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Abstract
The analysis of the abundance of radiocarbon samples through time has become a pop-ular method to address questions of demography in archaeology. The history of thisapproach is marked by the use of the Sum of Probability Distributions (SPD), a keymethodological development that first allowed researchers to visualize the abundanceof radiocarbon samples on a calibrated temporal scale. However, the lack of a mathe-matical definition hinders the use of SPD in a proper statistical framework. Recent de-velopments ofmodel-based approaches have allowed amore rigorous statistical analysisof the abundance of radiocarbon data. Despite these advances, these methods inheritfrom the SPD an interpretation of the abundance of samples as a probability distribu-tion. In this work we propose a change of perspective by treating radiocarbon data ascount data. We present an approach that models the expected number of samples oc-curring at each year. We argue that this model provides more interpretable parametersand better accounts for the uncertainty in the number of samples. The performance ofthe proposed approach is evaluated through simulations and compared to an alterna-tive state-of-the-art approach. Our new method is competitive with the state-of-the-art model. Furthermore, we demonstrate the computational burden of using the SPD assummary statistics under an approximate Bayesian computation analysis and proposemore efficient summary statistics. Finally, we use a dataset of radiocarbon samples fromIreland and Britain to provide an application example. The results of these analyses arelargely congruent with previous work on the same dataset except in revealing an earlierstart of the Neolithic demographic expansion.
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Introduction
The development of radiocarbon dating (Libby et al., 1949) has revolutionized the study of

the past, finding applications in archaeology, geology, paleobiology, and paleoclimatology (Bronk
Ramsey, 2008; Carleton and Groucutt, 2021; Taylor, 1995). As this technique became a standard
in research, the accumulation of dated samples has led to the investigation of sample abundance
over time, addressing various questions related to environmental processes (changes in sea level,
forest fire frequency, or fluvial activity; Geyh, 1980; Pierce et al., 2004; Thorndycraft and Benito,
2006), as well as studying population size changes in humans and other species (e.g. Broughton
andWeitzel, 2018; Rick, 1987) and ecological interactions (Marom andWolkowski, 2024). There
is a growing interest in the analysis of radiocarbon sample abundance, notably fueled by the
recent availability of extensive 14C databases (e.g. Bird et al., 2022) and the development of new
statistical methods (reviewed in Crema, 2022).

Until very recently, the analysis of radiocarbon data abundance relied predominantly on the
Sum of Probability Distributions (SPD). The SPD is derived by aggregating the posterior distri-
butions for the calibrated age of each sample in the dataset. However, the interpretation of the
SPD encounters a main challenge because it lacks a precise definition of its underlying meaning.
Despite speculation by some authors on the meaning of such sums of probabilities, a formal
mathematical definition is notably absent (e.g. Carleton and Groucutt, 2021; Crema, 2022, also
see the supplementary text S.1). Despite this lack of a clear interpretation, the SPD is consid-
ered informative regarding changes in radiocarbon sample abundance over time. Nevertheless,
the absence of a formal model hinders the full use of this intuition, as there is no established
measure of the significance and uncertainty associated with variations in the SPD.

In recent years, significant progress has been made with the introduction of model-based
methods, as extensively reviewed by Crema (2022). This advancement has opened up new av-
enues for analyzing the abundance of radiocarbon dates, enabling the testing of models, making
model comparisons, and estimatingmodel parameters. However, in these innovative approaches
radiocarbon dates are conceptualized as independent samples drawn from a probability distribu-
tion. This assumption implies an inmutable data-generating process in which each new radiocar-
bon sample is randomly drawn from the same distribution. However, treating the abundance of
radiocarbon samples as a probability distribution overlooks the inherent nature of radiocarbon
data, which is essentially count data. The number of samples (whether total or within a specific
period) is an outcome of the whole data-generating process, not a fixed parameter set by the
experiment or researcher. Consequently, models that assume a fixed number of samples fail to
fully account for the inherent uncertainty associated with the sampling process.

Furthermore, this perspective imposes a static view of the abundance of radiocarbon sam-
ples, attributing it solely on factors acting at time the sample was formed (e.g. population size,
intensitity of fire use or waste disposal practices). Under this framework, new samples are ex-
pected to come from the same distribution and a statistical reanalysis of the new data merely
refines the estimation of that distribution. However, the generation of radiocarbon-dated sam-
ples is influenced by factors specific to the each sample (e.g. research question or availability of
alternative dating procedures) and factors that depend on the time of the sampling (e.g. damage
or destruction of archaelogical heritage, shift of research interests). The data-generating pro-
cess is mutable and we argue that any new data should lead to a revised model that integrates
all factors affecting the entire radiocarbon record.
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In this study, we advocate for the use of model-basedmethods that more accurately describe
the data-generating process. We propose a novel model that treats radiocarbon data as count
data, allowing the total amount of samples to be determined by the model rather than imposed
as if it were part of an experimental design. The parameters of this model provide a natural
interpretation in the context of the studied process, characterizing the expected number of sam-
ples per year and can be interpreted as combining all the factors that affect the abundance of
radiocarbon samples. Inference within this model is executed within the approximate Bayesian
computation framework, and its application to pseudo-observed data allows for an exploration
of differences with a state-of-the-art model-based approach.

To illustrate the application of our proposed model, we reanalyze a published dataset of ar-
chaeological radiocarbon dates from Britain and Ireland (Bevan et al., 2017). This case study
serves as an example of the practical application of our approach, shedding light on its potential
advantages over the SPD. Our results are in congruence with those by Bevan et al. (2017), but
provide formal statistical support to the conclusions.

Material and methods
Models for the abundance of radiocarbon samples
Model of counts. In the newly proposed model, the radiocarbon-dated samples are represented
as a vector R (refer to Table S1 for notation in the article). Each element Rt of vector R denotes
the number of samples at each year t within a specified time range [tmin, tmax]. The abundance ofradiocarbon samples is conceptualized as a Poisson distribution (Rt ∼ Poisson(λt)). This model
offers a straightforward formulation with interpretable parameters: assuming that at each year
t there were a potential number of samples nt that could contribute to the dataset with a prob-
ability pt , the rate parameter λt = ntpt represents the expected number of samples at year
t . In the context of archaeological data, for example, nt would encompass all organic objects
associated with or connected to human activity, qualifying as anthropogenic samples. The prob-
ability pt encapsulates a multifaceted process, including sample deposition, preservation over
time, discovery or sampling, and decision to conduct radiocarbon dating. Consequently, vector
λ encapsulates this intricate data-generating process, with its values representing the expected
values for vector R (see figure 1a and b for a visual representation).

However, R is not directly observable because the true age of each radiocarbon sample is
unknown. Radiocarbon dating provides the Conventional Radiocarbon Ages (CRA), also referred
to as uncalibrated dates. The CRA values would correspond to the true dates if the environment
14C proportion was constant through time and geography and equal to that of the atmosphere
in 1950, if the true 14C half-life was Libby et al.’s (1949) estimate of 5730 years (Bronk Ramsey,
2008), and if the 14C proportions were measured without error. In reality, these assumptions
do not hold. Thus, radiocarbon data has the form of vector R′, which contains the number of
samples, R ′

u , dated at uncalibrated date u within a range [umin, umax] (figure 1c). The relationshipbetween R and R′ is given by the calibration curve, as in well established Bayesian analysis of
radiocarbon dates (Bronk Ramsey, 2008). Assuming that radiocarbon dating uncertainty can be
modelled with a normal distribution, the radiocarbon age u of a sample of age t is modelled as
u ∼ N

(
uc,t ,

√
e2c,t + e2CRA

), where uc,t and ec,t are the values of the calibration curve for time t

and eCRA is the measurement error in the CRA for that sample. Using this normal distribution it
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is possible to model the observed number of uncalibrated dates (R′) from the expected number
of samples contributed by each ‘calibrated’ year (λ).
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Figure 1–Model for the abundance of radiocarbon samples (example). (a) Amathematicallaw determines the relationship between the expected number of samples per year (λ,the rate parameter of a Poisson distribution) and time (t): in this example an exponentiallaw with initial value λ0 = 1 at time t0 = 2450YBP (i.e. t = t0 − tYBP) and growth rate r =
0.04. (b) Number of samples per year (true age) in the data set (R, not observable) of onerandom realization of model in (a); that is, random draws from Poisson distributions withparameters in λ. (c) Number of samples per year (conventional radiocarbon age, CRA)in the data set (R′); that is, random draws from Normal distributions with parametersdetermined by the calibration curve and ages in (b).
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Changes through time of the abundance of radiocarbon samples. The model for the abundance of
radiocarbon samples as described above is determined by the set of parameters λt in λ. In most
cases, periods of hundreds if not thousands of years will be analysed, which makes models with
large number of parameters (one λ per year). This is impractical because large amounts of data
would be necessary to fit that many parameters and there would be a very likely risk of over-
fitting the model. Instead, additional models can be used to determine the change of λ through
time, assuming that consecutive years will have similar λ values. In this work, three models are
explored. The first two are the exponential model (λt = λ0e

−rt , as in figure 1a) and the logistic
model (λt =

kλ0
λ0+(k−λ0)e−rt ). These are simple models often associated to demographic processes

and used in the context of the analysis of abundance of radiocarbon samples (e.g. Bevan et al.,
2017). For a demographic interpretation of the changes in abundance of radiocarbon samples,
the parameters of these models represent the initial population size (N0 = Cλ0), the carrying
capacity (K = Ck ) and the growth rate (r ), with C being an unknown constant of proportionality.

However, assuming that a single mathematical function governs the changes in λt over largeperiods of time might not be appropriate. Piecewise models can be used to set a different rela-
tionship between λ and t at different periods. The whole range of time considered [tmin, tmax] isdivided in m periods defined by m + 1 times t0, t1, ... , tm (with t0 = tmin and tm = tmax). Here,we consider a piecewise exponential model defined bym+1 parameters λt0 ,λt1 , ... ,λtm . Within
each period x ∈ [1,m], λ changes exponentially with rate rx =

log(λtx )−log(λtx−1)
tx−tx−1

. For simplicity,
we consider the specific case in which all time intervals are of the same length.
Comparisons between two sets of radiocarbon data. Some research questions require the compar-
ison of two sets of samples of radiocarbon data (e.g. comparison of two geographical regions, or
different food sources on the same region). For two sets a and b, the total data is R = Ra + Rb.
Each set of radiocarbon data can be modelled with a Poisson distribution: Ra

t ∼ Pois(λa
t ), Rb

t ∼
Pois(λb

t ), and Rt ∼ Pois(λt) = Pois(λa
t + λb

t ). We define qt =
λa
t

λt
, which describes the proportion

of category a contributing to the total amount of samples. Our interest here is to understand
whether the relationship of the changes of λa

t and λb
t with time is determined by some common

factors or if their histories are independent. We consider three scenarios for the relationship
between two sets of samples. In the first scenario, that we name “independent”, λa

t and λb
t val-ues are independent. In the second scenario, that we name “interdependent”, parameters λt and

qt determine λa
t = qtλt and λb

t = (1 − qt)λt . The third scenario, that we name “parallel”, is a
special case of the interdependent scenario in which qt is constant through time. The depen-
dency among parameters in these scenarios is obtained through conditional prior probability
distributions among λa, λb and q (see below).
Model of probabilities. Previous works have considered similar models (e.g. exponential change)
to describe a probability distribution of the age of a sample. A fixed number of draws from this
distribution is assumed to constitute the data set of radiocarbon dates (Crema and Shoda, 2021;
Porčić et al., 2020; Timpson et al., 2020). These “probability distribution” models, describe the
change of probability π through time instead of the change of λ through time. In this model, πtis the probability that a radiocarbon sample is from year t . For any of the models of counts, an
equivalent model of probabilities can be obtained by setting πt =

λt
tmax∑

tmin

λt

, so the total probability
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Figure 2 – Conventional radiocarbon ages composing the dated archaeological recordfrom Britain and Ireland (Bevan et al., 2017). Histogram with number of radiocarbonsamples in bins of 100 (uncalibrated) years (samples from the same site are weightedsimilarly to the procedure proposed by Shennan et al., 2013). This is a visual representa-tion of summary statistics Hui with ui taking values from 9900 to 500 YBP and δ = 100.
of the model equals one for the period considered. It is important to note that by doing this nor-
malization the model of probabilities has one degree of freedom less than the model of counts.
For instance, the exponential count model has parameters λ0 and r , while the exponential prob-
ability model is determined solely by r (there is a single possible value of π0 for each value of r ).
Also, the probability model is restricted to the studied period (formally, the probability outside
the range is zero), while the count model can be extrapolated beyond that period of time.
Inference using approximate Bayesian computation

Approximate Bayesian Computation (ABC) is a statistical approach to make model-based in-
ference without the calculation of likelihoods (see Sunnåker et al., 2013, for a review). ABC is
often used for inference under models with analytically intractable likelihoods, which is not nec-
essarily the case for the models of abundance of radiocarbon samples (e.g. Crema and Shoda,
2021). However, it has other advantages such as the fast implementation under different mod-
els and priors, which is one of themain reasons for its use in this work (see below for a discussion
of other reasons). In ABC, the calculation of the likelihood of a model is substituted by the sim-
ulation of data under the model. The similarity between the real and simulated data reflects the
likelihood of the model.
Summary statistics. The similarity between the real and simulated data is typically evaluated by
comparing several summary statistics of the data. Previous applications of ABC to the analysis
of the abundance of radiocarbon samples used the values of the SPD at each year as summary
statistics (DiNapoli et al., 2021; Porčić et al., 2020). In this work we also explore the alternative
of using summary statistics based directly on CRAs (i.e. R′). Specifically we use: T , the total
number of uncalibrated dates; Hui , the number of uncalibrated dates at interval [ui , ui − δ) (with
values covering the whole period of analysis and ui+1 = ui + δ) and using several values of δ

(10, 50, 100, 500); and ∆Hui , the difference between consecutive Hui and Hui+1 values. A visual
example of Hui statistics is the histogram of CRA from Britain and Ireland in figure 2.
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In the case of real archaeological data, dates belonging to the same site are given a lower
weight for the calculation of all these statistics. This is done to compensate biases due to large
variance in sample size among sites that could reflect, for instance, differences in the resources
or research questions of the teams working on them rather than the abundance of materials.
These weights are calculated by using the binning procedure proposed by Shennan et al. (2013).
The weight for each uncalibrated date is the inverse of the number of dates within the bin. For
instance, all the dates within a bin count as a single sample for computing T . Here we have used
a binning range of 100 years.

In the case of the analysis of two sets of radiocarbon data, we define additional summary
statistics. These additional statistics capture the relationship between the two sets in their abun-
dance of samples or its change. This is captured by the calculation of the correlation and covari-
ance between Ha and Hb, and between∆Ha and∆Hb (for sets a and b).
Approximate Bayesian computation via random forests. Previous applications of ABC to the anal-
ysis of abundance of radiocarbon samples have used the ABC rejection algorithm (DiNapoli et
al., 2021; Porčić et al., 2020). This algorithm represents the most basic way of performing ABC
and presents several limitations respect to other algorithms proposed for the comparison of ob-
served and simulated summary statistics. Here, we use ABC via Random Forests (ABCRF; Pudlo
et al., 2016; Raynal et al., 2019), which uses the eponymous machine learning algorithm to learn
the relationship between summary statistics similarity and posterior probability of the model or
the parameters. In the learning step, random forests are grown from a training set constituted
by a large number of simulations known as the reference table. One random forest is grown for
each parameter or for each model comparison and they can be used to make predictions about
the real data. An important advantage of this algorithm is that a lower number of simulations are
required for inference (reducing the computational cost) and there is no need to set an arbitrary
tolerance level.
Simulation. The simulation of radiocarbon data requires to set a specific model for the relation-
ship between λt with time (e.g. the logistic model) and the values of its parameters (e.g. λ∗

0, r∗ and
K ∗, for the logistic model; where ∗ denotes simulation values). These will determine all values in
λ∗, which are then used to simulate R∗ by sampling from Poisson distributions. The uncalibrated
date u∗ for each sample of known date t∗ in R∗ will be simulated by sampling from a Normal
distribution with mean and standard deviation taken from the CRA and error associated to t∗

in the appropriate calibration curve (Shennan et al., 2013). This will result in R′∗. An example of
this procedure is presented in figure 1. This simulation process is rather similar to the procedure
proposed by Shennan et al. (2013) and widely used in other works. The main difference is that
the total number of samples in the simulated data set depends on themodel, allowing to account
for this additional source of stochasticity. The IntCal20 calibration curve (Reimer et al., 2020) is
used throughout this paper.
Evaluation of the proposed model and approach

The performance of themethod can be evaluated on simulated data for which the generating
model and parameter values are known. This is done by exploiting the properties of the random
forest algorithm. Random forests are a collection of decision trees that are grown from random
subsets of the training data (the reference table in the case of ABC), in a processed called boot-
strap aggregating or “bagging”. Because of this, for each simulation in the reference table there
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is a subsets of trees in the random forest that have been grown without the information of that
simulation. That subset of trees can be used to make inferences for that simulation, which are
called the “out-of-bag” (OOB) predictions. True values and OOB predictions can be compared to
estimate the error of the method, without the need of an additional testing set. In the context of
model choice, OOB error is used to provide confusionmatrices. In the context of parameter infer-
ence, OOB predictions are used to calculate mean squared error and the correlation coefficient
between true values and their corresponding OOB prediction.
Choice of summary statistics. The reduction of the data to a set of summary statistics can produce
loss of information for the ABC. Therefore, it is recommended to use a set of summary statis-
tics that are informative about the models and parameters to be inferred. Using the SPD (as in
DiNapoli et al., 2021; Porčić et al., 2020) is a logical choice since SPD is considered to be highly
informative about the changes in abundance of radiocarbon samples. However, the calculation
of SPD is computationally costly. Also, strictly speaking, the SPD is not a summary of the data
but a combination of the data with the calibration curve. Here we propose an alternative set of
summary statistics based on the CRA data as described above.

It is important to determine if these summary statistics are as informative as the SPD for the
inference and if there is a gain in computational time by using them. First, the computational
time for the calculation of the two sets of summary statistics was measured in 300 simulated
datasets of 1343 CRA dates. This simulated CRA datasets were generated by sampling 1343
calibrated dates uniformly between 7000 and 5000 YBP and using a CRA error of 30 years for
simulating their corresponding CRA. The bench-marking procedure compares the SPD calcula-
tion as implemented in R package rcarbon (Crema and Bevan, 2021), and an implementation of
the new set of statistics in R (de Navascués, 2025). Then, the performance of the two sets of
summary statistics for ABC inferencewas also evaluated. A reference table of 20000 simulations
was produced using the model of probabilities with probability changing exponentially between
7000 and 5000 YBP (i.e. the same model used in the ABC example in Crema, 2022). The growth
rate parameter, r , was sampled from a uniform prior distribution between −0.01 and 0.01. Two
random forest models with 5000 trees were trained from this reference table, one using the SPD
as predictors and another one using the new set of summary statistics (T , Hui and ∆Hui ).
Model of probabilities versus model of counts. The effect of using a model of counts instead of
using a model of probabilities is studied by generating one reference table from each of the
two models under exponential change on the period from 7000 YBP to 5000 YBP. Parameter
values are sampled from the following prior probability distributions: uniform between −0.005

and 0.005 for r , and log-uniform between 0.005 and 5 for λ0. A condition of 2000∑

t=0

λ0e
−rt < 5000

is imposed to avoid simulations with an unrealistic high value of samples. For each parameter
value combination, r∗ and λ∗

0, two simulations are run, one for each of the two separate reference
tables. The first simulation uses r∗ and λ∗

0 to simulate under the model of counts and the second
uses only r∗ to simulate 1343 CRA dates from amodel of probabilities. Summary statistics based
on the CRA data (T , Hui and∆Hui ) are calculated and random forests are trained for r and λ0 forthe count model, and r and π0 for the probability model (note that the estimation of π0 is donefor comparison with λ0 but is unnecessary in practice if parameter r has already been estimated).

In addition to the evaluation through the OOB predictions, a separate set of independent
simulations (pseudo-observed data-sets, PODs) was produced to study the properties of the
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posterior distributions obtained under the two different models. These PODs were simulated
in a model of counts with λ0 = 0.01, exponential rate change of r = 0.003, with starting time
7000 YBP and final time 5000 YBP. Simulations were run until 300 PODs were obtained that con-
tained exactly 1343 samples (the expected number of samples under that model). Conditioning
the simulation to a specific number of samples was done in order to analyse those PODs with
the reference tables from both models (counts and probabilities) since the probabilities model
assumes a fixed number of samples. The first 300 PODs were used to estimate posterior proba-
bility distributions for r under the model of counts and the PODs with 1343 samples were used
to estimate posterior probability distributions for r under the model of probabilities.
Case study: archaeological radiocarbon dates from Britain and Ireland

In order to illustrate the approach presented in this work, we reanalyse data of archaeological
radiocarbon dates from Britain and Ireland (Bevan, 2017). This data base comprises 30516 ra-
diocarbon dates from 200 to 9580 uncalibrated YBP from Ireland (7797 entries), Scotland (6401
entries), North-West England andWales (5333 entries), and South-East England (10985 entries).
In more than three quarters of the entries, the taxonomic origin of the material is identified. The
taxonomic level of this identification is heterogeneous across the data: sometimes identification
is at species level but often it is only at genus or higher levels. Among the taxon identified, there
are several food sources, such as as wheat (Triticum, 678 entries) and barley (Hordeum, 1102
entries).

The original article by Bevan et al. (2017) studies the change of human population size and
usage of food resources based on those data. Our work is not intended as a thorough reanalysis
of this dataset but as an illustration of themodel andmethod proposed. Therefore, we only focus
on two questions: the global pattern of change in abundance of radiocarbon samples (interpreted
as a population size proxy in the original article) and the relationship between the abundance of
samples of barley and wheat through time.
Estimation of population size changes in Britain and Ireland. For the analysis of the population
size change in Britain and Ireland, we consider the three models described above: exponential
change, logistic change and piecewise exponential change. The time period explored is restricted
between 10000 and 500 YBP. For the exponential and the logistic models, the parameters λ0 and
λf (value of λ at 500 YBP) were taken from a log-uniform prior distribution in the range [0.001, 12],
conditional to histories of increasing λ (λ0 < λf ). For the logistic model, parameter k value was
sampled from a log-uniform distribution in the range [λf + 0.001,λf + 12]. Rate of change r is
obtained from the values of those parameters.

In the piecewise exponential model there arem+1 parameters λ (λt0 ,λt1 , ... ,λtm ). The valueof m is set to divide the analysed total range of ages in periods of approximately 400 years.
Thus, for the range 10000 to 500 YBP, m = 24. The value of λt0 is taken from a log-uniform prior
distribution in the range [λmin,λmax] and consecutive values λtx = max(min(ϕλtx−1 ,λmax),λmin)with ϕ taken from a log-uniform distribution in the range [0.1, 10] (as in Boitard et al., 2016).
This way of sampling the evolution of λ through time reflects the prior belief that large jumps
over a short period of time are unrealistic (this prior prevents changes larger that one order of
magnitude for consecutive λtx values). Theminimum andmaximum λ values for thewholemodel
are λmin = 0.001 and λmax = 12.
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For eachmodel, a reference table of 30 000 simulationwas built taking parameter values from
the prior distributions described above. Model choice and posterior probability for the observed
data were obtained through ABCRF, using 2000 trees for the training of the random forest and
2000 trees for the calculation of the posterior probability. The pertinence of the approach was
evaluated in two ways. First, OOB prediction were used to calculate the confusion matrix to
evaluate the general performance of the approach. Second, a visual evaluation of the goodness-
of-fit of the model to the observed data is also provided: the variability of patterns produced by
the different models is represented using Principal Component Analysis (PCA) of the summary
statistics in the reference table, then the observed data set is projected into the PC space.

A larger reference table of 100 000 simulation was used to estimate the parameters of each
model. Random forest of 2000 trees were trained on log(λ0), log(λf ), log(k) for the exponen-
tial and logistic model. For the piecewise exponential model random forest of 2000 trees were
trained for log(λtx ) at each the 25 time points defining the periods and rx for each of the 24
periods. Refer to the full description of the model and parameters above for more details.
Testing the relationship between abundances of wheat and barley in Britain and Ireland. For the
study of the abundances of wheat and barley, we considered a piecewise exponential model and
explored the time range from 6000 to 500 YBP divided in m = 14 periods of approximately 400
years. The model describes the abundance of radiocarbon samples of two categories: wheat (w)
and barley (b). The samples were ascribed to these two categories following the same criteria as
in Bevan et al. (2017). The relationship between the changes of abundance through time of these
two categories was modelled according to the above mentioned independent, interdependent
and parallel scenarios. All three scenarios are produced with the same model, which have 15
parameters λw

tx and 15 parameters λb
tx ; the differences among scenarios reside in the conditional

prior probability distributions.
For the independent scenario, parameters λw

tx and λb
tx are sampled independently using the

same procedure as described above. That is, λw
t0 is sampled from a log-uniform distribution in

the range [λmin,λmax] and consecutive values λtx = max(min(ϕλtx−1 ,λmax),λmin) with ϕ taken
from a log-uniform distribution in the range [0.1, 10]. For the interdependent scenario, parame-
ters λtx (i.e. λ for the sum of both categories), are sampled with the same procedure; then qtxare sampled from a uniform distribution in the range [0, 1] which determines the proportion of
categories λw

tx and λb
tx at each time t0, t1, ... , tm. Finally, the parallel scenario is a special case of

the interdependent scenario, in which a single q value is taken from a uniform distribution in
the range [0, 1] and the proportion of the two categories does not change through time. The
minimum and maximum λ values for the whole model are λmin = 0.001 and λmax = 2.
Implementation

All the calculations presented in this work were done in R (R Core Team, 2021) with scripts
(available in de Navascués, 2025) that use: package extraDistr (Wolodzko, 2020) to sample from
prior distributions; package rcarbon (Crema and Bevan, 2021) to simulate CRA; packages Hmisc
(Harrell Jr, 2022), moments (Komsta and Novomestky, 2022) and weights (Pasek, 2021) to calcu-
late summary statistics; and package abcrf (Marin et al., 2022) to perform ABC analyses. Simula-
tions are run in parallel using doParallel (Microsoft Corporation and Weston, 2022b), doSNOW
(Microsoft Corporation and Weston, 2022a) and doRNG (Gaujoux, 2023).
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Results
The choice of model and summary statistics for ABC inference

We evaluated the performance of two distinct sets of summary statistics. One set comprises
the values of the SPD for each year, while the second set is calculated from counts of uncali-
brated dates as detailed in the Methods section. Summary statistics based on counts of uncali-
brated dates offer a significant computational advantage, being approximately 250 times faster
to calculate. Despite this difference, both sets of summary statistics demonstrate very high ac-
curacy in inference with no discernible difference in statistical results (Figure 3).
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Figure 3 – Influence of choice of summary statistics on the estimation of parameters.Out-of-bag (OOB) estimates of the exponential growth rate, r , compared to the truevalue from simulations in the reference table. The ABC was performed either using: (a)the SPD as summary statistics, or (b) a set of summary statistics calculated from the countof CRA. The performance is very similar despite the much higher computational cost ofusing the SPD.
We also evaluated the use of two different models, referred to as the model of probabilities

and the model of counts, each offering a distinct perspective on the process generating radiocar-
bon data. Notably, parameter inference under the model of probabilities demonstrated higher
accuracy compared to the model of counts (see Figure 4). This discrepancy in accuracy primarily
stems from larger errors observed in simulations with low values of r or λ0 (refer to Figure 4a
and b), which consequently results in less data for the model of counts.

For PODs generated under the model of counts (λ0 = 0.01, r = 0.003, with a range of 2000
years), analysis under either themodel of probabilities or themodel of counts yielded comparable
levels of error (mean squared error of 9.57 × 10−9 and 9.31 × 10−9 respectively for parameter
r ). However, it’s worth noting that the 95% credibility intervals were wider for the model of
counts (refer to Figure 5b). Furthermore, nominal coverage was more accurate for the model of
probabilities (see Figure 5a).
Analysis of archaeological radiocarbon dates from Britain and Ireland
Estimation of λ as a proxy of population size. Three models (exponential, logistic and piecewise
exponential) were explored to explain the change in abundance of radiocarbon samples from
Britain and Ireland. According to the OOB estimates from the training set, the ABCRF approach
is able to identify the piecewise exponential model with very little error and the logistic model
with a somehow higher error. However, the exponential model is difficult to identify, being often
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Figure 4 – Parameter inference differences betweenmodeling counts andmodeling prob-abilities. Out-of-bag (OOB) estimates compared to the true value from simulations in thereference table. (a) and (b) model of counts. (c) and (d) model of probabilities. (a) and (c)growth rate, r . (b) and (d) initial value (λ0 or π0).
wrongly classified as the logistic model (table S2). For the real data, the piecewise exponential
model has a clear superior fit than the two alternativemodels, with theABCRF analysis indicating
a high posterior probability for that model (0.869). The PCA of the summary statistics diversity
across simulations further reveals the lack of fit of the exponential and logistic models, which
are unable to reproduce the patterns found in real data (figure S1b and c). Parameter estimates
under the piecewise model reveal a history of fluctuations of λ through time closely resembling
the SPD curve (figure 6a). Five of the periods (6833–6438, 6042–5646, 4854–4458, 4458–4062 and
1688–1292 YBP) have estimates of the rate of change r with credibility intervals excluding zero,
indicating a significant increase of λ during those periods (figure 6b).
Relationship between the abundances of radiocarbon samples from wheat and barley. The change
in abundance of radiocarbon samples for wheat and barley was modeled using a piecewise ex-
ponential model. Three different scenarios within this model were considered based on the de-
gree of independence between the trajectories of the two cereals: the independent scenario,
where both trajectories are completely independent; the parallel scenario, where both trajecto-
ries change in parallel; and the interdependent scenario, where both trajectories are correlated.
These three scenarios can be distinguished with relatively low error using ABCRF, as indicated
by the confusion matrix (table S2). For the empirical data, the chosen scenario is the interde-
pendent scenario, with a posterior probability of 0.863. Visual evaluation of the goodness of
fit through Principal Component Analysis (PCA) shows that the observed data falls within the
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Figure 5 – Influence of the model on the credibility interval width. (a) Quantile-quantileplot of the actual and nominal coverage of 300 estimated posterior distributions esti-mated from pseudo-observed data-sets. (b) Relative width of the 95% credibility intervalof the parameter r estimated under a model of probabilities or under a model of counts.The histogram represent 300 values from pseudo-observed data-sets generated with amodel of exponential change with r = 0.003 and λ = 0.01.
expected diversity of summary statistics values for the interdependent scenario (figure S2). Pa-
rameterλ estimates indicate that the abundance of both cereals sharply increased between 6000
and 5500 years before present (YBP), then decreased until 4500 YBP, and increased again until
3500 YBP, remaining stable with some minor fluctuations until 500 YBP (figure 7a). The relative
abundance of the two cereals (q) also changed dramatically around 5500 YBP, with wheat be-
ing more abundant in the first period and barley becoming more abundant in the second period
(figure 7b).

Discussion
Performance of the new approach

The present work proposes a novel approach to analyzing the abundance of radiocarbon sam-
ples. This new method moves away from using the assumption that the abubdance of radiocar-
bon samples can be described with a probability distribution, which is the currently widespread
view (e.g. Carleton, 2021; Crema and Shoda, 2021; Porčić et al., 2020; Timpson et al., 2020).
Instead, we propose using a model based on Poisson draws to represent the number of samples
per year. We argue that this model offers a parametrization with a natural interpretation, where
λt is the expected number of radiocarbon samples at year t , and aligns better with the inherent
nature of the data.

Through simulations, we demonstrate that analyzing data under this model allows for ac-
curate inference of the expected abundance of radiocarbon samples and the rate of change in
these abundances (figure 4a and b). Themodel of probabilities exhibits lower errors in estimating
equivalent parameters (figure 4c and d). While this may appear desirable, we view it as a failure
to capture the full uncertainty of the data. The model of probabilities treats the total number
of samples, T , as a sample size controlled by the researcher. This model implies an experimen-
tal process where the researcher decides to sample T times from a probability distribution. In
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Figure 6 – Parameter estimates under piecewise exponential model. (a) Abundance ofdated archaeological record through time measured as the expected number of datedarchaeological samples per year (λ). Solid blue line indicate the point estimate (λ̂) anddashed lines indicate 95% credibility interval. The Sum of Probability Distributions (greyline) of the data is plotted for reference. Note log scale for λ. (b) Rate of change in theabundance of dated archaeological record through time (r ). Solid blue line indicate thepoint estimate (r̂ ) and dotted lines indicate 95%CI. Periods in which the 95%CI for r doesnot include zero (horizontal grey line) are marked with a light blue vertical band.

reality, the researcher has no control over the number of radiocarbon samples in the dataset,
which usually derives from the accumulation of prior research in the geographical area of inter-
est. By fixing the total number of samples, a strong dependence is generated on the modeling
of abundance of samples from different periods. Consider the initial abundance (expressed as λ0or π0) and the final abundance (λf or πf ) of samples. If we consider the extreme case in which
all dates occur close to t = 0, the model of counts will provide a good estimate of parameter λ0but will have little information to estimate λf , this is why we observe larger error for estimates
of λ when the true value is small (figure 4b). However, the model of probabilities will provide an
accurate estimate of πf , despite having little information from samples of that period, since all
the information is coming from the initial period and the constraints of the model.

The credibility interval coverage obtained under the model of probabilities is closer to the
nominal value than that of the model of counts (figure 5). This difference likely arises from the
limitation of ABCRF, which estimates the marginal posterior probability distribution of each pa-
rameter independently, rather than their joint posterior probability distribution. Since the model
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Figure 7 – Parameter estimates under the interdependent scenario for cereals(Hordeum/Triticum). (a) Estimate of the expected number of Hordeum and Triticum sam-ples through time (λ). Solid blue line indicate the point estimate (λ̂) and dashed lines indi-cate 95% credibility interval. The Sum of Probability Distributions (grey line) of Hordeum(solid line) and Triticum (dashed line) are plotted for reference. Note log scale for λ. (b)Proportion of Triticum (q) expected among the samples. Solid blue line indicate the pointestimate (q̂) and dotted lines indicate 95%CI.

of probabilities has only one parameter in the example, its posterior probability distribution is
easier to estimate. For future applications, it would be interesting to consider other simulation-
based inference approaches that estimate the joint distribution of parameters and provide con-
fidence intervals with better coverage properties (Rousset et al., 2017, and unpublished results
by F. Rousset).

An additional advantage of the model of counts is that simulations of the reference table can
be reused to analyze different datasets. The generation of a reference table requires to assume
a calibration curve and some prior distribution for the parameters; however, the number of sam-
ples is not fixed. Therefore, a reference table generated with non informative priors could be
reused for dataset for which the same calibration curve are appropriate. This will save computa-
tional time and reduce the carbon footprint of the analyses (Lannelongue et al., 2021).

The use of the SPD values as summary statistics for simulation-based inference is a good
idea only at first sight. The intuition that SPD is informative about the abundance of radiocarbon
samples is confirmed independently of the type of model assumed (e.g.DiNapoli et al., 2021, and
figure 6a). However, the computational cost of calculating the SPD offers no gain compared to
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simpler summaries of the CRA data. In addition, transforming the data into the SPD assumes
a specific calibration curve for the data. This could be appropriate for many cases, but we can
also imagine cases in which a proportion of samples might have some intake of marine carbon in
an uncertain proportion. In a Bayesian framework, it would be straightforward to propose prior
distributions for the proportion of marine carbon intake of those samples and incorporate their
uncertainty on the calibration by doing so. In such a case, summarising the data with a different
calibration curve could be prone to produce misunderstandings.
Application of the new approach to data from Britain and Ireland

The main features of the demography of Britain and Ireland inferred in the original analysis
by Bevan et al. (2017) are recovered in our analysis. Three periods (Early Neolithic, around 6000

YBP; Late Neolithic/Early Bronze Age, approximately between 5000 and 4000 YBP; and Early
Medieval, around 1500 YBP) of demographic expansion show strong support, with distinct es-
timates (i.e. non-overlapping 95% credibility intervals) of λ at the beginning and end of those
periods and positive estimates of the growth rate r with 95% credibility intervals excluding zero
(figure 6). Some other features discussed by Bevan et al. (2017) have lower support, such as the
decline after the peak at the Early Neolithic, the decline after the Bronze Age and its recovery:
95%CI of r include zero, but they have non-overlapping 95%CI of λ. What it is noteworthy is
the significant increase during the period 6833–6438 YBP which was not noted by Bevan et al.
(2017). This observation of an early increase in λ suggests a demographic expansion that starts
several hundreds years before the peak around 6000 YBP. This last result highlights the impor-
tance of using the model-based statistical analyses developed in the last few years by several
authors (reviewed by Crema, 2022) over visual evaluation of SPD curves.

The analysis of abundances ofwheat and barley reveals that they are not independent of each
other. Their total abundance (figure 7a) appears to follow the samefluctuations as thewhole data,
suggesting that demographic size could determine the amount of wheat and barley cultivated,
potentially generating this correlated pattern of abundance between these two cereals. Bevan et
al. (2017) already noticed the similarity between demography (i.e. abundance of all samples) and
starchy food plants abundance, which is congruent with them being staple food. Regarding the
relative abundance of these two cereals, the notably result is the transition of higher abundance
of wheat in the Early Neolithic to the larger abundance of barley thousand years later. Relative
abundance might have fluctuated afterwards, but the largely overlapping confidence intervals
prevent any meaningful discussion of these results.
Combining radiocarbon data with other types of data

The analysis of the abundance of radiocarbon data in archaeology has primarily focused on
its use as a proxy for demography. The validity of this proxy has been thoroughly discussed in the
literature (e.g. Rick, 1987; Williams, 2012). Some criticisms regarding the statistical uncertainty
of the SPD (e.g. Carleton and Groucutt, 2021) are addressed in the recent works developing
model-based approaches such as the one presented here. Biases arising from archaeological
research (questions drive which sites or periods are studied and which samples are dated) might
be attenuated by the weighting procedure proposed by Shennan et al. (2013). Taphonomy can
also be modelled to correct for different preservation across samples (Contreras and Codding,
2023). However, some differences in the abundance of samples might be driven by changes in
human practices (e.g. use of fire dependent on climate or cultural changes in the way to dispose
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objects) that might bemore difficult to take into account. In that sense, it is important to highlight
that the proposed model studies the abundance of radiocarbon samples. Its application to study
demography (or any other process) requires understanding the limits of the data and model used
and acknowledging those caveats. Nevertheless, inferring the past demographic dynamics is an
important component for understanding the prehistoric populations and, despite its limits, the
abundance of radiocarbon samples seems to be informative about it.

In order to produce more robust inferences of demography, the use of multiple sources of
information has been suggested (Crema and Kobayashi, 2020; Hinz et al., 2022). The approach
that we propose here could be developed for this purpose. First, the Poisson law proposed to
model the number of artifacts that a given year contributes to the archaeological record can be
extended to other types of dated archaeological remains. The key to this is to properly model the
uncertainty about the age of those remains (i.e. the equivalent to the calibration curve for the
radiocarbon samples). For dating methods based on the natural sciences (radiocarbon and opti-
cally stimulated luminescence dating) there is a wealth of information about how to model those
uncertainties. For other methods of assigning dates (numismatic, aoristic approaches) proper sta-
tistical models can also be proposed (e.g. Crema, 2024).

Analyzing the data under an ABC approach may also facilitate the combination with other
sources of information such as genetic diversity. ABC is widely used in population genetics to
obtain demographic inferences, including in studies using ancient DNA from prehistoric sites.
Simulating both archaeological and genetic data based on the same demographic trajectory can
be envisioned and would allow the combination of two disparate sources of information. Never-
theless, it must be noted that population genetics “demographic” inference provides a measure
of genetic drift (the so-called effective population size) rather than census population size. As
with for the abundance of radiocarbon samples, there are good reasons to assume that the ef-
fective population size offers information about demography, but the interpretation of results
should bear in mind the limits of the data and the models used. For instance, there is ancient
DNA data from Britain and Ireland (e.g. Patterson et al., 2022) that could be used jointly with the
radiocarbon data from Bevan et al. (2017) to infer demography. However, the genetic structure
and admixture of those people would need to be taken into account to disentangle their effects
on genetic diversity from that of population size. Studies trying to combine archaeological and
genetic data will need to address the question of whether they are indeed inferring a common
process, two separate processes with irreconcilable differences, or, more likely, an intermediate
situation.
Conclusion

The analysis of the change in frequency of radiocarbon samples though time is an attrac-
tive and useful approach to address diverse questions in archaeology and other sciences of the
past. A key development for that analysis was the SPD, which allows to visualize the abundance
of radiocarbon samples in the natural (calibrated) time scale, yet it lacks a formal mathematical
definition.We argue that the use of the SPD has lead recent model-based approaches to concep-
tualize the abundance of radiocarbon samples as a probability distribution, which we consider a
suboptimal model for the underlying data.We propose a newmodel for the conceptualization of
abundances of radiocarbon samples, allowing powerful statistical inference of parameters that
have a natural interpretation, as the number of expected samples contributed by each year to
the total.
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Supplementary Materials
S.1. An interpretation of Sum of Probability Distributions (SPD) as the expected number of

samples per year
As far aswe know, a formalmathematical interpretation of the SPD is lacking, as the algorithm

defining it lacks a rigorousmathematical justification for aggregating independent probability dis-
tributions. Nevertheless, we find it more intuitive to interpret the SPD as the expected number
of samples from each year rather than as a probability distribution. Consider the meaning of the
SPD value at a specific year. Each sample in the radiocarbon data set has a probability of being
‘sampled’ in that year, given by the posterior probability distribution from the calibration process.
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Consequently, each sample actually originating from that year can be viewed as a ‘success’ and
samples from other years as ‘failures’ akin to independent binomial trials. The sum of these suc-
cesses, i.e., the number of samples from that year, follows a Poisson-binomial distribution. The
expected value of a Poisson-binomial distribution (i.e. the expected number of samples at that
year) is the sum of the probabilities of each trial, representing the SPD value for that year. This
rationale provides the insight that the SPD somehow quantifies the expected number of sam-
ples for each year, suggesting that the analysis of radiocarbon abundance data should focus on
modeling the number of samples at each year. However, SPD values from different years are not
independent, rendering the Poisson-binomial model inapplicable to the entire SPD. Remarkably,
our proposedmodel, utilizing Poisson distributions to model the number of samples at each year,
yields inferences closely aligning with SPD values (figure 6).

Table S1 – Notationa
meaning

CRA conventional radiocarbon age
Hu number of samples in an interval starting at uncalibrated year u and ending at uncalibrated year

u + δ
k upper bound value of λ under a model of logistic change
nt number of objects in year t that can potentially become a radiocarbon sample in the data set
N normal or Gaussian distribution
pt probability of an object to become a sample in the radiocarbon data at year t
q ratio between λ of subset a (λa) and λ for the total dataset
r growth rate of λ under a model of exponential or logistic change
R vector of number of radiocarbon samples for each year between tmin and tmax

Ra vector of number of radiocarbon samples for each year between tmin and tmax for the subset ofsamples a
Rt number of radiocarbon samples at year t , an element of vector R
R′ vector of number of radiocarbon samples with CRAs between umin and umax

R ′
u number of radiocarbon samples with CRA = u, an element of vector R′

t time in years (calibrated)
T total number of samples in the radiocarbon data
u uncalibrated radiocarbon year (measurement unit for CRA)
δ size of the interval of uncalibrated years used to calculate summary statistics of the data
∆Hu Difference between values Hu and Hu+δ

λ vector of expected number of radiocarbon samples for each year between tmin and tmax

λt expected number of radiocarbon samples at year t , an element of vector λ
πt probability that the age of a sample is ta We follow the convention of marking vectors with bold font.

Table S2 – Confusion matrices
true model prediction error rate

exponential logistic piecewise
exponential 15067 14873 60 0.498logistic 4631 25277 92 0.157piecewise 132 324 29544 0.015

independent interdependent parallel
independent 26348 2480 588 0.104interdependent 980 25290 3146 0.140parallel 619 2479 26318 0.105
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Figure S1 – PCA for goodness-of-fit evaluation. PC values from 3000 randomly selectedsimulations are plotted for each model for the first six axes. The projection of the ob-served summary statistics is represented by an asterisk (*). The first six principal compo-nents capture 97.06% of the variance in the data and are presented by consecutive pairsin panels (a), (b) and (c).
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Figure S2 – PCA for goodness-of-fit evaluation, cereals. PC values from 3000 randomlyselected simulations are plotted for each model. The projection of the observed sum-mary statistics is represented by an asterisk (*). The first six principal components cap-ture 99.60% of the variance in the data and are presented by consecutive pairs in panels(a), (b) and (c).
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