high treatments. Or it may be ordered quantitatively, with values that are eitherintrinsically discrete, such as habitat quality, or continuous, such as temperature or salinity.When environments are categorical, the reaction norm can be studied by treating phenotypicvalues in different environments as alternative ’character states’, considered as different traits ina multivariate framework (Falconer 1952; Via and Lande 1985). The mean character state maydiffer among environments if the trait is plastic; phenotypic and genetic variation may be largerin some environments; and phenotypes may bemore or less correlated across environments (Fal-coner 1952; Via and Lande 1985). Such amodelling framework is readily described by Equation 1for a genotype g and environment εk (where the index k is used to reflect the discrete aspect
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Table 1 – List of the main notations, as well as their source of variation. We here distin-guish the “focal” environment, which only concerns the environmental variable used toparametrise the reaction norm, from other putative sources of environmental variationthat may influence the phenotypic trait (sometimes described as micro-environmentalvariation). “Everything” in the table thus includes all (focal and other) sources of environ-mental and genetic variation, developmental noise and measurement error.
Notation Explanation Varies over

z Phenotypic value for the trait Everything
ẑ Phenotype as predicted from the environment and the geno-type Focalenvironment,genotypes
ε Environmental variable —
µ Vector of the average value of the phenotypic in each envi-ronment Focalenvironment

Gz Additive genetic variance-covariance matrix of trait valuesacross environments (character states) —
θg Vector of parameter values of the reaction norm for geno-type g Genotypes
θ̄ Vector of mean values of the reaction parameters over thegenotypes —

Gθ Additive genetic variance-covariance matrix of the reactionnorm parameters —
ψε Reaction norm gradient, the vector of partial derivatives ofthe phenotype z against reaction norm parameters θg , aver-aged over the genotypes at environment ε

Focalenvironment
Ψ Variance-covariance matrix of ψε across environments —
VP Total phenotypic variance in the trait z —

VRes Residual variance, not explained by the reaction norm —
VPlas, P 2

RN Phenotypic variance arising from changes in the mean reac-tion norm across environments; divided by VP for P 2
RN

—
VGen, H2

RN Total genetic variance in the trait across environments; di-vided by VP for H2
RN

—
VAdd, h2

RN Total additive genetic variance in the trait across environ-ments; divided by VP for h2
RN

—
VA, h2 Environment-blind additive genetic variance of the trait, i.e.based on the mean breeding values across environments, di-vided by VP for h2

—

VA×E, h2
I Additive genetic variance arising from plasticity, i.e varianceof the mean-centred breeding values, divided by VP for h2

I

—
πSl, πCv Proportion of VPlas explained by the average slope (πSl) orcurvature (πCv) of the average reaction norm —
φi, φij Proportion of VPlas explained by parameter i, or by covari-ation between parameter i and j for a polynomial reactionnorm

—

γi, γij Proportion of VAdd explained by the additive genetic(co)variation in parameter i (and j) —
ιi, ιij Proportion of VA×E explained by the additive genetic(co)variation in parameter i (and j) —

of the environmental variable). In practice, such an approach would correspond to an ANOVA(or a mixed model) with discrete environment and genotype-within-environment as (random)
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effects of the model. In its most compact form, such a statistical model can be framed as a mul-tivariate Gaussian distribution, with the number of dimensions corresponding to the number ofcategories in the environment,
(2) ẑ ∼ N (µ,Gz) ,
where µ is the vector of expected phenotypic values (across genotypes) within each environ-ment, and Gz is the genetic variance-covariance matrix of trait values within and across environ-ments.For quantitative environments (both discrete and continuous), the most common approachis to model the reaction norm as a function of environment and genotype:
(3) ẑ = f(ε,θg),
where ε is the environmental value, and θg is a vector that contains the parameters of the func-tion (e.g. coefficients associated to each exponent for a polynomial) for each genotype g; theseparameters are thus genetically variable. The parameters θg are generally assumed to be poly-genic and thus follow a multivariate Gaussian distribution,
(4) θg ∼ N (θ̄,Gθ),

where θ̄ is the vector of average parameter values across genotypes and Gθ is the additivegenetic variance-covariance matrix of the parameters θg . This approach has been described al-ternatively as the “reaction norm” approach, the “polynomial approach”, or a parametric versionof function-valued traits. To keep it general here and avoid confusion with the general conceptof reaction norm as defined in Equation 1 (which applies even to categorical environments), wewill describe it as the “curve-parameter” approach. Note that Equation 4 assumes that the onlysource of variation in reaction norm parameters θ is genetic. In cases where reaction norms canbe measured in individuals using repeated measurements across environments (individual plas-ticity sensuNussey et al. 2007) it can be necessary, or useful, to include other sources of variationin θ, including confounding environmental effects, or permanent environmental effects. For thesake of simplicity, we will assume throughout that all variation in θ is genetic, but we show insubsection C5 that relaxing this assumption only affects how non-genetic variances are com-puted.It can be shown that the character-state and curve-parameter approaches are equivalent,following the spirit of de Jong (1995), who showed that a polynomial curve of sufficient order isexactly equivalent to a character-state model. In particular, the character-state in Equation 2 canbe expressed using Equation 3 and Equation 4 by letting θ̄ = µ, Gθ = Gz and f a function thatoutputs the kth value of θg when evaluated at εk environment (see Appendix A). In the following,we will derive general results using the more general formalism of Equation 3 and Equation 4,and then express them for the particular case of the character-state approach when relevant.
Partitioning variation in reaction norms

Complete partition of the variation in reaction norms
The total phenotypic variance in the reaction norm can be partitioned by isolating indepen-dent components of variation. The main reasoning will be summarised here, with more mathe-matical details provided in the Appendix A to Appendix D. For a start, the terms in Equation 1are assumed to be independent, such that the total phenotypic variance V(z) (usually noted VP)is the sum of the variance predicted by the genotype and the environment V(ẑ), plus a residualcomponent of variance V(z̃i), which we will note VRes. Then, a second distinction can be madebetween the general, average shape of the reaction norm, and the genotype-specific variationsurrounding such an average, as illustrated in Figure 1 using a quadratic reaction norm. The com-ponent of phenotypic variance arising from plastic responses to the environment by the meanreaction norm, i.e. after averaging across all genotypes (Figure 1), will be denoted VPlas. This vari-ance can be considered as fully ascribed to the environmental component of phenotypic vari-ation. The component of phenotypic variation attributable to genetic variation in the reaction
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norm Figure 1 will be denoted VGen. As these two components are independent by construc-tion, denoting as Eg|ε(ẑ) the expected value of the reaction norm across genotypes at a givenenvironmental value ε, we have
(5) V(ẑ) = V

(
Eg|ε(ẑ)

)
+ V

(
ẑ − Eg|ε(ẑ)

)
= VPlas + VGen,

such that
(6) VP = VPlas + VGen + VRes.

Compared to the classical equation VP = VG + VE + VG×E (Des Marais et al. 2013; Falconerand Mackay 1996; Lynch and Walsh 1998), the correspondence is that VE = VPlas + VRes and
VGen = VG+VG×E. Also note that both decompositionsmake the same common assumption thatgenotypes and environments are not correlated. We have thus decomposed the environmentalvariance into a component due to phenotypic plasticity in response to ε (VPlas) on the one hand,and any other residual source of phenotypic variation (VRes) on the other hand, as commonlydone in theory (Gavrilets and Scheiner 1993a; Via and Lande 1985) as well as in practice.
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Figure 1 – Illustration of the full variance decomposition using quadratic reaction norms.We start from the reaction norms (left graph, grey lines, the residual variance is not il-lustrated) and compute their average shape across all genotypes (left graph, red line).The phenotypic variance arising from this average shape is VPlas. Centering the reactionnorms along this average shape directly yields the distribution of the breeding valuesalong environments (middle graph, purple lines), because in this quadratic case, the non-additive genetic variance is VNonAdd = 0. The total variance of the breeding values alongthe environment is VAdd. The classical, environment-blind additive genetic variance VAis the variance of the breeding values averaged across environments for each genotype(middle graph, green dots). The VA×E is the variance of the reminder of the breeding val-ues after mean-centring (right graph, blue lines).
The genotypic variance VGen accounts for all sources of genetic variation, including the geno-type-by-environment interaction. Note that this contrasts with a view where the genotype-by-environment interaction is instead associated with the environmental component, e.g. as plasticvariance (Falconer and Mackay 1996; Lynch and Walsh 1998; Scheiner 1993a; Scheiner and Ly-man 1989). As seen above, VGen can be decomposed into the genetic variance of the trait, mea-sured using its average genotypic value across environments (VG), and the variance arising fromgenotype-by-environment interaction (VG×E). Here, we will apply such decomposition at thelevel of the additive genetic variance (VAdd), relegating all the non-additive parts of VG and VG×Einto a common VNonAdd component (Figure 1), arising from dominance and epistasis (Falconerand Mackay 1996; Lynch and Walsh 1998). Usually, models like Equation 2 or Equation 4 aredefined using additive genetic variance-covariance matrices for their basic parameters, meaningthat VAdd can be directly estimated from the models. As such, we will discard explicit inclusion ofdominance or epistasis variance components in a theoretical or statistical model throughout, for
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the sake of simplicity. However, non-additive genetic variance can still arise from non-linearityin the (assumed) developmental system (de Villemereuil 2018; de Villemereuil et al. 2016; Mor-rissey 2015; Rice 2004), meaning that non-additive variance can be generated by the reactionnorm itself. Looking at Equation 3 and Equation 4, the ultimate source of any additive geneticvariation in the trait z comes from the additive genetic variation in the parameters θ. As a re-sult, non-additivity in the trait arises when the function f(ε,θ) in Equation 3 is non-linear withregard to θ, a situation we will refer to as “non-linearity in the parameters”. Importantly, thismeans that polynomial (e.g. quadratic) functions, which are linear in their parameters, are suchthat VNonAdd = 0 and VGen = VAdd.When studying the evolution of plasticity, it proves useful to further decompose VAdd intotwo components. The first is the environment-blind additive genetic variance of the trait, arisingfrom differences in average breeding values between genotypes, and typically equal to the clas-sical VA. In other words, VA is the variance of the breeding values after averaging them acrossenvironments (Figure 1), as would be obtained if the genotype-by-environment interaction wasignored altogether. For example, it would be the output of a simple animal model analysis ofrepeated measurements of a plastic trait in a wild population. The second component of VAddis the additive genetic variance arising from plasticity, which we will note VA×E (for additive ge-netic component due to genotype-by-environment interactions). VA×E is the remaining additivegenetic variance in the reaction norm after removing themean breeding value for each genotype(Figure 1). This definition is akin to the one used by Albecker et al. (2022), but here more directlyexpressed in terms of variance of breeding values, i.e. additive genetic variance. It measuresthe potential for evolution of plasticity in the trait. Notably, if VA×E = 0 but VAdd > 0, then theadditive genetic variation in the reaction norms is only due to average differences between geno-types, i.e. the reaction norms of different genotypes are parallel. The variances VA and VA×E areexactly equivalent to the classical decomposition using VG and VG×E, only applied to the herita-ble part of the genetic variance. We show below that it is possible to express VAdd, VA and VA×Ein a way that encompasses all approaches of reaction norm, from a character-state to a curvethat is non-linear in its parameters, by computing reaction norm gradients of the trait z withrespect to its reaction norm parameters θ, in line with previous theoretical results for the quan-titative genetics of non-linear developmental systems and non-Gaussian traits (de Villemereuilet al. 2016; Morrissey 2015),.The complete partition of the phenotypic variance is thus:
(7) VP = VPlas + VA + VA×E + VNonAdd + VRes.

From this, it is possible to derive unitless quantities of interest, for instance by standardising bythe phenotypic variance, which is more widely applicable and appropriate than mean-standard-isation in the context of reaction norms (Pélabon et al. 2020). In particular:
(8) P 2

RN = VPlas
VP

,

is the proportion of the phenotypic variance arising from average plastic responses to environ-ments (depending on the average reaction norm shape). Variance-standardised additive geneticvariances are heritabilities. In our case, we can use VAdd, VA or VA×E as the numerator, yieldingthe following relationship:
(9) h2

RN = VAdd
VP

= VA
VP

+ VA×E
VP

= h2 + h2
I .

In other words, the heritability of the trait when fully accounting for its reaction norm (h2
RN) isequal to the environment-blind heritability of the trait (h2, based on the breeding values aver-aged across environments) plus the heritability from plasticity (h2

I , based on the breeding valuesby environment interaction). If it is not possible tomeasure additive genetic variances due to limi-tations in the experimental design (e.g. when “genotypes” correspond to populations, accessionsor clones), it is possible to perform the same decomposition using “broad-sense heritabilities”,
(10) H2

RN = VGen
VP

= VG
VP

+ VG×E
VP

= H2 +H2
I .
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In all cases, the quantity:
(11) T 2

RN = VPlas + VGen
VP

= P 2
RN +H2

RN

would measure the proportion of the phenotypic variance explained by the (possibly plastic andgenetically variable) reaction norm, and thus our ability to predict the individual phenotype fromthe genotype and the environment. In a linear context with respect to the parameters, whenthe environment is considered a fixed quantity, the quantities P 2
RN and T 2

RN are analogous to the(resp. marginal and conditional) coefficient of determination of the reaction norm (Johnson 2014;Nakagawa and Schielzeth 2013), but their definition here is given beyond that simple context.Relaxing the assumption that the only source of variation in θ is of genetic origin (e.g. individualplasticity, Nussey et al. 2007), we show in subsection C5 that only the computation of VP and
T 2

RN are slightly affected.Importantly, so far we are not making any statement about the actual reaction norm shape:
P 2

RN captures the contribution of the average reaction norm regardless of its shape, and thebroad- or narrow-sense heritabilities the contribution of various aspects the genetic variationto the phenotypic variance. The contribution of detailed aspects of reaction norms shape tophenotypic variation are obtained by further partitioning VPlas and the additive genetic variances,as we do below.
Contributions of reaction norm shape and parameters to VPlas

As stated in Equation 5, the general definition of the variance arising from the average re-action norm is VPlas = V
(
Eg|ε(ẑ)

). Important simplifications arise in more particular cases. For
example, when the assumed curve is linear in its parameters, Eg|ε(ẑ) = f(ε, θ̄), where θ̄ is the av-erage value of the parameters across genotypes. In particular, in the case of a quadratic reactionnorm (Gavrilets and Scheiner 1993b; Morrissey and Liefting 2016; Scheiner 1993a):
(12) f(ε, θg) = (ā+ ag) + (b̄+ bg)ε+ (c̄+ cg)ε2,

where ā, b̄, c̄ are the average intercept, first- and second-order parameters of the model, and ag ,
bg and cg are genotype-specific deviation from these average values for the same parameters,we can express VPlas simply as:
(13) VPlas = b̄2V(ε) + c̄2V(ε2) + 2b̄c̄cov(ε, ε2).
If the environmental variable ε has been mean-centred and is symmetrical, then cov(ε, ε2) = 0and the third term vanishes. Finally, in the case of a character-state model, the average pheno-type in each environment εk is readily provided by the µk in Equation 2, so that VPlas = V(µ).Once VPlas is computed, its standardised version P 2

RN follows by dividing by the total phenotypicvariance.Pushing the analysis further, we aim to compute the contributions of different aspect ofreaction norm shape to the overall environmental plastic variance of the trait, notably the con-tribution of its slope and curvature, which we will denote as πSl and πCv, respectively. For this,at least one of two of the following assumptions must be valid: (i) ε follows a normal distribution,or (ii) the true reaction norm is quadratic. In all cases, it also require that the environmental vari-able has been mean-centered. A last requirement is for f to be at least twice differentiable withrespect to ε (which excludes e.g. the character-state approach). In this case, these terms simplydepend on the average first- and second-order derivative of Eg|ε(ẑ) and the variance of ε and ε2

(see subsection D1):

(14) πSl =
E
(dEg|ε

dε (ẑ)
)2

V(ε)
VPlas

, πCv =
1
4E
(

d2Eg|ε
dε2 (ẑ)

)2
V(ε2)

VPlas
.

An important point arising from Equation 14 is that the relative importance of variation in theslope and curvature components of reaction norm depend on variation in the environment, re-spectively V(ε) and V
(
ε2) (note that V

(
ε2) = 2V (ε)2 if the environment is normally distributed).
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Crucially, we chose to express this partitioning using the mean environment as the reference en-vironment (as commonly practiced, e.g. Morrissey and Liefting 2016), but any other choice ofa reference environment would result in a different π-partition, notably due to a non-null valuefor Cov(ε, ε2). Fortunately, neither VPlas nor P 2
RN are impacted by this choice in the referenceenvironment. Furthermore, if the reaction norm is linear in the parameters, the derivatives of

Eg|ε(ẑ) can be directly taken as the derivatives of f . In particular, for a quadratic reaction normas in Equation 12, for a mean-centred environment, those quantities simply are:
(15) πSl = b̄2V(ε)

VPlas
, πCv = c̄2V

(
ε2)

VPlas
,

consistent with the fact the first and second order coefficients of a quadratic polynomial cor-respond to its average slope and curvature, respectively. Only in this configuration do we have
πSl +πCv = 1. Unfortunately, this simple, geometric interpretation of the polynomial coefficientsis lost above the second-order case (see Appendix D).Figure 2 shows the values of πSl and πCv for various quadratic reaction norms, assuming εfollows either a normal or uniform distribution, with same mean 0 and variance 1. The valuesfor πSl and πCv translate well the perceived “trendiness” (for large πSl) or “curviness” (for large
πCv) of reaction norms, but they may also strongly depend on the statistical distribution of theenvironmental variable ε, as shown especially in the third example of Figure 2. In this example,the difference arises because the assumed environmental distributions have different kurtosis(the scaled fourth central moment, related to V (ε2) in Equation 15). Because V (ε2) is larger forthe Gaussian, this distribution leads to larger πCv than the uniform.
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𝜋Sl = 0.03, 𝜋Cv = 0.97Gauss.
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𝜋Sl = 0.33, 𝜋Cv = 0.67Gauss.

𝜋Sl = 0.56, 𝜋Cv = 0.44Unif.

Figure 2 – Computation of πSl = πb and πCv = πc, the relative contributions of linearand quadratic terms to phenotypic variation caused by the mean reaction norm, for dif-ferent shapes of reaction norms, and two distributions of the environmental variable ε: astandard Gaussian (of mean 0 and variance 1), and a uniform distribution between −
√

3and √
3 (of mean 0 and variance 1).

When it is not possible to assume that ε is normally distributed (because it is discrete, or ex-perimentally constrained) and a quadratic assumption is not a good fit to the reaction norm, it isalways possible to use a higher-order polynomial model to approximate the true reaction norm,in line with theoretical work by de Jong (1990, 1995) and Gavrilets and Scheiner (1993b). In thiscase, we can conduct an alternative decomposition based on the parameters of the polynomial(rather than themean slope and curvature of the function), using the fact that a polynomial curveis linear in its parameters. To distinguish this parameter-based decomposition from the specificdecomposition in terms of slope and curvature, we use a different notation. The relative contri-bution of a given exponent m in the polynomial to the variance caused by the mean plasticitybecomes (see subsection D2)
(16) φm = θ̄2

mV(εm)
VPlas

,
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and the contribution of the covariance between exponents l andm is
(17) φlm = 2θ̄lθ̄mCov(εl, εm)

VPlas
.

Note that even with a symmetrical and mean-centred environment, the covariance betweenhigher-order exponents will not be zero in general, contrary to ε and ε2 in the quadratic case.Using orthogonal polynomials would solve this issue of covariances, but at the cost of a morecomplex interpretation of the coefficients. More generally, this φ-decomposition only relies onthe assumption that the reaction norm is linear on its parameters, which includes polynomialsas a particularly useful special case. We summarise the requirements and applications for the π-and φ-decomposition depending on the context in Figure 3.
What is the type of
the environmental

variable?
Categorical
or Ordinal

Discrete
(e.g. controlled environment)

Is a quadratic
curve a good fit?

Continuous
(e.g. wild population)

Is the environment
normally

distributed?

No

Compute VPlas from
the character-state

Compute VPlas from the character-
state and use the φ-decomposition

on a polynomial curve

No
(Discrete)

Compute VPlas from a good
fit curve, optionnally use
the φ-decomposition

using a polynomial curve

No
(Continuous)

Compute VPlas from the
curve parameter and

use the π-decompositionYes

Yes

Figure 3 – Decision tree summarising our suggested workflow for the computation anddecomposition of VPlas, depending on the nature of the environmental variable, its nor-mality and the validity of a quadratic approximation of the reaction norm shape.

Contributions of reaction norm parameters to the genetic variance
We can expression the variance of the genotypic values of the reaction norms in Equation 5in a slightly different, but more operational, manner:

(18) VGen = V
(
ẑ − Eg|ε(ẑ)

)
= E

(
Vg|ε(ẑ)

)
,

i.e. the total genotypic variance of the reaction norms is equal to the environment-specific geno-typic variance averaged across environments. As explained above, this total genetic variance canbe further decomposed into the genetic variance and the genotype-by-environment variance, i.e.
VGen = VG + VG×E (Des Marais et al. 2013; Falconer and Mackay 1996; Lynch and Walsh 1998).From an evolutionary perspective, the component of main interest is rather the total additivegenetic variance of the reaction norm VAdd, which will be the main focus of this section. As areminder, we here assume, that the experimental design allows for the inference of the additivegenetic variance of the parameters of the reaction norm (Gz or Gθ above), and that non-additivevariance in the trait VNonAdd only arises when the reaction norm is non-linear in the parameters(i.e. dominance and/or epistasis were not fitted in the statistical model). This assumption is forthe sake of simplicity, as our framework can include such effects into VGen if needed.
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A general way to relate the additive genetic variance of the trait to the additive genetic vari-ances of the reaction norm parameters is through a vector that we describe as the reaction normgradient, which we will note ψε (following notations in de Villemereuil et al. 2016),
(19) ψε = Eg

(
∂z

∂θ

)

ε
,

where the subscript ε makes it clear that ψε will generally be a function of the environment. Inthe case of a quadratic curve, ψε is the (1, ε, ε2)T vector (see subsection C3 for a polynomialof arbitrary order). In the case of a character-state model, ψεk
is a vector with 1 for the kthenvironmental level (or character state), and zero elsewhere. Whether or not the reaction normis linear in its parameters, the additive genetic variance of the trait in a given environment ε is(de Villemereuil et al. 2016; Morrissey 2015, and see Appendix B),

(20) VA|ε = ψT
ε Gθψε,

where superscript T denotes matrix transposition, Gθ the genetic covariance matrix of reactionnorm parameters as defined in Equation 4 for the curve-parameter approach, and Gθ is Gz fromEquation 2 for the character-state approach. The total additive genetic variance in the reactionnorm, VAdd, is the average of VA|ε across environments (see subsection C1):
(21) VAdd = E

(
ψT

ε Gθψε

)
.

The environment-blind additive genetic variance of the trait VA, based on breeding values aver-aged across environments, is (see subsection C2)
(22) VA = E(ψε)T GθE(ψε).
Although some elements of E(ψε) and Gθ can be negative, the fact that Gθ is a variance-covari-ance matrix ensures that VA ≥ 0 (see subsection C2). The additive genetic variance arising fromplasticity is thus (see subsection C2):
(23) VA×E = VAdd − VA = E

(
ψT

ε Gθψε

)
− E(ψε)T GθE(ψε).

If we define Ψ = E
(
ψεψ

T
ε

)
− E (ψε) E (ψε)T , the variance-covariance matrix of the reaction

norm gradients across environments, then a more intuitive way to express VA×E is as a sum, forall pairs of parameters, of the (co)variance of their reaction norm gradient across environments(in Ψ) and their additive genetic (co)variance (in Gθ):
(24) VA×E =

∑

i,j

Ψ(i,j)Gθ(i,j) = Tr(ΨGθ),

where Tr is the trace of a matrix. All of the quantities above can be divided by VP to get thecorresponding heritabilities.To illustrate with an example, for a quadratic reaction norm with mean-centred environmentas shown in Figure 1, ψε = (1, ε, ε2) and thus we have (see subsection C3)
(25) VAdd = Va + (Vb + 2Cac)E(ε2) + VcE(ε4),

VA = Va + 2CacE(ε2) + VcE(ε2)2,
VA×E = VbV(ε) + VcV(ε2),

where Va, Vb and Vc are the additive genetic variances in the parameters ag , bg and cg , and Cac isthe additive genetic covariance between the intercept ag and the second-order effect cg . Thoseexpressions are reminiscent of classical results from the theory of evolution of plasticity (e.g.de Jong 1990; Gavrilets and Scheiner 1993b), especially regarding the crucial role of Cac in theevolution of quadratic reaction norms, but here distinguishing three important components ofthe additive genetic variance of reaction norms. In particular, we see how the additive geneticvariance arising from plasticity, VA×E, can be simply expressed as the sum of the products of thevariances in the reaction norm gradients (here the environment and its squared value) and thecorresponding additive genetic variance in the parameters (here bg and cg in Equation 12). Thismeans that, in the quadratic case, genetic variances in slope and curvature directly translate intovariance arising from plasticity, as they should. By contrast, VA does not solely depend on the
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variance in the intercept Va, but also on the quadratic coefficient, more specifically its covariancewith the intercept.The expressions for these variance components in the character-state approach are bestdescribed directly from the Gz matrix. The total additive genetic variance along the reactionnorm, VAdd, is the average of the additive genetic variance in each environment, i.e. the averageof the diagonal elements of the Gz . The environment-blind additive genetic variance of the trait,
VA, is the average of all the elements of the Gz matrix. Finally, the variance VA×E is the sum ofthe products of the (co)variances in the frequency of each environment and the additive genetic(co)variances in Gz . We illustrate in subsection C4 the relationship between the structure in the
Gz matrix and the additive genetic variances, but a simplified statement is that VA×E > 0 as soonas the correlation between environments are different from 1 and/or variances in the diagonalare not all equal.To further decompose genetic variation in the reaction norms, we first note that here, thereaction norm parameters are the focus of the decomposition, rather than shape characteristicslike the slope or curvature (with the exception of a quadratic reaction norm, the only case werethey are formally linked). Because Equation 21 is a sum of products, and since Gθ is a constant,we can isolate each term of the resulting sum as:
(26) γi =

Eε

(
ψ2

ε,i

)
Vg(θi)

VAdd
, γij = 2Eε (ψε,iψε,j) Covg(θi, θj)

VAdd
,

∑

i

γi +
∑

i<j

γij = 1.

Here, γi provides the contribution of the ith parameter in the model to the total additive geneticvariance VAdd, while γij provides the contribution of the covariation between parameters i and
j to VAdd. As such, this “γ-decomposition” (where gamma refers to g for Genetics) measures therelative importance of genetic variances and covariances of the parameters to the evolvability ofthe plastic trait. Large values of γi indicate that genetic variation in the ith parameter translateinto a large proportion of the genetic variation in the trait. Also, large positive or negative valuesfor γij indicate that covariation between parameters i and j can have a large impact in increasingor reducing genetic variation in the trait.It is also possible to focus on the additive genetic variation arising fromplasticity, VA×E, whichyields:
(27) ιi = V (ψε,i) Vg(θi)

VA×E
, ιij = 2Covε (ψε,i, ψε,j) Covg(θi, θj)

VA×E
,

∑

i

ιi +
∑

i<j

ιij = 1.

This “ι-decomposition” (where iota refers to i for Interaction) highlights the fact that VA×E isthe sum of the products of (co)variances in elements of the reaction norm gradient ψε and theadditive genetic (co)variances in the parameters.For a quadratic reaction norm as in Equation 12with amean-centred environment, this yields:(28)
γa = Va

VAdd
, γb = VbE(ε2)

VAdd
, γc = VcE(ε2)2

VAdd
, γac = 2CacE(ε2)

VAdd
, ιb = VbV(ε)

VA×E
, < ιc = VcV(ε2)

VA×E
.

Note that since the environment has been mean-centred, we have V(ε) = E(ε2) since E(ε)2 = 0,and thus γb = ιb, i.e. in the quadratic case, all of the genetic variation in the slope contributesto the genetic variance arising from plasticity. Note also that genetic variance in reaction normintercept a does not contribute to the heritability from plasticity (ιa = 0).For the character-state approach, such decomposition would be less informative about thepotential for (and constraints on) reaction norm evolution. Instead, we can define an effectivenumber of character states (as proposed for general multivariate phenotypes by Kirkpatrick2009) as
(29) ne =

∑

i

λi

λ1
,

where λi is the ith eigenvalue of Gz ranked by size (i.e., λ1 is the largest eigenvalue). Strong ge-netic correlations of phenotypes across environments lead to small ne, whereby reaction norm
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evolution is highly constrained (with the limit of ne = 1 corresponding to the strongest con-straint). Conversely, weak genetic correlations across environments leave more degrees of free-dom for reaction norms to evolve, causing a large ne, close to the actual number of assayedenvironments. This ne metric does not capture all aspects of reaction norm evolvability, andis best combined with the ratio VA×E/VAdd of the proportion of total genetic variance due togenetic variance in plasticity). Unfortunately, ne is estimated with a strong bias due to the over-estimation of the leading eigenvalue of Gz (Lawley 1956), making it less useful in practice thanin theory. We thus do not develop this metric further.
Parameter estimation and variance partitioning in practice

Estimating the parameters
All the parameters mentioned in the previous section can be estimated through commonlyused statistical frameworks. For the character-state approach (Equation 2), a random-parametermodel can be used, or alternatively a “multi-trait” model (Mitchell and Houslay 2021; Rovelli etal. 2020). We will focus here on the former, which is more easily implemented while seeminglyscarcely used in the literature on plasticity. In the random-parameter model, the environment isconsidered as a categorical variable, to which a random effect is added using the genotype asthe grouping factor. In the curve-parameter approach, the appropriate models will be random-parameter models for a polynomial approach (as mentioned in Morrissey and Liefting 2016),or non-linear mixed models, fitting the reaction norm function f(ε,θ) to the data. Genotype-specific parameters, such as the intercept, slope, and any higher-order effects of a polynomialfunction, are treated as random’Since the parameters are estimated with noise, it is important to account for the impactof estimation uncertainty when computing variance components. In particular, while variancesdirectly obtained using random effects (e.g. genetic variances) are expected to be unbiased, thevariances arising from fixed effects (e.g. variances related to VPlas) should be corrected for biasesdue to uncertainty (as the adjusted R2 does for example). Details are provided in Appendix E.To compute the total phenotypic variance required to get the estimates P̂ 2

RN, Ĥ2
RN and ĥ2

RN,we advise using the sum of all estimated components rather the raw sample variance. The formeris common practice in most quantitative genetics inference to account for potential imbalancein the experimental or sampling design (de Villemereuil et al. 2018; Wilson et al. 2010).We provide an R package, named Reacnorm github.com/devillemereuil/Reacnorm, providingfunctions implementing the variancce decomposition based on raw outputs of statistical models.A tutorial is shipped with the package, as an R vignette, showing how to implement such modelsusing the Bayesian brms R packages (Bürkner 2018), along with Reacnorm.
Perfect modelling of quadratic curves

We simulated phenotypic data conforming to a quadratic reaction norm, to evaluate theperformance of the proposed approach when the reaction norm truly is quadratic. We consid-ered both a discrete and continuous environment. For the discrete environment, we considered
NGen = 20 or 5 different genotypes and an environmental gradient of NEnv = 10 or 4 values,equally spaced from -2 to 2. We sampled NRep = NGen individual measures for each genotypewithin an environment. For the continuous environment, we drew NEnv = 10 or 4 values froma normal distribution for each of the NGen = 200 or 50 genotypes, without repeats contraryto the discrete case. In both cases, a residual noise was applied around each measure with aresidual variance VRes = 0.25. In all cases, we defined a quadratic curve with average parameters
θ̄ = (1.5, 0.5,−0.5) for intercept, slope and curvature. We then drew NGen different genotype-specific vectors of curve-parameter θ from a multivariate normal distribution with mean θ̄ and(genotypic) variance-covariance matrix

Gθ =




0.090 −0.024 −0.012
−0.024 0.160 0.008
−0.012 0.008 0.040


 .
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Figure 1 displays examples of curves resulting from these parameters. The simulation processwas repeated 1000 times for each scenario, and for each simulated dataset, we ran estimationsusing the lme4 R package (Bates et al. 2015) under the curve-parameter (for discrete and con-tinuous environment) and character-state (only for discrete environment) approaches, in orderto check how these approaches compare in practice.From the curve-parameter models, we computed V̂Plas (accounting for the uncertainty infixed effects), then P̂ 2
RN. We also computed the π-decomposition (π̂Sl and π̂Cv, Equation 14),since the true reaction norm is quadratic here, as well as ĥ2

RN, ĥ2 and ĥ2
I as in Equation 9. Wethen applied the γ-decomposition to ĥ2

RN (Equation 26): γ̂a (impact of the genetic variation ofthe intercept), γ̂b (for the slope), γ̂c (for of the curvature) and γ̂ac (for the covariance between theintercept and curvature). Similarly, we applied the ι-decomposition to h2
I (Equation 27): ιb (forthe slope) and ιc (for the curvature). From the character-state model, we computed only P̂ 2

RN,
ĥ2

RN, ĥ2 and ĥ2
I .The yellow boxes in Figure 4 display the theoretical expected values for the different pa-rameters for three scenarios of environmental variation (two discrete, one continuous; otherscenarios are shown in Appendix F). Using the first discrete scenario as a reference for now,most of the total phenotypic variance comes from the average plasticity (P 2

RN = 0.55). This, inturns, includes a large contribution from the curvature (πCv = 0.56) of the average reaction norm,more than from its slope (πSl = 0.44). The total heritability of the reaction norm is substantial(h2
RN = 0.3), but interestingly most of it is due to the heritability from plasticity (h2

I = 0.21), whilethe environment-blind heritability of the trait is only h2 = 0.08. Contrary to the average shape,most of the additive genetic variation comes from the slope, both when considering the totalreaction norm (γb = 0.52), or plasticity alone (ιb = 0.76). All scenarios share the same underly-ing parameters θ and Gθ, resulting in very comparable values for our variance decomposition(i.e. P 2
RN and the heritabilities) across the different environmental sampling scheme. By contrast,the environemental sampling scheme (especially discrete v. continuous distribution) can substan-tially impact the expected values of the π-, γ- and ι-decompositions. This is especially true whenswitching from the discrete to the continous scenarios (e.g. πSl = 0.44 for the first discrete sce-nario while πSl = 0.33 for the continuous scenario).Switching to the error in the estimation of the parameters (left panels of Figure 4), we seefirst that both the character-state and curve-parameter approaches allow for unbiased inference(Wilcoxon’s rank test, p > 0.05), apart from a slight bias in the heritabilities (ĥ2

RN, ĥ2 and ĥ2
I ) andsome of their γ and ι components in the discrete scenarios (< 5% relative bias, Wilcoxon’s ranktest, p < 0.05), notably due to a slight overestimation of the genetic variance of the intercept(visible in the top row of Figure 4). For the discrete case, the precision of the estimates was notmuch influenced by the number of environments and depended more on the number of geno-types (see Figure S1). For the continuous case, both the number of environments and genotypesinfluenced the precision of estimates (see Figure S2). As a sanity check, we also verified that V̂Tot(not shown in Figure 4) reflected the raw phenotypic variancewith extreme precision (correlation

> 99%) in the discrete case and very good precision (correlation > 87%) in the continuous case.The difference between these two types of scenarios is explained by how the stochasticity inenvironmental values differs among them. Importantly, the results in Figure 4) also illustrate theexact equivalence, in the discrete case, between the curve-parameter and character-state ap-proaches, as the distributions of P̂ 2
RN and ĥ2

RN were nearly identical (Figure 4, correlation> 99%)between the two approaches. This means that our variance partitioning is not impacted bywhichapproach is chosen to study plasticity, as long as the curve-parameter approach captures the truereaction norm shape. When this does not hold, the differences between estimates from thesealternative approaches can be exploited efficiently, as we describe below.
Imperfect modelling of a non-polynomial reaction norm

The true shapes of reaction norms are generally unknown and may be complex, such thatany curve-parameter model is likely to be mis-specified to some extent. In the case of a discrete
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environment, the character-state approach is arguably more general, as it does not assume any-thing about the “true” shape of the reaction norm (as pointed out previously by de Jong 1995).Nonetheless, having access to curve-parameters is often very interesting and more actionable(even in cases where the linear and quadratic components cannot be interpreted as the averageslope and curvature), especially to predict evolution of phenotypic plasticity (see also de Jong1995). To get the best of both worlds, we rely on the ability of the character-state approach torecover P 2
RN, using it as an “anchor”, to assess the performance of a given curve. Note that, underthese circumstances, it is not possible to obtain themost natural π-decomposition in Equation 14,so we instead rely on the φ-decomposition in Equation 16 (here taken at the second order). Be-cause of this, we need to assess how “bad” our simplification using an imperfect curve is. To doso, we compute the ratio of the variance modelled by the polynomial curve to the total variancedue to phenotypic plasticity:

(30) M2
Plas = V̂mod

V̂Plas
,

where both V̂mod and V̂Plas are bias-corrected. It is important to note here that M2
Plas is just aconvenient way to quantify the amount of V̂Plas explained by the chosen parametric curve, andshould not be used to performmodel selection.Model selection is a complexmatter andwe referthe readers to published reviews on this subject (e.g. Johnson and Omland 2004; Tredennick etal. 2021).In order to demonstrate the soundness and usefulness of this approach,we simulated datasetsfollowing relatively common curves that are not well-captured by a second order polynomial:a logistic sigmoid (hereafter sigmoid scenario), or a Gompertz-Gaussian thermal performancecurve (hereafter TPC scenario, see Figure 5). We assumed that the environment is sampled ateither 10 or 4 values. For each of these conditions, we simulated 1000 datasets, with 10 mea-sures per environment (for the sake of simplicity, and given the focus on P̂ 2

RN here, we did notinclude different genotypes in these simulations). We estimated the parameters of a polynomialmodel, and computed the relative contributions of the first- and second-order parameters usingEquation 16. In addition, we computed the unbiased estimates of the variance explained by ourpolynomial or character-state models to obtainM2
Plas.Our results show that, as expected, the polynomial function is an imperfect proxy of ourcomplex shapes (Figure 5, M2

Plas = 0.89 for the sigmoid and M2
Plas = 0.65 for the TPC), butusing the character-state approach allows retrieving the total plastic variance without bias. Theapproach described here is thus useful to compare a given reaction norm model (e.g. a polyno-mial function) to an unknown true shape of the reaction norm, in a case where environment isdiscretised. In more detail, the linear component was the most important component to explainthe phenotypic variation for the sigmoid scenario (φ1 = 0.89, same as the total model). This wasbecause the quadratic component was always estimated close to zero (< 10−3), thus no variancewas explained by the quadratic component (φ2 = 0). Of course, the sigmoid is not a straight lineeither, and some remaining variance unexplained by the polynomial curve (1−0.89 = 0.11) couldhave been explained by higher-order effects (e.g. cubic effect and higher). By contrast, for theTPC scenario, while the linear component was an important factor (φ1 = 0.47), the quadraticcomponent also explained quite a lot of the variance as well (φ2 = 0.2). Again, higher-order ef-fect, including at least a cubic effect, would have explained more of the variance arising from theaverage shape of plasticity.This example illustrates the usefulness of a combined curve-parameter and character-stateapproach to study the shape of reaction norms of a discretely sampled environment. While thecharacter-state approach provides a widely applicable estimation of P̂ 2

RN (if the environmentis discretised), the curve-parameter approach provides interpretable information about (at least)first- and second-order parameters of the reaction norm (although theymight departmore or lessstrongly from its average slope and curvature), which helps describing where most phenotypicvariance lies. Our ratioM2
Plas can then be used to evaluate howwell a chosen polynomial functionmodels an actual reaction norm.
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Figure 5 – Estimation of the variance of the reaction norm when the true shape (sigmoidon the left, Gompertz-Gaussian performance curve on the right, red lines on top graphs)is unknown and approximated from a polynomial function. The estimated reaction normsusing a polynomial function (black line, top graphs) only account for a part of the reac-tion norm shape, while the ANOVA estimation (pink dots, top graphs) fit the true shapemore accurately. As a result, the model is expected to explain only a partM2
Plas of phe-notypic variance due to plasticity. On the bottom rows, the error distribution are shownforM2

Plas, P 2
Plas, φ1 and φ2 (grey dots are the average estimated values, black crosses arethe expected true values).
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Estimation of non-linear models
Althoughwehave focused so far onmodels that are linear in its parameters, themain strengthof our approach is its generality: it can be applied to any arbitrary functions (provided it is dif-ferentiable). This requires numerically computing integrals for VPlas (for P̂ 2

RN), πSl, πCv and ψε(for the heritabilities), but this can be solved with efficient algorithms. We illustrate this by intro-ducing genetic variation in the parameters of the sigmoid and TPC reaction norms illustrated inFigure 5 (top panels). We used a non-zero, but small, residual variance (VR = 0.0001) to avoidnumerical issues typical when running thousands of non-linear models. We focused on a contin-uous environment, and estimated the actual functions used to generate the datasets, using thenon-linear modelling function of nlme package (Pinheiro et al. 2009).We used the cubature pack-age (Narasimhan et al. 2023), as in theQGglmmpackage (de Villemereuil et al. 2016), to computeparameters linked to the variance decomposition, and, further, the π-, γ- and ι-decomposition.We simulated 1000 datasets for each scenario, consisting of 200 genotypes measured each in10 different environments, randomly sampled from a normal distribution.We retrieved our simulated parameters without bias using the nlme function, except for aslight bias (Wilcoxon’s rank test, p < 0.05) in the variance of r (latent slope) in the sigmoid modeland in C (height of the peak) in the TPC model. This translated into significant (Wilcoxon’s ranktest, p < 0.05), but very limited bias (relative bias < 5%) in our derived parameters (Figure 6,bottom panels). Moreover, the sum of variance components (V̂Tot) successfully reflects the totalphenotypic variance, with a correlation between the two quantities > 91%.First focusing on the average shape of the reaction norm (Figure 6, top panel), one unfortu-nate aspect of running a non-linear model is that our bias correction described in Appendix E canno longer be applied. However, this bias is generally small provided the standard error is smallfor most parameters, and the resulting bias in P̂ 2
RN is extremely small, and even non-significantfor the sigmoid model. This could of course be partly explained by a favourable context here,especially since the residual variance is relatively small. An important distinction here is the dif-ference between the curve defined by the average parameters f(ε, θ̄) (Figure 6, top panel, blackcurve) and the one defined by the local average phenotypeEg|ε(ẑ) (Figure 6, top panel, red curve),

recalling that P̂ 2
RN is linked to the latter. While the two are very close for the sigmoid case, theydiffer quite visibly for the TPC one, due to a more pronounced non-linearity in the parametersin the latter. The average slope contributed the most to the overall plastic variance of the meanreaction norm for the sigmoid shape (πSl = 0.88), with no impact of average curvature (πCv = 0),close to the φ-decomposition in Figure 5. For the TPC scenario, the contribution of the averageslope (πSl = 0.31) and curvature (πCv = 0.35) are similar. In this case, the values are very differentfrom the φ-decomposition in Figure 5 (although note that the distribution of the environmentis different between these two scenarios). It might appear as counter-intuitive that the slopecontributes so much to variance, since the curve increases from 0 and then decreases toward0, but this is linked to the fact that the environment is normally distributed, so most values arenear ε = 0, an area where the slope of the curve is close to being maximised.Although the variation between genotypes in the top panel of Figure 6 seems quite large,the contribution from the average plasticity P̂ 2

RN is 1.7 to 3.4 times higher than the one of thegenetic variance Ĥ2
RN (Figure 6, yellow box in first- and second-row panels). This occurs becausethe genetic variance is actually very low in most environments (Figure 6, brown and purple linesof the second-row panels), and scarcely as high as VPlas. As mentioned above, non-linearity inthe parameters is less strong for the sigmoid case than for the TPC case, resulting in almostexactly equal values for Ĥ2

RN and ĥ2
RN for the former, while they are slightly different for thelatter. In both cases, the small difference between Ĥ2

RN and ĥ2
RN can be explained by the dispro-portionate importance in the γ-decomposition of parameters that are actually linearly related tothe trait (γL = 0.98 for the sigmoid and γC = 0.81 for the TPC scenarios). In terms of heritabilityfrom plasticity, it is substantial in both cases (h2

I = 0.081 for the sigmoid and h2
I = 0.133 for theTPC scenario), as can be expected from the non-parallel reaction norms (Figure 6). However, itremains smaller than the environment-blind heritability of the trait in both cases (h2 = 0.143for the sigmoid and h2 = 0.216 for the TPC scenarios). Interestingly, for the TPC scenario, and
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Figure 6 – Caption Scenarios and results of non-linear modelling of phenotypic plastic-ity in a continuous environment. On the left: results corresponding to a sigmoid curvescenario; on the right: results corresponding to a TPC scenario. First row: example ofthe individual curves (each curve corresponds to one individual) simulated in each sce-nario; yellow box: true parameters for the model and average shape; black curve : f(ε, θ̄);red curve: Eg|ε(ẑ). Second row: distribution of the estimations of VG,ε (brown) and VA,ε(purple), along the environment; solid line: average value across simulations; pale ribbon:95% CI across simulations; yellow box: true values for the genetic variance partition.Third row: γ-decomposition of VA,ε along the environment, for each parameter and theircovariation. Fourth row: distribution of the error for each component of our variancepartition, grey dot is the average of estimates over all simulations.
contrary to what happens with the γ-decomposition, a majority of the additive genetic variancearising from plasticity comes from the variation in the location of the optimum (ιε0 = 0.525).This is because variation in the location of the optimum shifts the reaction norm along the en-vironment axis (i.e. on the “x-axis”), meaning that even a small shift can generate considerablevariation that is non-parallel along the phenotype axis (i.e. along the “y-axis”).An interesting aspect of our framework is that we can explore the variation of VGen,ε, VA,ε andthe γ-decomposition of VA,ε along the environmental gradient, which can be very informativefrom an evolutionary perspective. In the case of the sigmoid curve (Figure 6, second and thirdrows, left panels), the analysis is relatively simple : as the value of the environment increases, theparameter L is multiplied by an increased value (going from 0 to 1 due to the sigmoid function)and thus its genetic variance plays a stronger role. This translates into VGen,ε and VA,ε increasingwith the environment, and γL accounting for almost all of the genetic variance after the sigmoidinflexion point in 0. The TPC scenario is even more interesting. First, we can see that both VGen,εand VA,ε (Figure 6, second row, right panels) are close to zero in the extreme environments andmaximised in a region between the optimum and critical maximal temperature, where the re-action norm suddenly drops after the optimum. This maximum also corresponds to the regionwhere VGen,ε and VA,ε are the most different (and where the red and black departs the most inFigure 6, top row, right panel). Regarding the γ-decomposition (Figure 6, third row, right panels),the influence of the location of the optimum (γε0 ) is maximised at extreme environments, whilethe influence of the maximum value at the peak (γC ) is exactly maximised at the average locationof the peak. The influence of the covaration between both (γCε0 ) is negative before the peak andpositive after.As these simulations illustrate, our framework allows very finely describing the characteris-tics of reaction norms, such as how its average shape (slope/curvature) and genetic variation inthe parameters influence the phenotypic variance in the trait, while discriminating between totalgenetic variation of the trait and genetic variation exclusively linked with plasticity itself.

Discussion
The variance decomposition in Equation 7 is very general, and applicable to any approachused to estimate a reaction norm. In particular, it applies equally well to both the character-stateand curve-parameter approaches. Each component and its variance-standardisation provide adifferent information on the reaction norms: P 2

RN quantifies the proportion of phenotypic vari-ance due to the average plastic response across genotypes, whileH2
RN or h2

RN quantify the con-tributions from (broad or additive) genetic variance in the reaction norms. Further, these geneticcomponents can be separated into the environment-blind heritability of the trait (h2) based onthe average breeding values across environments, and the heritability from plasticity (h2
I ) whichis solely based on the gene-by-environment interactions at the level of breeding values. Finally,the sum T 2

RN = P 2
RN +H2

RN quantifies how well we can predict the individual phenotypes basedon their genotypes and environments (i.e. genetically variable reaction norms). Those compo-nents are efficient summary statistics yielding important information regarding the evolutionarypotential of both the trait and its plasticity. Importantly, they are very generally applicable, with
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a strict equivalence between e.g. a character-state or a curve-parameter approach. However,they do not provide information regarding the actual shape of the reaction norms. To that end,we further decomposed some of these components in terms of characteristics of the shape orparameters of reaction norms.The most difficult problem is to decompose the average plastic variance P 2
RN into terms aris-ing either from the linear trend (πSl) or from the curvature (πCv) of the reaction norm, whichwe called π-decomposition. Unfortunately, our estimates for πSl and πCv are only valid if theenvironment is normally distributed, or the true reaction norm is quadratic. In other cases, meanslope and curvature loose their simple interpretation, preventing a meaningful π-decomposition.Nonetheless, for polynomial reaction norms of higher order, we described an alternative decom-position, based on the polynomial coefficients rather than actual slope and curvature, which wecalled φ-decomposition. While not as interpretable as the π-decomposition, this decompositioncan serve as a way to compare polynomial shapes across contexts. Based on the equivalencebetween the curve-parameter and character-state, we introduced M2

Plas as a way to quantifythe ability of a polynomial model to recover VPlas compared to an “agnostic” model such as thecharacter-state. Our proposed framework is summarised in Figure 3.Decomposing h2
RN and h2

I is comparatively easier, because the model assumed in Equation 3and Equation 4 ensures that we can always translate additive genetic variance in the parameters
θ into additive genetic variance in the trait z, even if the function f is not linear in its parameters.Decomposition of the total heritability of the reaction norm h2

RN into the impact of the parame-ters θ leads to the γ-decomposition. It quantifies the relative importance of genetic variance indifferent reaction norm parameters to the evolvability of the trait. For instance if a given selec-tion episode concerns individuals that all experienced the same plasticity-inducing environment(i.e. when spatial environmental variation is negligible relative to temporal variation), using themultivariate breeder’s equation (Lande 1979), the relative contribution of genetic variation inparameter θi to the response to selection for the trait z is
(31) ∆θi

z̄

∆z̄ = γi + 1
2
∑

i ̸=j

γij ,

where the γi and γij are defined in Equation 26. In other words, the contributions of responsesto selection by different reaction norm parameters to overall response to selection by the plas-tic trait z is directly proportional to their contribution to its genetic variance. Importantly, thesecontributions will depend on the reaction norm gradient ψε defined in Equation 19, and thuson the environment, as illustrated in Equation 26. In fact, the environment-specific additive ge-netic variance VA,ε is a critical piece of information regarding evolutionary potential, and we canapply the γ-decomposition within each environment as well. For example, in the TPC scenarioinvestigated above (Figure 6, right panels), the contribution of the peak height parameter C ismaximised at the average location of the optimum, where it accounts for 100% of the additivegenetic variance. On the contrary, the influence of additive genetic variation in the location ofthe optimum ε0 is more important in extreme environments. The complex interaction betweenthe role of C and ε0 generates a peak for VA,ε in the area between the peak and critical maximalvalue for the environment (where the performance curve reaches zero). In the context of pre-dicting eco-evolutionary response to warming, this would mean that a slight temperature riseabove the optimum would provide a very short window of higher evolvability, but followed by asharp decrease thereof if warming persists. Beyond these simple scenarios, how selection actson reaction norms and plasticity depends on how the environment varies in space and/or time(de Jong 1999; King and Hadfield 2019; Scheiner 1993b; Tufto 2015), and how the reactionnorm gradient ψε and direction selection on the expressed trait z covary across environments.However, an in-depth exploration of how to estimate these selection responses is beyond thescope of the present work.While the γ-decomposition is key to understanding and predicting evolution of the trait, itis based on the total heritability of the reaction norm h2
RN, which combines additive geneticvariation in the trait and its plasticity. To study plasticity in isolation from the environment-blindadditive genetic variance in the trait, we decomposed h2

I in a similar fashion as h2
RN, which we
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called the ι-decomposition. The components of the ι-decomposition measure the contributionof each parameter to the evolutionary potential of plasticity, i.e. to the evolvability of reactionnorm shape. In our thermal performance case (TPC) example, the ι associated to C and ε0 wereclose to 0.5, meaning that evolution can roughly equally impact the peak heightC or the locationof the optimum ε0, should selection on the shape of reaction norms occur.The detailed decomposition that we propose open the door to better comparatibility acrossstudies, which can be a challenge in meta-analyses of plasticity. Murren et al. (2014) performedsuch ameta-analysis, comparing genetic variation in different parameters of reaction norm shapeacross published datasets. However they (i) computed these parameters using only extreme en-vironmental values, instead of the whole range of environments; (ii) did not account for unevenspacing between environmentswhere relevant; (iii) did not account for uncertainty in estimationsof reaction norms (as previously highlighted by Morrissey and Liefting 2016); and (iv) assumedthe modeled reaction norm shape is true. More details about the analyses in that study are pro-vided in Appendix G. Our approach overcomes all these issues (some of which had been dealtwith already by Morrissey and Liefting 2016; Pélabon et al. 2020). Unfortunately the datasetcompiled by Murren et al. (2014) does not provide information on uncertainty of phenotypicestimates (related to VRes), precluding proper meta-analysis of reaction norm shape variation.Importantly, our variance partitioning can be implemented through commonly used statisticalmodels, notably (non-)linear mixed models. We showed that even complex non-linear modellingcan perform well, only at the cost of using dedicated libraries to compute integrals numerically.This means that biologists can readily seize all the modelling tools introduced here. In partic-ular, although a character-state approach can be performed using a simple random-interceptmodel, studies of genetic variance in plasticity seem to rather use a multi-trait model, whichoffers more control, but is more difficult to implement (but see Stirling and Roff 2000). In or-der to make the variance partitioning introduced here more accessible, we have implementedthe computation of all the decomposition mentioned here as an R package named Reacnormgithub.com/devillemereuil/Reacnorm, including cases where more than the genetic effect is as-sumed affecting variation in θ. The package also provides a tutorial as a vignette, showing how toimplement the models in the Bayesian package brms and use functions from Reacnorm to studythe properties of reaction norms.We hope that this will further stimulate interest in investigatingvariation and evolutionary potential of reaction norms.
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Appendix A. A unified formalism for the curve-parameters and character-stateapproaches
Despite having different mechanics, the curve-parameter and character-state approachescan be shown to be mathematically equivalent de Jong (1995). We can use this to express bothapproaches under the same, unified formalism. More precisely, we can express the character-state approach as being a special case of the curve-parameters approach. Under a curve-parametersapproach, the reaction norm is seen as a function f of the environment ε and a vector of param-eters θg:

(S1) ẑ = f(ε,θg).

The θg ’s covary across genotypes with a variance-covariance matrix Gθ:
(S2) θg ∼ N (θ̄,Gθ).

By contrast, in a character-state approach, the reaction norm values of different genotypesacross environments are directly provided by sampling from a multivariate normal distribution:
(S3) ẑ ∼ N (µ,Gz) .

One way to express the character-state using the same formalism as the curve-parameter is torecognise that Equation S3 can be written as
(S4) ẑ = µT

g uk,
µg ∼ N (µ,Gz),

where uk is the unit vector with 1 at the kth value (corresponding to environment εk) and 0 else-where. Thus, the character-state model can be expressed using the formalism of Equation S1and Equation S2, where µg in Equation S4 plays the role of θg , and thus Gz plays the role of Gθ.In this case, the function f is a function taking the level k of the environment and the param-eters µg of the genotype g as input, and yielding the evaluated reaction norm ẑ as the output.Evidently, this function f is not continuous and not differentiable along the (categorical) environ-ment. However, it is a continuous, differentiable and even linear function along the (continuous)parametersµg . As such, all properties mentioned in the main text and the Appendices pertainingto reaction norms that are “linear in its parameters” also apply to the character-state approach.

Appendix B. Computation of the additive genetic variance holding environmentconstant
B1. Preliminary results
Multiple regression slopes expressed using a variance-covariance matrix. Let us assume a mul-tiple regression between a random variable y and a set of random variables x = (x1, . . . , xn)T

such that:
(S5) y = µ+ xTβ + e,

where µ is the intercept and e is the residual of the model. Note that in practical regression,the realised sampling of x will be contained in the design matrix of the model. If it exists and isunique, the solution for the vector of multiple regression slopes β can be formulated in termsvariance-covariance matrices (see e.g. p.179, Lynch and Walsh 1998):
(S6) β = V(x)−1cov(x, y),

where V(x) is the variance-covariance matrix of x, , V(x)−1 is its inverse matrix and cov(x, y) isthe column-vector of covariances between the xi and y.
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Multivariate version of Stein’s lemma. Let us assume that x = (x1, . . . , xpx) and y = (y1, . . . , ypy )follow multivariate normal distributions, and that g is a differentiable, Rpx → R function suchthat E (▽g), where ▽g is the gradient of g (the vector of partial derivatives), is a vector withfinite values, then it can be shown (Landsman and Nešlehová 2008; Landsman et al. 2013) that:
(S7) cov (g(x),y) = cov(x,y)E (▽g) .
Note that covariance matrices of vectors (also known as cross-covariance matrices) are not com-mutative, but are such that cov(x,y) = cov(y,x)T . In the case where py = 1, then y = y followsa normal distribution and:
(S8) cov (g(x), y) = cov(y,x)E (▽g) .
Note that cov(y,x) is a row-vector and cov(x, y) is a column-vector by convention.
B2. Breeding values in a given environment
Genetics of reaction norms. As mentioned in the main text, a general formalism (including thecharacter-state as a special case) for the reaction norm ẑ is given by Equation 3 in the main text,i.e.
(S9) ẑ = f(ε,θg).
The phenotype predicted by the reaction norm ẑ thus depends on the environmental value ε,and the reaction norm parameters θg specific to the genotype g. When holding the environment
ε constant, the genetic variance is simply the variance of reaction norms across genotypes:
(S10) VG|ε = Vg|ε (f(ε,θg))
If the reaction norms are estimated in such a way that non-additive genetic variance can beseparated out fromadditive genetic variance (e.g. if “genotype” refers to individuals) or are knownto be negligible on the one hand; and if the reaction norm is linear in its parameters (i.e. f is alinear function of θg , as for a polynomial function) on the other hand, then the additive geneticvariance conditional on the environment is readily given by Equation S10, i.e. VA|ε = VG|ε. In thecase where f is not linear in its parameters, it is necessary to rely on the theory in non-linearquantitative genetics (de Villemereuil et al. 2016; Morrissey 2015), as we do below.Linear relationship between breeding values. The relationship between the breeding value ofthe trait Az and the breeding values of the reaction norm parameters θg is the key towardsdeveloping a framework that works for any reaction norm, linear in its parameters or not. Letus note Aθ the vector of breeding values of all the parameters in θ. We will follow the samedemonstration as in de Villemereuil et al. (2016), which starts from the point that, by definition,breeding values are all linked through linear relationships (see also Robertson 1966), since theyare all linearly linked to the genotype (Lynch and Walsh 1998). More precisely, the breedingvalue Az of the phenotypic trait z of an individual linearly depends on a linear combination ofits breeding values for the reaction norm parameters Aθ, so that:
(S11) Az = µA + AT

θ ψ

where µa is a constant chosen such that E(Az) = 0, ψ is a vector of slopes that we will shortlydescribe as the reaction norm gradient.Derivation of ψ. To derive an expression of ψ, we can apply the results in Equation S6 to Equa-tion S11, yielding
(S12) ψ = G−1

θ cov(Aθ, ẑ).
This assumes that cov(Aθ,Az) = cov(Aθ, ẑ), i.e. that there is no covariance between the envi-ronmental values of the phenotype as predicted by the reaction norm and the breeding valuesof the parameters. This results also assumes that Gθ is inversible. However, such assumptionis already necessary to most statistical algorithms available to infer Gθ in practice, so that thisassumption is not limiting here. Noting that ẑ = f(ε,θ), we can apply the multivariate versionof Stein’s lemma (Equation S7):
(S13) ψ = G−1

θ cov(Aθ,θg)E(▽θf) = G−1
θ GθE(▽θf) = E(▽θf),
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where we have used the fact that the covariance of breeding values of reaction norm parame-ters with their breeding values is their additive genetic covariance matrix Gθ. Again, note thatthis assumes that f is partially differentiable with respect to all elements of θg . Given that thisdemonstration was applied when holding the environment constant, the values in ψ generallydepend on the environment ε, so below and in the main text, we use the notation ψε.Values of ψε in specific contexts. When the reaction norm is linear in its parameters, the valuesin ψε are (trivially) the linear coefficients of such relation. For a quadratic reaction norm, where
ẑ = (Ā + ag) + (b̄ + bg)ε + (c̄ + cg)ε2, such linear coefficients are respectively 1, ε and ε2 for
ag , bg and cg . It results that ψε = (1, ε, ε2)T as mentioned in the main text. More generally, if
f is a polynomial of order N , then ψε = (1, ε, . . . , εN )T . In the context of a character-state, itcan be seen from Equation S4 that the gradient ψε in the parameters will be equal to uk, i.e. avector of 1 for the kth value (corresponding to the environment chosen to be hold constant) and0 elsewhere.
B3. Additive genetic variance

By definition, the additive genetic variance of the trait conditional on the environment VA|εis the variance of the breeding values defined in Equation S11. We can thus express it from thebreeding values of the reaction norm parameters (right hand side of Equation S11) as
(S14) VA|ε = Vg|ε(AT

θ ψε) = ψT
ε Gθψε.

This formula holdswhether the reaction norm is linear on its parameters or not, and also holds forthe character-state approach (although in this case, this formula merely selects the kth elementof the diagonal of Gz).
Appendix C. Derivation of the general decomposition of variance

C1. Distinguishing between VPlas, VGen and VAdd

The phenotype predicted by the reaction norm ẑ depends on the environment, and the reac-tion norm parameters θg specific to the genotype g. The impacts of environment and genotypeare intricately related via the reaction norm shape, but in a given environment, one can still iso-late the average impact of the environment from variation among genotypes by computing theaverage value of the reaction norm across genotypes conditional on the environment, i.e. Eg|ε(ẑ).The variance of Eg|ε(ẑ), taken across environments, is the component VPlas = V(Eg|ε(ẑ)) in themain text, i.e. the phenotypic variance arising from plasticity after averaging across genotypes.The genotypic value Gz of genotype g within the environment ε is then given by
(S15) Gz = ẑ − Eg|ε(ẑ).

Note that, although we removed the average effect of the environment, the genotypic value
Gz still depends on both the genotype g and the environement ε, because genotypes can varyin their response to the environment. The total genetic variance in the reaction norm is thus
VGen = V(Gz). It is possible to get to the breeding values of the trait in each environment Azfollowing the process described in Appendix B, i.e. Az = µa + AT

θ ψε. The total additive geneticvariance in the reaction norm is then
(S16) VAdd = V(Az) = E

(
Vg|ε(Az)

)
+ V

(
Eg|ε(Az)

)
= E(ψT

ε Gθψε),

using the law to total variance and noting that Eg|ε(Az) = 0 by construction. In Figure 1 in themain text, the average Eg|ε(ẑ) corresponds to the red line in the left panel of Figure Figure 1 inthe main text, while Az corresponds to the purple lines in the middle panel.
C2. Distinguishing between VAdd, VA and VA×E

We can separate the total additive genetic variance of the reaction norm, VAdd, into twocomponents: the environment-blind additive genetic variance of the trait VA and the additive
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genetic variance arising from plasticity VA×E. The first component is given by considering, for agiven genotype, its average breeding value across environment:
(S17) Ā = Eε|g(Az).
This average corresponds to the breeding value that would be predicted for the same genotypepresent in all environments (or moving across them, being measured several times), ignoring theimpact of the environment. In other words, this average is the predicted breeding value after theimpact of the environment has been marginalised. Graphically, it depicts the average shift in the
y-axis of the reaction norm, as can be seen in the middle panel of Figure 1 in the main text. Theenvironment-blind additive genetic variance of the trait is
(S18) VA = V(Ā) = E(ψε)T GθE(ψε)
VA is here defined as a variance, but there are negative elements in E(ψε) and Gθ, so in the-ory, their product could happen to be a negative scalar. This is not so here, because Gθ beinga variance-covariance matrix, it must be positive semi-definite. By definition of positive semi-definiteness, the product E(ψε)T GθE(ψε) will be positive (or null) for any real vector E(ψε).The remaining additive genetic variation after accounting for the marginal breeding value islinked to the impact of genetic variation arising from plasticity, i.e. genotype-by-environmentinteractions. We can define the part of the breeding values strictly linked to that genotype-by-environment interaction by mean-centring the breeding values, for each genotype:
(S19) AI = Az − Ā.
The right panel of Figure 1 depicts these interaction breeding values. The additive genetic vari-ance linked to genotype-by-environment, and thus to variation arising from plasticity, is:
(S20) VA×E = V(AI) = V(Az) + V(Ā) − 2cov(Az, Ā) = V(Az) − V(Ā) = VAdd − VA,

noting that, by construction, cov(Az, Ā) = cov(Ā, Ā) = V(Ā). By substituting VAdd and VA withtheir values in Equation S16 and Equation S18, we obtain
(S21) VA×E = E(ψT

ε Gθψε) − E(ψε)T GθE(ψε) = tr(ΨGθ) =
∑

l,k

Ψl,kGθ(l,k),

where Ψ is the variance-covariance matrix of the reaction norm gradient ψε across the envi-ronment. In other words, VA×E is the sum of the products, for all pairs of parameters, of the(co)variance in the reaction norm gradient and the additive genetic (co)variance. The γ- and ι-decomposition directly comes from dividing each elements of the sums in Equation S16 andEquation S21 respectively by VAdd and VA×E, so that the total sums to 1.
C3. Variance decomposition for a polynomial model

In this section, we will assume a polynomial reaction norm:
(S22) ẑ =

N∑

n=0
(θ̄n + θn,g)εn

where θn = θ̄n+θn,g is thenth order coefficient of the polynomial. In this form, it is easy to remarkthat polynomial reaction norms are linear in their parameters, i.e. there is a linear relationshipbetween the θn’s and ẑ, so that Gz = Az . It results that:
(S23) Gz = Az = ẑ − Eg|ε(ẑ) =

N∑

n=0
(θ̄n + θn,g)εn −

N∑

n=0
θ̄nε

n =
N∑

n=0
θn,gε

n.

Taking the derivative of this expression with respect to each of θn,g in a given environment
ε would yield a reaction norm gradient equal to the value of each exponent of ε, i.e. ψε =
(1, ε, . . . , εN )T . The total (additive) genetic variance is thus:
(S24) VGen = VAdd = E(ψT

ε Gθψε) =
∑

n

VnE(ε2n) + 2
∑

n<m

CnmE(εn+m),
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where Vn is the additive genetic variance for θn,g and Cnm is the additive genetic covariancebetween θm,g and θn,g . For the quadratic case, if ε has been mean-centred and is symmetrical,we have E(ε) = E(ε3) = 0 and the expression reduces to
(S25) VGen = VAdd = V0 + (V1 + C03)E(ε2) + V3E(ε4).
For a given genotype, its average breeding value across environments is
(S26) Ā = Eε|g(Az) = Eε|g

(
N∑

n=0
θn,gε

n

)
=

N∑

n=0
θn,gE(εn)

The environment-blind (additive) genetic variance of the trait is
(S27) VG = VA = E(ψε)T GθE(ψε) =

∑

n

VnE(εn)2 + 2
∑

n<m

CnmE(εn)E(εm)

For the quadratic case with mean-centred and symmetrical ε, this yields:
(S28) VA = V0 + 2C02E(ε2) + V2E(ε2)2

Finally, the additive genetic variance arising from plasticity itself is(S29)
VA×E = VAdd −VA =

∑

n

VnE(ε2n)+2
∑

n<m

CnmE(εn+m)−
∑

n

VnE(εn)2 +2
∑

n<m

CnmE(εn)E(εm).

By recognising that V(εn) = E(ε2n) − E(εn)2 and cov(εn, εm) = E(εn+m) − E(εn)E(εm), we canfurther simplify this expression as:
(S30) VA×E =

∑

n

VnV (εn) + 2
∑

lk

Cnmcov(εn, εm).

For the quadratic case, for a mean-centred and symmetrical ε, all the covariances between thedifferent exponents of ε are 0, yielding
(S31) VA×E = V1V(ε) + V2V(ε2).

C4. Variance decomposition for the character-state approach
As mentioned in Appendix A, the character-state can be written using a function f such thatin environment εk and for genotype g, we have

(S32) ẑ = f(µg, εk) = µT
g uk.

In a given environment εk, the unit vector uk is equal to 1 at the kth index and 0 elsewhere.The reaction norm gradient is equal to this unit vector, i.e. ψεk
= uk. In the first environment,for example, we have ψε1 = u1 = (1, 0, . . . )T . As mentioned in Appendix A, the character-stateapproach is linear in its parameters. We can thus compute the genotypic/breeding values in agiven environment εk as

(S33) Gz = Az = ẑ − Eg|ε(ẑ) = µT
g uk − µTuk = µg,k − µj ,

where µg,k and µj are the kth values of the vectorsµg andµ. The total (additive) genetic varianceis the variance of the breeding values across environments:
(S34) VGen = VAdd = V(Az) = V(µg,k).
Since the variance-covariance matrix of µg is the Gz matrix, the variance of all elements µg,ktaken together is the average of the diagonal elements of Gz , which we will note Vk. Assum-ing that all environments are equiprobable for the sake of simplicity (releasing this assumptionmerely requires to use weighted average), we have
(S35) VAdd = 1

K

K∑

k=1
Vk.

In other words, VAdd is the average of the diagonal elements of the Gz matrix.
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The environment-blind (additive) genetic variance of the trait depends on the average of thebreeding values across environment for a given genotype:
(S36) Ā = 1

K

∑

k

Az,k,

where Az,k is the breeding value evaluated at the kth environment for a given genotype, stillassuming equiprobable environments. It results that the environment-blind (additive) geneticvariance of the trait is
(S37) VG = VA = 1

K2


∑

k

Vk + 2
∑

k<l

Ckl


 ,

where Ckl is the genetic covariance between the environment k and l. In other words, VA is theaverage of all the elements of the Gz matrix.Finally, the (additive) genetic variance arising from plasticity can be computed as the differ-ence between VAdd and VA:
(S38) VG×E = VA×E = VAdd − VA = 1

K2


(K − 1)

∑

k

Vk − 2
∑

k<l

Ckl




A few particular cases are important to note here. The first case is when all environmentsharbour the same additive genetic variance, say V , and are all perfectly correlated with one an-other. This is a situation generally describe as a total absence of genetic variation in plasticity. Inour framework, this situation would indeed result in VAdd = VA = V and, indeed, no genetic vari-ation arising from plasticity with VA×E = 0. Note that uneven additive genetic variances acrossenvironments, even if genetic correlation are kept perfect across environments, would result inslightly positive genetic variance arising from plasticity with VA×E > 0. This is because, in suchcontext, the trait can still evolve faster in some environments compared to other, hence plasticitycan evolve. The second extreme case, is when the environment-blind additive genetic varianceof the trait is null, i.e. VA = 0, while all the additive genetic variance in reaction norm is composedof the additive genetic variance arising from plasticity, i.e. VAdd = VA×E. This happens when thesum of covariances (the total of which must be negative) exactly compensates the sum of diag-onal variances in the Gz , meaning that negative genetic correlation between environments aremaximised. In this case, its is impossible for directional selection to act on average value of thetrait across all environments, but the evolvability of plasticity is maximal. A third, interesting caseis when there is absolutely no genetic correlation between environments, i.e. the off-diagonalelements of Gz are all equal to 0. In such case, it is important to note that, because evolutioncan freely operate across environments, then both VA = 1
K2
∑

k Vk and VA×E = K−1
K2

∑
k Vk arenon-zero.

C5. Decomposition of variance for individual-based reaction norms
In Equation 4, we assumed that the only source of variation in θ is of genetic origin. This is aclassical assumption both in the empirical and theoretical literature (de Jong 1990; Gavrilets andScheiner 1993a; Via and Lande 1985), but in many cases, it can be useful or needed to includefurther sources of variation in θ. This is for example the case when studying reaction normsusing repeatedmeasurements of the same individual in different environments. In particular, thismay require including a further “permanent environment” effect to account for multiple repeats(Wilson et al. 2010) on the same individual, and also allows for themodelling of the reaction normat the individual level (individual plasticity, Nussey et al. 2007). When other random effects areassumed in the model, we can write the full variation of θ as:

(S39) θ ∼ N (θ̄,Vθ),
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where Vθ is the total variance-covariance matrix of θ. Note that Equation 4 is still valid to modelthe genetic component of θ which we named θg . In such case, the heritability of the kth com-ponent of θ can be computed as the ratio of the kth diagonal element of Gθ to the kth ele-ment of Vθ, i.e. h2
θ,k = Gθ,k,k

Vθ,k,k
. Because the modelling of θg remains unchanged, all our com-

putations of (additive) genetic variances and their decomposition remains completely identical.However, there are two important changes. The first change is that the definition of VPlas doesnot only depend on averaging over g any more, but on other sources of variations in θ as well,
i.e. VPlas = V

(
Eθ|ε(ẑ)

). This means that the marginalisation step conditional to the environment
now implies the full Vθ rather only its subcomponent Gθ. The second change is that it is notpossible to write the total variance of the reaction norm as the sum of VPlas and VGen anymore,because the latter is only a partial reflection of the full variation in θ. Instead, we need to intro-duce the phenotypic variation in the trait arising from the full sources of variation in θ, whichwe denote here VParam:
(S40) VParam = V

(
ẑ − Eθ|ε(ẑ)

)
= E

(
Vθ|ε(ẑ)

)
.

Then, we can write the correct formulae for VP and T 2
RN:

(S41) VP = VPlas + VParam + VRes, T 2
RN = VPlas + VParam

VP
.

The Reacnorm package was designed to be able to input Vθ to compute those quantities ifneeded.
Appendix D. Derivation of π- and φ-partition of VPlas

D1. The π-decomposition
We have seen in Appendix C how to compute the variance arising from the average shapeof reaction norm VPlas. In order to go further, we now separate this into a component linked tothe average slope of the reaction norm and another linked to the average curvature. For this, weneed one or two of the following assumptions to hold true: (i) the environment ε follows a normaldistribution; or (ii) the function f is quadratic. In such context, we can isolate the contributionof the slope, VSl, from the contribution of the curvature, VCv to VPlas, based on the best qua-dratic approximation of Eg|ε(ẑ) (akin to the reasoning in Lande and Arnold 1983, for estimatesof selection gradients), as:

(S42) VSl = E
(dEg|ε

dε (ẑ)
)2

V(ε), VCv = 1
4E

(
d2Eg|ε

dε2 (ẑ)
)2

V(ε2).

As an illustration of why the assumptions above are needed, if ε follows a uniform distributionbetween -2 and 2; and the average shape of plasticity is the following cubic function, f(ε) =
2ε−0.5ε2−ε3, then the average slope is -2, while the slope from the best quadratic approximationof Eg|ε(ẑ) is -0.4. In such cases, the decomposition in Equation S42 is not valid anymore, due to(i) the impossibility to apply Stein’s lemma to a non-normal distribution and (ii) strong covariationbetween the slope and curvature. This means that whenever the environment is non-normal andthe reaction norm is non-quadratic, the π-decomposition can bear little meaning (in the cubicexample above, VSl would be 5.4, while VPlas = 2.0, so that πSl would be largely above 1). A trulyquadratic reaction norm is the only case where πSl + πCv = 1.
D2. The φ-decomposition

In such cases where the environment is non-normal and the reaction norm is non-quadratic,it is always possible to approximate the true shape of the reaction norm using a polynomialfunction:
(S43) ẑ =

N∑

n=0
(θ̄n + θn,g)εn
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In the context of decomposing VPlas, such polynomial approximation provides a possibility toisolate the (co-)contribution of the (pairs of) coefficients in Eg|ε(ẑ) = ∑N
n=0 θ̄nε

n:
(S44) VPlas = V(Eg|ε(ẑ)) =

∑

n

θ̄2
nV(εn) + 2

∑

n<m

θ̄nθ̄mcov(εn, εm)

From this, we suggest the alternative φ-decomposition of VPlas, with φn = θ̄2
nV(εn)
VPlas

and φnm =
2θ̄nθ̄mcov(εn,εm)

VPlas
. It is important to note that this decomposition is based on the coefficients of thepolynomial function and, thus, it is unfortunately impossible to simply interpret the φn in termsof slope (for φ1), curvature (for φ2), and so on. The only exception is when the reaction normshape is quadratic, in which case πSl = φ1 and πCv = φ2.

Appendix E. Correcting for uncertainty in the estimation of fixed effects
Character-state approach. It is easier to start with the character-state approach based on theANOVA model. We want to compute VPlas as the variance of the group-level effects µ:
(S45) VPlas = V(µ)
However, we do not have access to the real-world values for µ, but only to the estimated µ̂ fromthe model. Such estimates, if unbiased, have an expected value of µk in environment k and astandard-error (i.e. the estimation of the sampling standard deviation) sk. In other words, we canstate that µ̂k is equal to µk up to an additive error:
(S46) µ̂k = µk + µ̃k

where µ̃ is of mean 0 and variance s2
k. Considering each virtual repeat r of the experiment, wecan apply the law of total variance:

(S47) V(µ̂) = Vε(Er|ε(µ̂)) + Eε(Vr|ε(µ̂)) = Vε(µ) + Eε(s2).
We thus have:
(S48) VPlas = Vε(µ) = Vε(µ̂) − Eε(s2)
This result is equivalent to e.g. the classical computation of the “sire variance” in sire models inquantitative genetics (Lynch and Walsh 1998), although the latter is generally expressed usingsums-of-squares.Curve-parameter approach. There is unfortunately no simple solution to the problem of account-ing for the uncertainty of fixed effects in the general context of non-linear modelling. However,for the particular case where the model can be framed as a linear model, as is the case for thepolynomial function, then ẑ = Xθ, where X is the design matrix containing the values for theenvironment. Noting ΣX the variance-covariance matrix of X, we can define VPlas as:
(S49) VPlas = θT ΣXθ.

Again, the problem is that θ is unknown, we only have access to the estimated values of theparameters, θ̂, that are inferred with an error provided by the variance-covariance matrix ofstandard errors, Sθ. We can write again:
(S50) θ̂ = θ̄ + θ̃,
Noting that the error is independent from the true value, we have:
(S51) θ̂T ΣX θ̂ = θT ΣXθ + θ̃T ΣX θ̃

To express θ̃T ΣX θ̃, it is important to note that Sθ,ij = E(θ̃iθ̃j), since E(θ̃) = 0. Then, we cannote that, the error being unknown, we actually want to compute Er(θ̃T ΣX θ̃) taken acrossvirtual repeats r of the experiment:
(S52) Er(θ̃T ΣX θ̃) = Er(

∑

ij

θ̃iθ̃jΣX,i,j) =
∑

ij

Er(θ̃iθ̃j)ΣX,i,j =
∑

ij

Sθ,ijΣX,i,j = Tr(SθΣX)

This is similar to the result of Brown and Rutemiller (1977). Finally, we have:
(S53) VPlas = θ̂T ΣX θ̂ − Tr(SθΣX).
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Appendix F. Full results for the section “Perfect modelling of quadratic curves”
This section provides the full results corresponding to the section “Perfect modelling of qua-dratic curves” in the main text. The results of all investigated values for the number of envi-ronments (10 or 4) and number of genotypes (20 or 5 for the discrete case, 200 or 50 for thecontinuous case) are provided for the discrete and continuous cases.
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Appendix G. Comparison with the approach from Murren et al. (2014)
Murren et al. (2014) studied variation of the reaction norm shapes across different datasets,using their own metrics. We argue in the main text that our variance decomposition is moreappropriate than the ones suggested by Murren et al. (2014), and we develop here why.The first step in the approach of Murren et al. (2014) is to choose a reference reaction normin each of the studies and compute contrasts (i.e. difference with) to that particular reactionnorm. The contrasts are then analysed, rather than the reaction norms themselves. For the sakeof simplicity, and because this does not (or marginally) impact our comments on this approach,we will overlook that step and consider reaction norms directly.For each genotype k and from its given reaction norm (or contrast) zk = {zk,1, . . . , zk,n}, Murrenet al. (2014) compute four statistics (we removed the absolute values for the sake of simplicityhere):
(1) The offset,OM, measures the “location” of the reaction norm, i.e. its mean. Comparison ofthe offsets allows detecting wether reaction norms are “shifted” toward higher or lowervalues. It is computed, for each genotype k, as the absolute value of the average of thenorm across environments:

(S54) OM,k =
∑n

i |zk,i|
n

.

(2) The slope,SM, measures the linear trend of the reaction norms. Formally, it is the absolutesum of the differences between two consecutive environments, divided by the numberof intervals (n− 1):
(S55) SM,k =

∑n−1
i |zk,i+1 − zk,i|

n− 1 .

(3) The curvature,CM, is computed as the absolute value of the average change in phenotypebetween two consecutive pairs of environments:
(S56) CM,k =

∑n−2
i |(zk,i+2 − zk,i+1) − (zk,i+1 − zk,i)|

n− 2 .

(4) The wiggle, WM, is, according to the authors the “the variability in shape not describedby any of the previous three measures”:
(S57) WM,k =

∑n−2
i |(zk,i+2 − zk,i+1) − (zk,i+1 − zk,i)|

n− 2 − CM,k.

Given the lower interest in this latter statistics, we will not comment on it any further.Most of the comments on the other statistics also apply to this one.
One strong assumption underlying the calculations above is that environmental values ε =
{ε1, . . . , εn} on which the reaction norms were evaluated are evenly spaced, e.g. that the dif-ferences εi+1 − εi are equal for all possible values of i. The assumption is actually that the spacebetween twomeasures is equal to 1 (which, admittedly, is only amatter of rescalingwhen evenly-spaced values are already assumed). If this is the case, then there is indeed no loss in generalityin using the number of components (n, n − 1 and n − 2) rather than actual values of x in thedenominator. Although it is common for studies on reaction norms to use evenly-spaced envi-ronmental values, it is an unnecessary assumption that shall not be satisfied by all studies.Second, developing the sums in SM andCM above show that the intermediate values cancel eachother out, leaving only the values at each extreme of the environmental range in the estimate:

(S58)
SM,k = zk,n − zk,1

n− 1 ,

CM,k = (zk,n − zk,n−1) − (zk,2 − zk,1)
n− 2 .

The issue here is double: (i) the estimation is highly sensitive to the random noise coming from asmall number of values (two or three/four); and (ii) the intermediate values in the reaction normare simply thrown out and not used for a more robust estimation. In other words, it would have
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been exactly the same to not measure the reaction norm at these intermediate values, since theyare not accounted for in the calculation.A final issue is that the approach uses the measured values of the reaction norms without ac-counting for the uncertainty in their estimation (i.e. standard-deviation and sample size for eachgenotype and environmental value) which poses the well-known issue of non-propagation ofthe error when doing “statistics on statistics”.Although we also provide estimators of the impact of several aspects of reaction norms onthe phenotypic variation, our approach differs from the one from Murren et al. (2014) by manyaspects. First, our variance decomposition makes the explicit distinction between the averageshape of the reaction norm and the genetic variance surrounding it. As such, toOM , SM and CMcorresponds not only the π-, but also the γ- and ι-decomposition. We clearly delimit the domainof validity of each of these decomposition. We also account for possible correlation betweenthose components. Second, we use the whole of the statistical inference to define our variancedecomposition estimates. Third, we explicitly account for the uncertain estimation of reactionnorms.
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