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Abstract
A fundamental aspect of ecology is identifying and characterizing population processes. Because a
complete census is rare, we almost always use sampling to make inference about the biological pop-
ulation, and the part of the population at risk of sampling is referred to as the statistical population.
Ideally, the statistical population is the same as, or accurately represents its corresponding biological
population. However, in practice, they rarely align in space and time, which can lead to biased in-
ference. We often view a population misalignment as a temporary emigration process and resolve it
with replicate and/or repeat sampling, though this approach is not feasible for all species and habitats.
We developed a hierarchical modeling framework to estimate abundance of a biological population
of the Kittlitz’s murrelet (Brachyramphus brevirostris), a highly mobile, non-territorial, ice-associated
seabird of conservation concern in Alaska and eastern Russia. Our framework combines datasets
from boat and telemetry surveys to account for all components of detection probability, specifically
using telemetry locations to estimate probability of presence (pp) and line transect distance sampling
to estimate probability of detection (pd). By estimating pp directly, we were able to account for tem-
porary emigration from the sampled area, which changed with shifting icefloes between sampling
occasions. Between 2007 and 2012, annual pp was highly variable, ranging from 0.33 to 0.75 (me-
dian=0.50, standard deviation=0.02), but was not predictable using five environmental covariates. In
years when two boat surveys were conducted, our model reduced the coefficient of variation (CV) of
abundance estimates for the biological population compared to the statistical population by 13–35%,
yet in the year with only one boat survey (2009), the CV skyrocketed about 10-fold, emphasizing the
importance of a second survey if pp varies. Although we increased the precision of annual abundance
estimates by accounting for pp, we did not see the same improvement in the temporal trend estimate.
This result indicates that while we reduced within-year variance, we failed to account for a source(s)
of variation across years, which we suspect is related to the propensity for murrelets to skip breeding
in some years. Our modeling framework to account for a population misalignment is simple, flexible,
and scalable for generating unbiased and precise abundance estimates of highly mobile species that
occupy dynamic habitats where other open population models are not possible. Importantly, it im-
proves inference of the biological population, which is the population of interest. We urge ecologists
to think critically about the population in which they want to draw inference, especially as tracking
technology improves and model complexity increases.
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Introduction 

A fundamental aspect of ecology is identifying and characterizing population processes. A common 

definition of a population is “a group of organisms of the same species occupying a particular space 

at a particular time that are capable of interbreeding” (Krebs, 1994; Williams et al., 2002); hereafter, 

we refer to a biological population using this definition. Because a complete census is rare, we almost 

always rely on sampling to make inference about a biological population, and the scope and strength 

of inference depends on our ability to sample the population appropriately. For mobile species, this 

crucial task can be challenging. One of the important characteristics of population sampling is the 

portion of the population present at the time and place of sampling; hereafter, we refer to the part of 

the biological population at risk of sampling as the statistical population.   

The conceptual distinction between a biological population and a statistical population has been 

around for decades, though the terminology has varied considerably (Waples & Gaggiotti, 2006). In 

addition to biological and statistical (Krebs, 1999), notable examples include target and sampled 

(Cochran, 1977), natural and local (Andrewartha & Birch, 1954), and resource and statistical 

(Reynolds, 2012). Regardless of the terminology, the distinguishing principle is the same: one 

population is what we really want to know something about (biological) and the other is what we use 

to infer what we want to know (statistical). In practice, it is important to remember that sampling-based 

inference directly applies only to the statistical population; logic, assumption, or additional information 

are needed to extend inference to the biological population. 

When the biological and statistical populations are identical, direct statistical inference applies to 

both populations. However, when the proportion of the population at risk of sampling is <1, then the 

statistical population is usually a subset of the biological population (Figure 1); we refer to this situation 

as population misalignment. Population misalignment also has been called a frame error (Reynolds, 

2012), drawing from the fact that the sampling frame defines the proportion of the biological population 

at risk of being sampled (i.e., the statistical population). 

Population misalignment can occur for a variety of reasons. Common reasons include those that 

are physical (e.g., natural barriers), logistical (e.g., cost, safety), legal (e.g., landownership 

boundaries), political (e.g., international borders), and even biological (e.g., non-breeding). For 

example, the Pacific walrus (Odobenus rosmarus divergens) population ranges across marine waters 

of Alaska and Russia, though sampling rarely covers the entire region mostly owing to complications 

with securing the necessary international permits (e.g., Beatty et al., 2022). Consequently, assuming 

individuals can move freely, they may not be exposed to sampling consistently, which potentially 

affects inference about the biological population.  

Analytically, we often view population misalignment as a form of temporary emigration, whereby 

individuals are temporarily not exposed to sampling (Kendall et al., 1997). Temporary emigration is an 

oddly vague process with biological and statistical drivers that usually are confounded. For example, 

individuals may temporarily emigrate for biological reasons like searching for food or avoiding 

predation, statistical reasons such as unequal sampling probability owing to a small or varying frame, 

or a combination of both. Ultimately, temporary emigration is a detection issue. If it occurs randomly 

with all animals equally likely to be part of the statistical population across sampling occasions, 

temporary emigration will cause large residual variance and reduced precision of abundance 

estimates; if it occurs non-randomly, e.g., with a temporal trend, it will bias estimates.  

Over the last few decades, many analytical approaches have been developed to account for 

temporary emigration when estimating abundance. The most notable methods are capture-recapture 

models that use robust design (Kendall et al., 1997) or are spatially explicit (Royle & Young, 2008), 

extensions of N-mixture models (e.g., Chandler et al., 2011), thinned point process models (e.g., Mizel 

et al., 2018), and models that combine methodology (e.g., Powell et al., 2000; Amundson et al., 2014). 
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These approaches use spatial and temporal replicates with short periods of closure (i.e., no movement 

into or out of the statistical population; hereafter replicate sampling) or the ability to identify individuals 

during sampling (hereafter repeat sampling) to estimate temporary emigration and abundance of the 

biological population, which is sometimes referred to in this context as the superpopulation (Schwarz 

& Arnason, 1996). While these models are flexible and powerful, they require data from replicate and 

repeat sampling, which is not feasible for all species and habitats. 

 

 

Figure 1 - Schematic illustrating the relationship between the (a) biological population, 
or the population of interest; (b) sampling framework with line transects (black lines with 
gray rectangles) along which individuals are sampled (solid yellow circles) or not 
sampled (open yellow circles) and inaccessible areas (cross-hatching) that contain a 
portion of the biological population (solid black circles); and (c) statistical population, 
which is defined by the extent of the sampling frame in (b). 

An alternative approach to handling a population misalignment that does not require replicate or 

repeat sampling is to decompose the detection process. Nichols et al. (2009) described four 

components of overall detection (p): (1) ps, the probability that the individual’s home range includes at 

least a portion of the sample area; (2) pp, the probability of presence within the sample area during a 

survey; (3) pa, the probability of availability given presence; and (4) pd, the probability of detection 
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given presence and availability. The first component (ps) simply confirms that an individual is a member 

of the biological population, and the last component (pd) refers to the actual observation process, that 

is whether an individual was observed. Jointly, the second and third components (pp and pa, 

respectively) describe temporary emigration, with the second component (pp) being spatial temporary 

emigration, and the third component (pa) as random temporary emigration (Kery & Royle, 2016). A 

major advantage to using this approach is that each component can be estimated separately using 

different datasets and even different data types (Hostetter et al., 2019), making it suitable for all 

species and habitats provided that data for estimating components are available. 

We applied this approach to account for population misalignment of the Kittlitz’s murrelet 

(Brachyramphus brevirostris), a highly mobile, non-territorial, ice-associated seabird that is irregularly 

distributed across coastal Alaska and eastern Russia. Several aspects of this species’ life history 

complicate methods that rely on replicate or repeat sampling to estimate spatial temporary emigration. 

Unlike most seabirds, Kittlitz’s murrelets do not nest in colonies, but instead nest solitarily at low 

densities, usually in remote inaccessible locations (Kissling et al., 2015a). Thus, populations cannot 

be monitored at colonies like most seabirds where replicate and repeat sampling is practical and 

efficient. Additionally, owing to the small size, cryptic behavior, and low and variable breeding 

propensity in this species, capture-recapture and resight models are not reasonable options. It is 

nearly impossible to resight banded or marked murrelets on the water or in flight and recapture rates 

are too low to be useful for estimating abundance (Kissling et al., 2015b). 

Instead, the only viable way to monitor Kittlitz’s murrelet populations is with boat-based abundance 

surveys that are conducted during the breeding season when most murrelets concentrate in bays and 

fjords often near tidewater glaciers (Day et al., 2020). A design challenge and safety concern for these 

surveys is the presence of icefloes, large tidal fluctuations, glacial river debris, and the possibility of 

rough seas. These dynamic conditions can restrict boat access to portions of the study area and cause 

murrelets to redistribute over short time intervals, resulting in time-varying statistical populations and 

a population misalignment that cannot be handled with replicate sampling, as neither the murrelets 

nor the habitat can meet the closure assumption.  

We developed a hierarchical Bayesian modeling framework to estimate abundance of a biological 

population of the Kittlitz’s murrelet in a dynamic environment. Our framework utilizes datasets from 

telemetry flights to locate radio-tagged murrelets, boat-based distance sampling surveys, and dive 

behavior trials to account for all components of detection probability (ps, pp, pa, pd). Our primary 

objective was to develop an analytical tool to account for misalignment of the statistical and biological 

populations of this unusual species so that we could generate unbiased abundance estimates for 

further use in an integrated population model (Kissling et al., In revision). More specifically, here, we 

aimed to (1) estimate detection probability components and their variation across space and time; (2) 

investigate predictability of pp using environmental covariates; and (3) estimate abundance and trend 

of the statistical (without pp) and biological populations (with pp) and identify any sources of bias. We 

also wanted to assess whether we delineated the biological population of Kittlitz’s murrelets in our 

study area appropriately. 

Material and methods 

Study area 

Our study was centered in Icy Bay, Alaska, USA, located in the northeastern Gulf of Alaska and 

~110 kilometers northwest of the town of Yakutat (Figure 2). Icy Bay is a highly dynamic glacial fjord 

system that has experienced multiple, rapid ice advances and subsequent retreats over the past 

~3,800 years with the most recent retreat of approximately 40 km during the 20th century (Barclay et 

al., 2006).  
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Figure 2 - Map of study area, Icy Bay, Alaska, where we conducted boat and telemetry 
surveys to estimate abundance of Kittlitz’s murrelets. Our sampling area during 
telemetry flights comprised five spatial states that collectively formed the extent of the 
biological population: Icy Bay (Main Bay and Taan Fjord sub-states combined), East 
Bay, Upper Bay, Ocean, and nest. During boat surveys, only the Icy Bay state, with 
Main Bay and Taan Fjord as strata, was regularly accessible and formed the extent of 
the statistical population. The gray-shaded area is land. 

Currently, Icy Bay comprises a shallow outer bay and a deeper inner bay. The outer bay is adjacent 

to the Gulf of Alaska and measures 6 km wide at the mouth. The inner bay is divided into four distinct 

fjords with each terminating at an active tidewater glacier. Of these fjords, only Taan Fjord is regularly 

accessible by boat (Figure 2) The Malaspina Glacier, the largest piedmont glacier in North America, 

is situated to the east and empties meltwater and glacial sediment into Icy Bay via the Caetani River 

system, which can restrict boat access to the eastern side of the bay. During periods of high river flow, 

debris and sedimentation settle near the outflow and the marine waters become too shallow to 

navigate a boat safely. In addition, two small bays (Riou and Moraine bays) are located on the eastern 

side of Icy Bay and they have submerged marine sills at their mouths making it difficult to access them 

during low tides. The total surface of Icy Bay is approximately 263 km2, but typically the upper half of 

the bay is covered in thick ice floes and large icebergs, resulting in an open water surface area of ~160 

km2 with considerable variability within and across years depending on glacial calving activity. 

Data collection 

Boat surveys 

From 2005 to 2017, we conducted two boat-based abundance surveys between 1 and 15 July in 

each of eight years (2005, 2007–2008, 2010–2012, 2016–2017); in 2009, we conducted only one 

survey  on 17 July because of logistical constraints. The target sampling area was ~160 km2 and 

contained 19 line transects total, with 11 transects in the Main Bay and 8 transects in Taan Fjord 
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(Figure 2), though actual sampling effort varied for each survey because of access issues (Table 1). 

Generally, we completed surveys in a single day, though rarely it took two days, depending on tides 

and other logistical factors. Boat surveys involved line transect distance sampling, following the 

protocol described in Kissling et al. (2007, 2011), with one exception; in 2016 and 2017, we estimated 

the angle and distance from the boat to each murrelet group as opposed to estimating perpendicular 

distance from the line transect (all other years). We also recorded group size, behavior (water, flying), 

and foraging activity of all Brachyramphus murrelets observed. Both Kittlitz’s and its congeneric 

marbled murrelet (B. marmoratus) occur in Icy Bay and can be difficult to distinguish, especially at a 

distance; if an observer was unable to identify a murrelet (or group of murrelets) to species, it was 

recorded as an unidentified murrelet(s).  

Table 1 - Sample sizes and effort by survey type for estimating abundance of a 
biological population of Kittlitz’s murrelets, Icy Bay, Alaska, 1–15 July 2005–2017. 
Truncation distance was used to model the detection function to estimate probability of 
detection (pd) with distance sampling data. 

Year 

Boat surveys Telemetry surveys 

# surveys 

Portion of sampling area 
surveyed Truncation 

distance (m) 

15-day period 

Survey 1 Survey 2 # flights 
# radio-tagged 

individuals 
# locations 

2005 2 0.85 0.85 250 - - - 
2007 2 0.75 0.74 281 4 24 82 
2008 2 0.75 0.70 278 8 20 137 
2009a 1 0.91 - 288 5 20 85 
2010 2 0.67 0.91 242 3 24 58 
2011 2 0.77 0.73 210 4 27 100 
2012 2 0.75 0.56 181 4 17 54 
2016 2 0.91 1.00 325 - - - 
2017 2 0.91 0.90 323 - - - 

aBoat survey conducted on 17 July 2009; telemetry survey information presented here for 1–15 
July 2009. 

Telemetry surveys 

We captured Kittlitz’s Murrelets on the water using the night-lighting method (Whitworth et al., 

1997) in the Icy Bay study area between 8 May and 3 June, 2007–2012 (Figure 2; see Kissling et al., 

2015a, 2015b, 2016 for details on capture, handling, tagging, and relocating). Following capture, we 

transported murrelets to a larger vessel for processing, which included morphometric measurements, 

blood sampling for sex identification, and banding. We deployed very-high-frequency (VHF) radio 

transmitters on a subset of after-second-year murrelets captured each year. We attached the 

transmitters (Advanced Telemetry Systems, Inc., Isanti, Minnesota; model number A4360; 110-day 

battery life) using a subcutaneous anchor on the bird’s back between the scapulars (Newman et al., 

1999). If both birds of a pair were captured, we randomly selected one bird to radio-tag to ensure 

independence. We released murrelets immediately after processing was complete.  

We attempted to locate radio-tagged murrelets 2–5 times per week for at least eight weeks after 

tagging using fixed-wing aircraft equipped with “H-style” antennas mounted on the struts. We were not 

able to search for tagged birds using a strict design, but instead aimed for complete coverage of the 

study area, as shown in Figure 2, in a systematic way that allowed for safe flying. We first attempted 

to locate all murrelets on the water in the Icy Bay study area within gliding distance of shore; if 

murrelets were not detected at sea, we flew over all assumed potential nesting habitat within reason 

(e.g., fuel constraints) to locate incubating birds. We conducted telemetry flights on the same day as 

boat surveys; on occasion, we had to fly the telemetry survey on the following day because of aircraft 

availability. All telemetry flights were completed in less than four hours.  
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During each flight, we mapped ice conditions into five categories of increasing ice density: none, 

brash ice, open pack ice, close pack ice, and very close pack ice. We defined brash ice as 

accumulations of floating ice made up of fragments not more than 2 m across, open pack ice as low 

concentration pack ice with many leads and polynyas and the floes generally were not in contact, close 

pack ice as moderate concentration pack ice with the floes generally in contact, and very close pack 

ice as high concentration pack ice with very little water visible (Bowditch classification; NOAA, 2007). 

Following each flight, we digitized these maps in ArcGIS (ESRI, v10.7.1) and estimated ice cover (km2) 

by category in the study area on that day. We then assigned all locations of radio-tagged murrelets to 

an ice category using the ice condition maps for each corresponding telemetry flight. 

Environmental data 

We compiled environmental data for murrelets located during telemetry flights. Using the date and 

time of each location, we determined tide direction, which represented the vertical movement of water, 

as ebb or flood, and tidal current strength, the horizontal movement of water, following Kissling et al. 

(2007). We also acquired the daily precipitation (mm), which affected freshwater input volume and 

turbidity, and average daily wind speed (m/sec), which influenced icefloe movement and ocean surface 

conditions, from a weather station in Icy Bay (https://www.ncdc.noaa.gov/cdo-web/). Lastly, we 

calculated the proportion of the Icy Bay state (i.e., the area sampled during boat surveys) that was 

covered in ice (all categories) on the flight day. See ‘Predicting probability of presence’ below for 

hypotheses regarding these environmental data. 

Data analysis 

Components of detection probability 

We considered detection probability components individually, which allowed for use of different 

datasets, and then combined those necessary in a joint likelihood model to estimate abundance (see 

below; Figure 3). This approach was efficient, as two components of detection probability, ps and pa, 

were deemed to be close to 1 and unnecessary in the abundance model. 

 

Figure 3 - Schematic showing data sources for estimating abundance of the statistical 
population (N) and the biological population (M) of Kittlitz’s murrelets in Icy Bay, Alaska, 
2005–2007, with the four components of detection probability, where ps is the probability 
that an individual’s home range includes at least a portion of the sample area, pp is the 
probability of presence within the sample area during a boat survey, pa is the probability 
of availability during a boat survey, and pd is the probability of detection by an observer 
during a boat survey. For this study, we assumed ps and pa were 1 based on previous 
work described by Kissling et al. 2024b and Lukacs et al. 2010, respectively. 

We determined that ps, the probability that an individual could be included in the sampled area 

during a boat survey, was 1 in all years by examining both home ranges (95% utilization distribution 
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[UD]) and core use areas (50% UD) of radio-tagged murrelets (Kissling et al., 2024b). The UDs for all 

individuals intersected with the sampled area during boat surveys in all years. Therefore, we did not 

include ps in our model. 

We estimated pp, the probability that an individual was present in the sampled area during a boat 

survey, using location data from radio-tagged murrelets. Following Kissling et al. (2015b), we assigned 

each telemetry location to one of five spatial states (Figure 2): Icy Bay, which comprised Main Bay and 

Taan Fjord sub-states and was the core area sampled by boat; East Bay, which was too shallow for a 

boat; Upper Bay, which was too icy; Ocean, which was too rough; or at a nest. The outer limit of the 

Ocean state was constrained to aircraft gliding distance to shore, and it was same area used for a 

multi-state survival analysis (Kissling et al., 2015b). Any telemetry locations outside of these five states 

were removed from our analysis (<2% of all locations); notably, none of these individuals were located 

again. We then merged data on spatial state and ice category for each telemetry location. We 

considered a radio-tagged murrelet to be present in the sampled area if it was in Icy Bay state and in 

ice categories of none, brash ice, or open pack ice, where we could conduct boat surveys safely. If a 

radio-tagged murrelet was at a nest or in the East Bay, Upper Bay, Ocean, or in close pack ice or very 

close pack ice, it was deemed not present. 

Then, we filtered telemetry data to include locations from 1 to 15 July to overlap with our boat 

survey protocol. We explored the use of telemetry locations acquired in 1-, 3-, 5-, and 7-day windows 

surrounding the boat survey; for example, if a boat survey was conducted on 8 July, the 3-day window 

was 7–9 July and the 5-day window was 6–10 July. All telemetry locations collected during a specific 

window were used to estimate a single value of pp. In 2009, we conducted a single boat survey late 

(17 July) because of boat availability and poor weather and therefore, we shifted the windows to center 

on the later date. In all years, we found that pp varied little with window length, though precision 

improved (Appendix 1), which was unsurprising given that sample size increased (i.e., number of 

telemetry locations). Here, we report results for the 3-day window only because it was the best tradeoff 

between improved precision while maintaining a short temporal window around each survey. For 

comparison, we also report pp for the entire 15-day period (1–15 July). 

We conducted boat-based dive behavior trials to estimate pa, the probability that a murrelet was 

available for detection (i.e., not underwater) given presence (Lukacs et al., 2010). These experimental 

trials consisted of approaching groups of murrelets in a boat and recording the characteristics of their 

response (e.g., flight or dive, distance, dive time, number of dives). We determined that the probability 

of a murrelet being unavailable for detection was quite low (0.032 ± 0.007; see details in Lukacs et al., 

2010). Therefore, we assumed pa was close enough to 1 not to affect abundance estimates, and, like 

ps, did not include it in our model.  

Finally, we estimated pd, or the probability of being detected given presence and availability on 

boat surveys, using conventional distance sampling (Buckland et al., 2001). We filtered data to include 

murrelets observed on the water only, i.e., we excluded flying birds from our analysis. We pooled data 

across both surveys each year (except 2009) and all Brachyramphus murrelets to estimate pd because 

observers rarely changed, and we did not expect detection probability to be different by species. We 

then truncated 5% of the data from the right-hand tail of the detection function (Buckland et al., 2001). 

We examined the effect of group size on the scale parameter of the half normal detection function, but 

it had no effect in any year (based on ΔAIC values and Cramer-von Mises tests) and therefore, we did 

not include group size in our analyses.  

Then, to allocate murrelets not identified to species (i.e., unidentified Brachyramphus murrelets) 

during boat surveys, we estimated the probability of being a Kittlitz’s murrelet (pk), as opposed to a 

marbled murrelet, in two strata (m) in Icy Bay for each year (Figure 2). While Kittlitz’s murrelets are 

uniformly distributed throughout the bay, marbled murrelets are not; they are rarely located in Taan 

Fjord (Kissling et al. 2007, 2011). Therefore, we divided our sampling area into two strata, Main Bay 

and Taan Fjord, to satisfy the assumption of uniform distribution when estimating pk. Note that these 
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strata were the same as the Main Bay and Taan Fjord sub-states described for pp, though they were 

not indexed for pp; we used different terminology to avoid confusion in the code. 

Model for biological population abundance 

We developed a hierarchical Bayesian modeling framework to estimate annual abundance of the 

biological population. Our framework combines multiple datasets in a unified analytical framework 

(Figure 3), and therefore, it fully accounts for uncertainty and error in parameter estimates, similar to 

an integrated model though without a shared parameter across all datasets (Zipkin et al., 2021). We 

used data augmentation to represent a relatively large number of potential but unobserved groups in 

our sampling area during each boat survey (Royle & Dorazio, 2008). To estimate a single value for 

annual abundance, we used the following joint likelihood: 

(1) 𝐿[𝑀 |𝑑𝑎𝑡𝑎] = [𝐿[𝑀|𝑁𝑖 , 𝑝𝑝,𝑖]] [𝐿 (𝑝𝑝,𝑖 |𝑦𝑝𝑝,𝑖
)] [𝐿(𝑝𝑑,.|𝑦𝑝𝑑,.

)] [𝐿(𝑝𝑘,.𝑚|𝑦𝑝𝑘,.𝑚
)] 

where M is the abundance of the biological population; Ni is the statistical population abundance 

estimated for survey I; pp,i is the probability of presence for survey i; 𝑦𝑝𝑝,𝑖
 is the telemetry survey data 

used to estimate pp,i; pd,. is the probability of detection across both surveys; 𝑦𝑝𝑑,.
 is the boat survey 

data to estimate pd,.; pk,.m is the probability of being a Kittlitz’s murrelet across both surveys by stratum 

m; 𝑦𝑝𝑘,.𝑚
 is the boat survey data used to estimate pk,.m; and data refers to the collective boat and 

telemetry survey data. We estimated annual abundance of the statistical population using equation 1 

without the pp,i likelihood component, which essentially assumes pp,i was 1. 

We modeled pp,i on the logit scale using telemetry survey data as logit(pp,ij) = βi, where βi is the 

logit(pp,i.) and therefore, 

(2) 𝑦𝑝𝑝,𝑖𝑗
 ~ Bernoulli(pp,ij) 

where individual locations (j) during each survey (i) were used to estimate pp,ij. We did not include 

covariates in this sub-model because we did not identify any that helped explain variation in pp,ij (see 

‘Predicting probability of presence’ below). 

We modeled pd,. on the log scale using the boat survey data with perpendicular distance of each 

group q from the transect line (xiq) and the half-normal detection function: 

(3) 𝑝𝑑,.𝑞 = 𝑒𝑥𝑝 (−
𝑥𝑖𝑞

2

2𝜎𝑖𝑞
2 ) 

where σq is the scale parameter. As noted above, we did not include group size as a covariate on σq 

because it did not help explain variation in pd,.. We estimated the probability of being a Kittlitz’s murrelet 

using the boat survey data as 

(4) 𝑦𝑝𝑘,.𝑚
 ~ Bernoulli(pk,.m), 

where identified groups in each stratum across all surveys were used to estimate pk,.m. We modeled 

group size of the augmented groups as 

(5) yg,.q ~ Poisson(λg), 

where yg,.q is the observed group size q across all boat surveys and λg is mean group size.  

We ran our model (equation 1) with its components (equations 2–5) by year because of long run-

times (~10–12 hours) and to accommodate slight differences in data management and storage each 
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year. Moreover, no parameters were shared across years and therefore, we would not have gained 

anything by running the model with all years simultaneously.  

Predicting probability of presence 

We attempted to predict pp of radio-tagged murrelets in the sampling area using environmental 

covariates with the same model described above (equation 2). The purpose of this analysis was to 

determine if we could estimate pp in years for which we lacked telemetry data (i.e. 2005, 2016, and 

2017) and potentially improve our boat survey protocol to minimize variation in pp in the future. We 

considered five covariates: tide direction, tidal current strength, daily precipitation, daily average wind 

speed, and the proportion of Icy Bay state covered in ice. We hypothesized that pp would be higher 

during the flood (incoming tide) than the ebb and positively associated with tidal current strength, 

reasoning that these conditions would concentrate murrelet prey. We posited that pp would be 

negatively associated with daily precipitation because of increased freshwater input into Icy Bay, 

possibly reducing prey or access to prey because of higher turbidity, and positively related to daily 

average wind speed, as an indicator of offshore storms. Lastly, we hypothesized that pp would be 

inversely related to the proportion of ice in the Icy Bay state, as ice would displace murrelets.  

We used a generalized linear mixed model (binomial error, logit link) with random effects for year 

and individual to explore our ability to predict pp with environmental covariates. We filtered telemetry 

data to include the same dates as our boat survey protocol (1–15 July); we also excluded murrelet 

locations at a nest because environmental data for those records were not relevant. We scaled all 

covariates to have a mean of 0 and standard deviation of 1. To assess our model, we used cross-

validation by randomly selecting 80% of the records to estimate pp, then using the estimated pp to 

predict presence for the remaining 20%, setting a threshold of 0.5 to denote whether a murrelet was 

predicted to be present or not in the sampling area (e.g., Boyce et al., 2002). We then created a 

confusion matrix comparing predicted and actual presence to evaluate our ability to predict presence.  

We ran this analysis separately from estimation of abundance for the statistical and biological 

populations. Our reasoning for doing so was to manage model runtime.  

Estimating trend in abundance 

We used a state space model to estimate trend in abundance, or the instantaneous growth rate 

(r), of the statistical and biological populations (i.e. without and with pp, respectively). Our state space 

model included a random effect for year and weighted the response variable (log abundance) by the 

inverse of its variance. For years with direct estimates of pp (2007–2012), we used abundance of the 

biological population estimated incorporating telemetry data (3-day window). In years without 

telemetry data (2005, 2016–2017), we used mean pp from across the 15-day period in all years, with 

year and individual included as random effects in the estimation process. We intended to predict pp 

for use in these non-telemetry years, but because our predictive power was low, we opted to use mean 

pp. To assess the effect of including pp in our trend estimate, we examined the root-mean-square-error 

(RMSE) of mean r and percent change of coefficients of variation (CV) of the geometric growth rate, 

lambda (λ), converted from mean r to avoid division by 0, between models without and with pp. We 

report trend results across all years (2005–2017).  

Because we estimated abundance for each year using separate model runs, we had to run the 

state space model separately too. To do so, we saved the output of each model for annual abundance 

and used the means and standard deviations as data input for the state space model. This approach 

could be heuristically viewed as using informative priors, but it was a practical choice to minimize 

model runtime of the annual estimates.  

We fit all models using JAGS (Plummer, 2003) with R 4.2.1 (R Core Team, 2019) using R2jags as 

an interface (Kissling et al., 2024a). We used weakly informative priors on all parameters and 3 chains 

of 50,000 iterations, discarding the first 15,000 per chain as burn-in. We assessed model convergence 
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through visual inspection of trace plots and the Gelman-Rubin diagnostic (Brooks & Gelman, 1998). 

We assumed convergence had occurred when chains overlapped substantially, and the Gelman-

Rubin diagnostic was <1.1 for all parameters.  

Results 

Components of detection probability 

We radio-tagged 191 Kittlitz’s murrelets between 12 May and 3 June, 2007–2012. Of these, 132 

birds remained alive in the study area until at least 1 July when boat surveys commenced, contributing 

to 516 telemetry locations that were used to estimate pp (Table 1). Across all flights and years, 

relocations of most radio-tagged murrelets were in the Icy Bay state (53%) where boat surveys 

occurred, followed by the inaccessible states of Ocean (24%), East Bay (18%), Nest (4%), and Upper 

Bay (<1%; Appendix 2a). Only 5% of murrelets in the Icy Bay state were in close pack ice; the 

remainder were in open pack ice (8%), brash ice (15%), or no ice (72%; Appendix 2b).  

Across all years, the median of pp was 0.50 (standard deviation [SD]=0.02). During the 15-day 

period in which boat surveys were conducted, median annual estimates of pp ranged from 0.35 

(SD=0.06) to 0.65 (SD=0.04; Figure 4a), which was similar to median estimates from the 3-day window 

surrounding each survey (0.32 [SD=0.10]–0.76 [SD=0.09]; Appendix 1). Within a year, pp varied little, 

as indicated by the points falling close to the identity line (Figure 5). Although the 95% credible intervals 

(CrI) across surveys and within a year always overlapped, they narrowed as the window widened, 

reflecting an increase in the number of telemetry locations used to estimate pp (Appendix 1).  

 

Figure 4 - Posterior distributions (teal) of estimates of detection probability components 
for Kittlitz’s murrelets, Icy Bay, Alaska, 2005–2017. Components are (a) probability of 
presence (pp), (b) probability of detection (pd), and probability of being a Kittlitz’s 
murrelet (pk) in (c) Main Bay and (d) Taan Fjord strata. The median of the estimate is 
denoted with a point, the 50% credible interval with a thick line, and the 95% credible 
interval with a thin line. Note that for pd (b), truncation distance varied across years 
(Table 1). 
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Figure 5 - Probability of presence (pp) for the 3-day window by boat survey within a 
year. The error bars describe the standard deviations of the estimate and correspond 
with the respective axes. The identity, or 1:1 line, is included in gray. 

Our ability to predict pp using five environmental covariates was generally poor (Figure 6). We 

correctly predicted 62% of the observed outcomes and incorrectly predicted 38%. Of the 

environmental covariates examined, proportion of Icy Bay state covered in ice was the only one with 

95% CrI that did not include 0 (βice = -0.356, CrI = -0.665, -0.059). While our hypothesis that pp would 

be higher during a flood tide was not supported (βtide = -0.006, CrI = -0.345, 0.356), we found that pp 

was more variable with a flood compared to an ebb tide (Figure 6b).  
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Figure 6 - Distribution of observed outcomes (teal points) and predicted probability of 
presence (pp; orange triangles) using environmental covariates for Kittlitz’s murrelets, 
Icy Bay Alaska, 2007– 2012. Covariates on x-axis are scaled; see ‘Methods’ text for 
description. For year (f), the dotted line denotes the mean pp across all years in the 
observed dataset. 

Between 2005 and 2017, we conducted 17 boat surveys for Brachyramphus murrelets, of which 

only one covered the sampling area completely (mean fraction of sampling area covered=0.80, 

range=0.56–1.00; Table 1). This limitation of boat survey coverage due to shifting ice underscores the 

dynamic nature of our study area. Median annual estimates of pd varied from 0.49 to 0.77 with CVs 

below 9% (Figure 4b). The probability that a detected Brachyramphus murrelet was a Kittlitz’s murrelet, 

not a marbled murrelet, was high in both spatial strata, but lower and more variable in the Main Bay 

(range=0.72–1.00) compared to Taan Fjord (range=0.95–1.00; Figure 4c,d). 

Abundance and trend 

Abundance estimates of the statistical population were positively correlated with estimates of pp; 

that is, when pp was low, abundance was low, and vice versa (Figure 7). In all years, biological 

population abundance estimates were generally stable across all window lengths (Appendix 3). In 

years when two boat surveys were conducted, our model with pp reduced CVs of annual abundance 

estimates by 13–35%; in the year with only one boat survey (2009), CVs increased by 270% (Figure 

8), likely because the CV of the 2009 population estimate was highly underestimated.  
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Figure 7 - Probability of presence (pp) across both surveys for the 3-day window by 
abundance of the statistical population, i.e., without pp. The error bars describe the 
standard deviations of the estimate and correspond with the axes. 

 

 

Figure 8 - Posterior distributions of annual abundances estimate for the Kittlitz’s 
murrelet and corresponding coefficients of variation (triangles) without probability of 
presence (pp; statistical population) and with pp (3-day window; biological population) 
around corresponding boat surveys, Icy Bay, Alaska. In 2009, when only one boat 
survey was completed, the posterior distribution was extremely narrow (overly precise) 
and extends beyond the y-axis limits of this figure for display purposes. 
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From 2005 to 2017, the trends in abundance of the statistical and biological populations were 

negative (Figure 9). The probability of a decline (mean r < 0) across our study area was 67% for the 

statistical population and 73% for the biological population. Estimates of mean r were -0.024 (CrI = -

0.231, 0.183) for the statistical population (i.e., without pp) and -0.043 (CrI = -0.265, 0.191) for the 

biological population (i.e., with pp; Appendix 4). By including pp in the state space model, we reduced 

sampling variance in the estimate of annual r by 17%. However, the CV for λ increased by 12% and 

the RMSE for r increased from 0.160 to 0.185, indicating that we reduced within-year variance by 

accounting for pp, but not across-year variance.  

 

Figure 9 - Annual and predicted abundance estimates of the statistical population 
(without probability of presence, pp) and biological population (with pp) of Kittlitz’s 
murrelets, Icy Bay, Alaska, 2005–2017. Annual estimates are denoted with open circles 
and predicted estimates from the state-space model are identified with closed circles; 
the shaded areas describe the 95% credible intervals of the modeled abundance. Pp is 
accounted for in the biological population estimates using telemetry data surrounding a 
3-day window of a boat survey.  

Discussion 

We developed a contemporary modeling framework to account for a population misalignment and 

generate unbiased abundance estimates of a highly mobile, non-territorial species, the Kittlitz’s 

murrelet, in a dynamic marine environment. By decomposing detection probability, we were able to 

use multiple datasets of different data types that did not rely on replicate or repeat sampling, which 

was not feasible for our study species or area without an unrealistically large number of sampling 
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occasions or sites (e.g., N-mixture models; Royle, 2004; Barker et al., 2018; Hostetter et al., 2019). 

Alternatively, we would have needed to devise a way to increase capture probabilities to utilize 

capture-recapture or resight models effectively (Burnham et al., 1987). Moreover, the hierarchical 

structure of our model allowed us to work within a single analytical framework and appropriately 

account for multiple sources of uncertainty. 

We are not aware of another abundance model that accounts for all components of detection 

probability, especially the probability of presence (pp), without using replicate or repeat sampling 

methods. Fischbach et al. (2022) developed a similar ratio estimator to account for haulout probability, 

which is analogous to pp, for estimating abundance of Pacific walrus, a species like Brachyramphus 

murrelets for which population monitoring is notoriously difficult. Their model combined count data 

from unoccupied aircraft systems and telemetry data, and therefore, while conceptually similar to our 

approach, it is not applicable to our situation because of differences in data types and habitat 

dynamics, nor does it account for the other components of detection probability. In these ways, our 

model builds on that of Fischbach et al. (2022) and adds to the toolbox of demographic models that 

account for spatial temporary emigration. While our modeling framework could be used for any species 

and in any system, it is most useful when repeat or replicate sampling is not practical, such as for 

species with low recapture and resight rates (e.g., nomadic raptors), species sampled during non-

territorial portions of their annual cycle (e.g., wintering concentrations of ungulates), and species that 

occupy dynamic habitats (e.g., coral reef fishes).   

By accounting for pp in our model, which aligned the statistical and biological populations, we 

improved the precision of annual abundance estimates for Kittlitz’s murrelets by 13–35% when we 

followed our standard protocol of conducting two boat surveys. However, results from 2009, when only 

one boat survey was conducted, clearly indicated that pp and survey effort were conflated, as the CV 

for the abundance estimate increased about tenfold. This outcome emphasizes the importance of a 

second boat survey annually if pp varies; otherwise, the abundance estimate from a single survey can 

have misleadingly high precision. We suspect this implication would be true for other highly mobile 

species and dynamic systems as well. Nonetheless, our ability to notably improve CVs for abundance 

estimates is a major achievement for a species often plagued with imprecise estimates (USFWS, 

2013; Hoekman, 2019). 

Although we increased the precision of annual abundance estimates by aligning the statistical and 

biological populations, we did not see the same improvement in the estimate of mean r, or temporal 

trend. Thus, while we explained and reduced variation in abundance within a year, we failed to account 

for a source(s) of variation across years. We may have gained some precision in the trend estimate 

by running a dynamic (multi-year) model instead of a static (single-year) model, though we suspect it 

would have been minimal. We think most of the variation in trend relates to the propensity for Kittlitz’s 

murrelets to skip breeding in some years and resultant variable return rates to Icy Bay. In fact, our 

recent integrated population model for this species, which accounted for non-breeding behavior, 

reduced uncertainty of the temporal trend estimate by 85% (Kissling et al., In revision). It is worth 

noting that while we did not increase precision of the trend estimate with our model described here, 

we also did not reduce it even though we added a parameter to the estimation process, suggesting 

some information about pp was useful. 

Though a population misalignment existed, we found that abundance estimates for the statistical 

population of Kittlitz’s murrelets in Icy Bay generally were proportional to those of the biological 

population. We were somewhat surprised by this finding because, based on a survival analysis with 

the same telemetry dataset, radio-tagged murrelets moved frequently among spatial states with daily 

transition probabilities ranging from 0.135 to 0.279 (Kissling et al., 2015b). Yet, despite these moderate 

movement rates, pp varied little within a year (Figure 5). Further, pp was correlated with abundance of 

the statistical population across years (Figure 7), which suggests that murrelets in our study area were 

operating as a single biological population, otherwise we would have expected discordance. 
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Importantly, we did not detect a temporal trend in pp, the link between the two types of populations, 

meaning that pp in the statistical population was random with respect to the biological population and 

inference could be extended without bias. 

As with all models, our model has assumptions beyond those associated with specific methods 

like radio telemetry (White & Garrott, 1990) and distance sampling (Buckland et al., 2001). Inherent to 

boat and telemetry surveys, we assumed that the statistical population was closed with respect to pp 

for survey duration and within the 3-day window used to estimate biological population abundance. 

While we developed our model in part to avoid assumptions of closure, it is not entirely possible with 

the survey methods used in our study; essentially, our model relaxed the assumption considerably, 

though did not eliminate it. Even so, given that estimates of pp did not vary much within a year, we feel 

confident that we sufficiently met the closure assumption for the purpose of estimating abundance. 

For trend estimation, we also assumed that mean pp was an adequate estimate of pp in the three years 

with boat survey data but without telemetry data. Given that pp varied considerably across years, this 

assumption likely was violated, but in the absence of annual telemetry data, we think that the mean 

and its associated variance are adequate because the variance was correctly incorporated into the 

trend variance by the Bayesian model. Also, when estimating pk, we assumed that both murrelet 

species were equally likely to be classed as unidentified. We think this assumption was met reasonably 

well in our dataset even though Kittlitz’s murrelets far outnumber marbled murrelets in our study area. 

Further, using field trials, we found misidentification rates of Brachyramphus murrelets to be low 

(Schaefer et al., 2015). 

Our final assumption was that the tagged murrelets were representative of the biological 

population, as we defined it. Although our boat surveys were conducted in early July, we tagged 

murrelets in May because our capture technique requires darkness, which is not sufficiently available 

in our study area for about 6–8 weeks surrounding summer solstice (21 June). Therefore, we inevitably 

tagged a few birds that were transiting through Icy Bay, which we only located once or twice, or never 

again. These birds were not included in our estimation of pp because they were not located during our 

boat surveys, so they are not relevant here. Additionally, because we only conducted telemetry flights 

in the Icy Bay study area, it is possible that some tagged birds could have temporarily emigrated 

beyond our search area, which would have biased our estimation of pp. However, we do not believe it 

was the case, largely because it was rare for a tagged bird to leave our study area and then return, 

especially as late in the breeding season as July. In fact, we removed eight locations (<2%) from our 

analysis because they were not within any of the five spatial states; none of those birds were located 

again, suggesting they permanently emigrated, or possibly the tag stopped reporting for whatever 

reason. Therefore, we feel confident this assumption was met as best we could with VHF transmitters.  

Despite our poor ability to predict pp from environmental covariates, we gained new insights into 

the ecology of Kittlitz’s murrelets. First, in previous studies of this species, we posited that, if murrelets 

temporarily emigrated during boat surveys, they were moving into dense icefloes near the tidewater 

glaciers (i.e., Upper Bay), presumably to search for food or avoid predation (Kissling et al., 2007; Day 

et al., 2020). Here, we confirmed that when the proportion of ice in the Icy Bay state increased, pp 

decreased, but we found that instead of moving into pack ice closer to the glacier(s), murrelets moved 

into shallow or rough waters away from the glaciers (i.e., East Bay and Ocean, respectively). While 

this finding should be viewed cautiously until confirmed at other times and locations, it appears that 

murrelets are less associated with ice when at sea at fine spatial scales than we previously thought, 

at least in the Icy Bay system.  

Second, although pp varied little within a year, it varied considerably across years, revealing a 

spatiotemporal pattern that implied an ecological driver(s) was at play but was not captured by the 

available environmental covariates. For example, pp was comparatively low across the 15-day period 

in 2007 and 2010, yet in 2007, murrelets outside of the sampled area were mostly in the Ocean state 

and in 2010, they were mostly in the East Bay state (Appendix 2). From this result, we assume that 
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variation in prey availability led murrelets to select states outside of the Icy Bay state, with patterns 

that varied on an annual, rather than a within-year, basis. With additional data on murrelet movements 

from Icy Bay or elsewhere, this finding may eventually provide clues as to the ecological driver(s) of 

these patterns and improve our ability to predict pp. 

Our modeling framework to align statistical and biological populations for abundance estimation is 

simple, flexible, and scalable and is suitable for a variety of species and habitats. It is a practical 

solution to resolving a population misalignment when repeat and replicate sampling is not feasible and 

increased precision of abundance and trend estimates is desired, as is the case with many species of 

conservation concern like the Kittlitz’s murrelet (USFWS, 2013). Although it requires telemetered 

animals, which can be costly compared to methods for unmarked animals, it was the only reasonable 

way to estimate pp for Kittlitz’s murrelets in Icy Bay and we suspect the same is true for other species 

and habitats that are difficult to sample (e.g., walrus; Fischbach et al., 2022). The use of satellite 

transmitters, which are not readily available yet for murrelets, would greatly facilitate and perhaps 

improve estimation of pp, especially if location data could be collected at a finer temporal scale. 

Moreover, satellite transmitters would relax the assumption related to representativeness of the tagged 

animals of the biological population and could improve precision of trend estimates if their retention 

and operation extended beyond a single year.  

For any study reporting abundance, it is critical to clearly define the population to which abundance 

refers (Hammond et al., 2021), though delineating populations can be difficult and require substantial 

data (Rushing et al., 2016). Our goal here was not to provide a framework for how to delineate 

biological populations, but instead to develop an analytical approach to account for a population 

misalignment if one exists. However, we urge ecologists to think critically about the population in which 

they want to draw inference, especially as tracking technology improves and model complexity 

increases. If possible, the statistical population should be the same as the biological population, or at 

least representative of it in terms of population processes or ecological conditions, which fortunately 

happened in our case. Otherwise, if pp has temporal or geographic patterns, inference about 

abundance for the population of interest is confounded with its use of the sampled area and could be 

misleading. This messy situation with potentially misleading estimates can have conservation 

implications if threats or stressors vary. For example, threatened grizzly bears (Ursus arctos) can roam 

outside of national park boundaries, with bears outside the park being subject to differing mortality 

sources not captured by within-park monitoring (Schwartz et al., 2010). Further, if estimates of 

abundance are subsequently used in population models, it is imperative that they are from the same 

population used to estimate other demographic parameters (e.g., survival and productivity) to avoid 

misleading inference about population dynamics.  
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