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Abstract
Domestication is a process marked by complex interactions between demographic
changes and selective pressures, which together shape genetic diversity. While the phe-
notypic outcomes of domestication are well documented, its genetic basis—particularly
the dynamics of selection—remain less well understood. To investigate these dynamics,
we performed simulations designed to approximate the demographic history of large
domestic mammals. These simulations used selection coefficients as a modeling tool to
represent changes in selection pressures, recognizing that such coefficients are abstrac-
tions rather than direct representations of biological reality. Specifically, we analyzed
site frequency spectra (SFS) under varying distributions of fitness effects (DFE) and pro-
portions of mutations with divergent selective pressures. Our results show that the dis-
cretized deleterious DFE can be reliably inferred from the SFS of a single population, but
reconstructing the beneficial DFE and demographic history remains challenging, even
when using the joint SFS of both populations. We further developed a novel joint DFE
inference model to estimate the proportion of mutations with divergent selection coeffi-
cients (pc), although we found that signals of classic hard sweeps can mimic increases in
pc, complicating interpretation. These findings underscore both the utility and limitations
of DFE inference and highlight the need for caution when interpreting demographic his-
tories in domesticated populations based on such modeling assumptions.
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Introduction 

The increase in human population and the emergence of modern society are closely linked to 
the domestication of plants and animals (Purugganan & Fuller, 2009; Driscoll et al., 2009; Larson 
& Burger, 2013; Amills et al., 2017). Human civilization was made possible through the 
domestication of surrounding life forms, where plants and animals such as wheat, dogs, pigs, or 
chickens were among the first to be domesticated  (Dayan, 1994; Zeder et al., 2006; Zeder, 2012, 
2015; Redding, 2015; Avni et al., 2017). Domestication is a process that fosters long-term 
mutualistic relationship, providing benefits to both humans and domesticated species (Zeder et al., 
2006). This process began approximately 10-15 thousand years ago and continues to this day 
(Zeder et al., 2006; Larson & Burger, 2013).  

Despite its foundational role in human civilization, our genomic and evolutionary understanding 
of domestication remains incomplete. Domestication occurs rapidly on evolutionary time scale, but 
it is not a discrete event; rather, it involves the gradual refinement of domesticated traits. Artificial 
selection during domestication is often assumed to be relatively stronger and faster than natural 
selection. However, evidence from plants suggests that the evolutionary rate of domesticated 
varieties can be similar to that of wild plants, indicating a process more akin natural selection 
(Purugganan & Fuller, 2009).  

Domestication is also commonly associated with population bottlenecks; where only a small 
subset of individuals from a wild population are domesticated, potentially reducing the efficiency 
of natural selection (Wright et al., 2005). An additional distinction between natural and artificial 
selection is the use of truncation selection by modern breeders -a method that selects the top 
percentage of individuals for desired traits (Granleese et al., 2019). The prevalence of truncation 
selection in natural populations or prior to industrialization remains unknown. Truncation selection 
is an efficient form of directional selection (Crow & Kimura, 1979), and significant genetic load 
accumulation is unlikely in outcrossing species (Kondrashov, 1988; Ohta, 1989) if the population 
sizes remain sufficiently large (Marsden et al., 2016).  

A recent comprehensive meta-analysis of the genetic costs of domestication (Moyers et al., 
2018) revealed that domesticated populations generally carry more deleterious variants, or 
segregate at higher frequencies, compared to their wild counterparts. However, this pattern is not 
universal, as evidenced by studies in sorghum (Lozano et al., 2021). Such patterns are likely driven 
by multiple processes that reduce the effectiveness of selection in domesticated populations, a 
concept first observed in rice genomes (Lu et al., 2006).  

Selection, both natural and artificial, can act through a few loci with strong effects or many loci 
with small effects, depending on the genetic architecture of the trait and the strength of selection 
(Jain & Stephan, 2017a; b). These two selection models are expected to produce distinct patterns 
of genetic diversity around selected loci (Stephan & John, 2020). Classic hard selective sweeps 
have been reported at a few candidate loci for key domesticated traits (reviewed by Andersson, 
2012), such as the IGF2 gene region associated with lean pigs (Van Laere et al., 2003), the thyroid-
stimulating hormone receptor (TSHR) in chickens (Rubin et al., 2010), and the sh4 and qSW5 loci 
related to seed shattering and grain width in rice (Shomura et al., 2008; Huang et al., 2012; Li et 
al., 2018). These cases reflect a Mendelian genetic architecture, where a small number of loci 
explain most of the phenotypic variance (see Courtier-Orgogozo & Martin, 2020 for a 
comprehensive list of genes related to domestication). In short, genomic analyses of domestication 
have traditionally focused on identifying strong selection footprints, often driven by loci with large 
effects responsible for phenotypic differences (e.g., Groenen et al., 2012; Carneiro et al., 2015; 
Qanbari et al., 2019; Li et al., 2020). However, Leno-Colorado et al., (2022) found that 
domesticated and wild pig populations did not differ in the number and type of non-synonymous 
fixed mutations, contradicting the idea that most domesticated traits follow a Mendelian genetic 
architecture. Thus, the hard selective sweep model may be the exception rather than the rule in 
pigs domestication. 
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In this study, we investigate the genomic consequences of domestication by modeling and 
comparing the full distribution of fitness effects (DFE) for new and standing genetic variation. A 
change in the selection regime can be modeled in different ways: as shifts in selection coefficients, 
as done here, or alternatively, as changes in the optimal value of a quantitative trait determined by 
a set of loci whose effects on fitness depend on their contribution to the trait and the genetic 
background they are in. In our approach, we infer the joint DFE for wild and domesticated 
populations using selection coefficients as abstractions to approximate the effects of selection. 
This allows us to quantify the proportion of shared genetic variants (modeled as) having diverging 
selection pressures, providing insights into how selective regimes may differ between these 
populations. We recognize that alternative frameworks, such as quantitative trait models, may offer 
complementary perspectives on the genetic consequences of domestication. 

Previous studies estimating the DFE have primarily relied on contrasting the site frequency 
spectrum (SFS) of synonymous and non-synonymous mutations within a single population (1D-
SFS). These methods assume that beneficial mutations contribute to divergence but not to 
polymorphism due to their rapid fixation (Keightley & Eyre-Walker, 2007; Boyko et al., 2009; Kim 
et al., 2017; Tataru et al., 2017; Barton & Zeng, 2018). Tataru et al. (2017) developed polyDFE to 
infer the full DFE and the proportion of adaptive substitutions (α) using polymorphism data alone. 
They also proposed nested models to test whether the parameters of the DFEs are shared 
between populations. Castellano et al. (2019) applied polyDFE to great apes and found that the 
shape parameter of the gamma deleterious DFE is likely conserved across these closely related 
species. However, populations that have diverged much more recently than great apes -such as 
domesticated and wild populations- tend to share a large number of genetic variants. To better 
leverage this shared variation, Huang et al. (2021) proposed using the SFS of both populations 
simultaneously (2D-SFS) to jointly estimate the deleterious DFE. Traditional 1D-SFS-based 
methods only provide access to the marginal DFE of the population without the need for shared 
variants, as they do not focus on the selection coefficients of individual mutations. In contrast, joint 
2D inference, while more limited in applicability due to its reliance on substantial shared genetic 
variation, offers the advantage of quantifying the stability of the direction and intensity of natural 
selection on individual mutations. 

Inferring the demographic history of domesticated populations is as important as inferring the 
change in the selection regime between domesticated and wild populations. Demographic 
processes associated with domestication have been studied across several species(Murray et al., 
2010; Arnoux et al., 2021; Morell Miranda et al., 2023), with key events such as population splits 
between wild and domesticated groups, bottlenecks, and gene flow being inferred. These studies 
have also considered the influence of multiple selective sweeps (Caicedo et al., 2007). However, 
it has been demonstrated that ignoring background selection when analyzing demographic 
patterns can result in biased estimates (Beissinger et al., 2016; Comeron, 2017; Torres et al., 
2020). We will revisit this issue and provide broader context in the results and discussion. 

To gain insights into the inference of complex demographic histories and the DFE in the context 
of domestication, we employ forward-in-time simulations of an idealized domestication process. 
These simulations explore various demographic and selective scenarios, enabling us to evaluate 
the ability to detect differences in selective pressures between domesticated and wild populations. 
We simulate a range of genetic architectures and selective effects, including: (1) Models with a 
relatively small number of loci undergoing changes in their selective effects and (2) models where 
numerous loci exhibit divergent selective effects. We also play with the rate and mean effect of 
beneficial mutations to understand the role of selective sweeps. Importantly, we introduce a novel 
methodology based on Huang et al. (2021) that incorporates an additional parameter critical for 
distinguishing populations experiencing rapid selective change: the selective effects of a fraction 
of existing variants can change (e.g., from beneficial to deleterious, or vice versa) in domesticated 
populations. This method jointly infers the full DFE parameters for both wild and domesticated 
populations, including shifts in the selective effects of shared variants. Finally, we describe and 
discuss how linked selection and changes in the DFE impair our ability to accurately infer the true 
simulated demographic histories. 
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Materials and Methods 

Simulation of the Domestication Process 

A simulation of an idealized domestication process is developed using the forward-in-time 
simulator SLiM4 (Haller & Messer, 2023). The general model of the domestication process is 
developed in the SLiM script available in github and Zenodo 
(https://doi.org/10.5281/zenodo.15084050). Twenty-four different domestication scenarios are 
analyzed, and the parameters for each scenario are shown in Table 1. All options (flags) used to 
run the SLiM script are also available in github 
(https://github.com/CastellanoED/domesticationDFE/blob/main/slim_code_mod4_NEW.slim). We 
aim to model a general domestication process that resembles the genomic configuration, 
generation time, mutation and recombination landscape relevant to large domesticated mammals 
used as livestock. Note that we are not considering the recent processes of genetic improvement 
performed by commercial companies in the last decades. The constructed model assumes a 
genome containing a single chromosomal "chunk" or window, with 10,000 loci/exons of 120 base 
pairs in length, and each locus/exon with one-third (4-fold) neutral synonymous positions and two-
thirds (0-fold) selected non-synonymous positions scattered along the locus.  

The simulation parameters for each scenario (Figure 1A) are as follows: the initial population 
at time 0 run for 10*Ne generations to reach mutation-selection-drift equilibrium, 
then splits into the domesticated and wild populations. Hereafter we refer to the Wild and 
Domesticated populations. We aim to mimic a realistic but still general domestication process in 
large livestock mammals where ancestral Ne (Na) estimates are on average around 10,000 
(Murray et al., 2010; Groenen et al., 2012; Larson et al., 2014; Frantz et al., 2015; Yang et al., 
2016; Librado et al., 2021; Todd et al., 2022) and the domestication process, according to 
archeological records, started around 10,000 years ago (Ahmad et al., 2020). The average 
generation time in these large domesticated mammals is about 5 years per generation (Pacifici et 
al., 2013). Note that in this study we had to reduce the population size and related population 
parameters below from 10,000 diploid individuals to Na=5,000 diploid individuals for computational 
reasons.  

Genomic parameters: The mutation rate per site (μ) and generation is 2.5x10-7, and the 
population size (Na) is 5,000 diploid individuals, thus the expected θ under neutrality is 0.005. Each 
locus is separated from its neighbors by 3x10-6 recombination events per generation. The 
recombination rate per site and generation within the loci is fixed to a rate of 1.5x10-7 
recombination events per site. Note that the higher recombination between loci aims to mimic their 
real genetic distance separation (assuming a functional site density of 5%) - this greatly speeds 
up the simulation as non-coding sites do not need to be simulated. In other words, we simulate 
120 Kb of coding sequence in each run, which is equivalent to simulating a 2.4 Mb chromosome 
window with 5% coding sites. We perform 100 independent runs for each of the twenty-four 
scenarios.  

Demographic parameters: The Domesticated populations of 5,000 diploid individuals suffer 
a bottleneck, reducing their population size temporarily to 200 diploid individuals, to recover again 
to 5,000 diploid individuals after the bottleneck. The bottleneck lasted 100 generations. The 
simulation finishes 900 generations after the bottleneck. In twelve of the twenty-four simulated 
scenarios we allow that a ratio of 0.01 of the Wild individuals migrate to the Domesticated 
population during the 100 generations of the bottleneck. Thus, during the bottleneck 25% of the 
domesticated population comes from the wild population every generation. In the other twelve 
combinations there is no exchange of individuals between the Wild and Domesticated populations. 
This demographic history is equivalent to a 1,000 years long bottleneck followed by a 9,000 years 
long recovery in an ancestral population with 10,000 diploid individuals and a generation time of 5 
years.  

DFE parameters: the selective effects produced by domestication are modeled by changing 
the fitness values of a proportion (calculated with a probability of change called pc) of the existing 
and new mutations in the domesticated population (at the time of the split) (Table 1). This 
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probability of change can be 0 (our negative control), 0.05 or 0.25. Domesticated and Wild 
populations show different proportions of beneficial and deleterious new mutations depending on 
the scenario. SLiM defines ‘s’ as the selective coefficient for the homozygote, while the inference 
algorithms used estimate the selective coefficient for heterozygote. Here we have assumed co-
dominance and we have scaled the coefficient of selection to the ancestral population to have 
comparative values, that is, we multiply the Na 4 times and divide the selective coefficient twice, 
4Nas/2=2Nas). The negative effects in all scenarios and populations follow a gamma distribution 
with a shape value of 0.3 and a mean of S = -100 (S =2Nas in the heterozygote, in which each 
mutation is assumed co-dominant, Na = 5,000 diploid individuals, considering the ancestral 
population size and s = -0.01), which is in the range of values inferred using empirical data (Boyko 
et al., 2008; Galtier, 2016), while variants with positive effects follow an exponential distribution. 
We investigate three combinations of parameters for the positive DFE plus one without positive 
selection: no positive selection (that is, pb = 0), pervasive & nearly neutral (with mean selective 
effects Sb = 1 and probability of being beneficial pb = 0.10), common & weak (Sb = 10 and pb = 
0.01) and rare & strong (Sb = 100 and pb = 0.001) (Table 1).  

Table 1 - Variable demographic and selective parameters across scenarios 

Migration 
Positive DFE pc Scenario ID  (W->D) 

  

0 

pb =0 0 1 
Absent 0.05 2 
  0.25 3 
pb =0.1 & Sb = 1 0 4 
Pervasive and nearly neutral 0.05 5 
  0.25 6 
pb = 0.01 & Sb = 10 0 7 
Common and weak 0.05 8 
  0.25 9 
pb = 0.001 & Sb = 100 0 10 
Rare and strong 0.05 11 
  0.25 12 

0.01 

pb =0 0 13 
Absent 0.05 14 
  0.25 15 
pb =0.1 & Sb = 1 0 16 
Pervasive and nearly neutral 0.05 17 
  0.25 18 
pb = 0.01 & Sb = 10 0 19 
Common and weak 0.05 20 
  0.25 21 
pb = 0.001 & Sb = 100 0 22 
Rare and strong 0.05 23 
  0.25 24 

The twenty-four simulated combinations of parameters in this study. The first column 
represents the migration rate from the Wild to the Domesticated population, the second 
column refers to the DFE of new beneficial mutations and the third column shows the 
probabilities to have sites that change their selection coefficients in the Domesticated 
population (pc). Last column shows the ID we use to quickly label scenarios along the 
manuscript.  

Types of Sites 

The sites are initially divided into seven different types (named m1 to m7), being m1 neutral 
(synonymous) and m2 to m7 functional (non-synonymous) sites having a different selective effect 
when mutated (see Table 2 and Figure 1C). Mutations at m5, m6 and m7 sites generate deleterious 
variants in the Wild population, and mutations at m2, m3 and m4 sites generate beneficial mutations 
in the Wild population. The selection coefficient of mutations generated at m2 (beneficial) or at m5 
(deleterious) sites are invariant for the Wild and Domesticated populations. However, the 
mutations at m3, m4, m6 and m7 sites will change their selective effect in the Domesticated 
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populations relative to the Wild populations. That is, the new selective effect is drawn from the 
corresponding DFE section (positive or negative), independently of their value in the wild 
population. The selection coefficient of a given beneficial mutation at m3 sites will remain beneficial 
in the Domesticated population, but it will be different from the original beneficial effect at Wild. A 
mutation at m4 sites will change its selection coefficient from beneficial in the Wild to deleterious 
in the Domesticated population. Equivalently, the selection coefficient of a deleterious mutation at 
m6 sites will remain negative in the Domesticated population but it will be different from that found 
at Wild. A mutation at m7 sites will change its selection coefficient from deleterious in the Wild to 
beneficial in the Domesticated population (see probabilities included in Table 2). For each of the 
24x100 simulation runs, we randomly pre-calculate independently the location of each site type 
(except for the permanent location of two non-synonymous sites followed by a synonymous site 
within codons) and their selective effect using an ad hoc R script 
(https://github.com/CastellanoED/domesticationDFE/blob/main/calculate_fitness_position_matrix.
R). This hard-coding of selective effects on different sites allows us to gain insight into the relative 
importance of each mutation type for the domestication process.  

Table 2 - Types of sites in simulated scenarios 

Site Wild Domesticated Probability1 
m1 Neutral No change, remain Neutral All synonymous 
m2 Beneficial No change, remain Beneficial pwb·(1-pc) 
m3 Beneficial Change to a different Beneficial Effect pwb·pc·pcb 
m4 Beneficial Change to Deleterious pwb·pc·(1- pcb) 
m5 Deleterious No change, remain Deleterious (1- pwb)·(1-pc) 
m6 Deleterious Change to a different Deleterious Effect (1- pwb)·pc·(1-pcb) 
m7 Deleterious Change to Beneficial (1- pwb)·pc·pcb 
1 m1 are only defined at synonymous sites (1/3 of the total sites analyzed). m2 to m7 
probabilities consider only non-synonymous sites (2/3 of the total sites analyzed). pwb is the 
probability that mutations are positively selected in the Wild population, pc is the probability 
that mutations change selection coefficient in the Domesticated population, and pcb is the 
probability of those mutations become beneficial in the Domesticated population (note in our 
simulations pwb = pcb). Note that in simulated scenarios pcb=pwb. 

Nucleotide variability estimates  

We have counted the number of polymorphic sites and estimated the Watterson variability 
estimate per nucleotide (Watterson, 1975) for synonymous and non-synonymous sites for each of 
the 100 run simulations and for all the scenarios and populations. We have also calculated the 
ratio of synonymous versus non-synonymous polymorphic sites (Pn/Ps) as descriptive estimators 
of the observed variability at these sites 
(https://github.com/CastellanoED/domesticationDFE/blob/main/diversity_PnPs_slim.R). 

Distribution of fitness effects (DFE): Two complementary approaches  

polyDFE: 1D-SFS and 1D-DFE 
We use the polyDFEv2.0 framework (Tataru & Bataillon, 2019) to estimate and compare the 

DFE across Wild-Domesticated population pairs by means of likelihood ratio tests (LRTs). We use 
the R function compareModels (from https://github.com/paula-
tataru/polyDFE/blob/master/postprocessing.R) to compare pairs of models. The inference is 
performed only on the unfolded SFS data (divergence counts to the outgroup are not fitted), and 
unfolded SFS data are fitted using a DFE model comprising both deleterious (gamma distributed) 
and beneficial (exponentially distributed) mutations. The DFE of each Wild-Domesticated 
population pair is inferred using the 1D-SFS of each population. DFE is calculated assuming 
S=4Nes, in which s is the selective effect in the heterozygote, and Ne is the effective population 
size. Note that for comparative analysis Ne will be equivalent to Na. We used S/2 to contrast the 
simulated value with SLiM and with the inferred value in dadi (see next section). polyDFE assumes 
that new mutations in a genomic region arise as a Poisson process with an intensity that is 
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proportional to the length of the region and the mutation rate per nucleotide (μ). We assume that 
μ remains constant across simulations (as it is the case). Both an ancestral SNP misidentification 
error (ε) and distortion parameters (ri) are estimated. However, we notice that the exclusion of ε 
does not affect the rest of estimated parameters because under the simulation conditions used 
here no sites are expected to be misidentified. The ri parameters are fitted independently for each 
frequency bin (from i = 1 to i = 19), and they are able to correct any distortion that affects equally 
the SFS of synonymous and non-synonymous variants (such as, in principle, demography or linked 
selection). Model averaging provides a way to obtain honest estimates that account for model 
uncertainty. To produce the model average estimates of the full DFE we weight each competing 
model according to their AIC following the equation 6.1 shown in the polyDFEv2 tutorial 
(polyDFE/tutorial.pdf at master · https://github.com/paula-tataru/polyDFE). We use the R function 
getAICweights (from https://github.com/paula-tataru/polyDFE/blob/master/postprocessing.R to do 
the model averaging) to obtain the AIC values.  

dadi: 2D-SFS and 2D-DFE 
dadi (Gutenkunst et al., 2009) is employed to infer the joint distribution of fitness effects (Jerison 

et al., 2014; Ragsdale et al., 2016; Huang et al., 2021) and the demographic history of all simulated 
population pairs. Following Huang et al. (2021), our model is that any mutation may have different 
selection coefficients sw and sd in the wild and domesticated populations, respectively. The joint 
DFE is the two-dimensional probability distribution quantifying the probability that a new mutation 
has selection coefficients sw and sd. In Huang et al. (2021),, joint DFEs with only deleterious 
mutations were considered. Here we extend that model to consider joint DFEs that include 
mutations that are beneficial in one or both populations.  

Our new model for the joint DFE between the two populations is a mixture of multiple 
components designed to mimic the selected mutation types in the simulations (Table 2; Figure 
1D). The major exception is that beneficial mutations are modeled to have a single fixed selection 
coefficient, rather than arising from an exponential distribution. Let pwb be the fraction of mutations 
that are positively selected in the Wild population, pc be the fraction of mutations that change 
selection coefficient in the Domesticated population, and pcb be the fraction of those mutations that 
become beneficial in the Domesticated population (note in our simulations pwb = pcb). To model 
mutation types m2 and m3, a proportion pwb · (1-pc) + pwb · pc · pcb of mutations are assumed to 
have the same fixed positive selection coefficient in both populations. To model m4, a proportion 
pwb · pc · (1-pcb) is assumed to have a fixed positive selection coefficient in the Wild population and 
a gamma-distributed negative selection coefficient in the Domesticated population. To model m5, 
a proportion (1-pwb) · (1-pc) of mutations are assumed to have equal negative gamma-distributed 
selection coefficients in the two populations. To model m6, a proportion (1-pwb) · pc · (1-pcb) is 
assumed to have independent gamma-distributed selection coefficients in the two populations. To 
model m7, a proportion (1-pwb) · pc · pcb mutations is assumed to have a gamma-distributed 
negative selection coefficient in the Wild population and a fixed positive selection coefficient in the 
Domesticated population. All gamma distributions are assumed to have the same shape and scale. 
This model is implemented in dadi as the function “dadi.DFE.Vourlaki_mixture” 
(https://github.com/CastellanoED/domesticationDFE/blob/main/domestication_new_dadi_functio
ns.py). Note in our simulations the marginal 1D-DFEs of Wild and Domesticated populations are 
exactly the same; the difference is that in Domesticated populations a given fraction of sites (some 
already polymorphic, some still monomorphic) can change their selection coefficient relative to the 
Wild population.  

To infer the parameters of the joint DFE, we followed the procedure of Huang et al. (2021), but 
with this new DFE model. Briefly, assuming independence between mutations, the expected joint 
site frequency spectrum (SFS) for all mutations experiencing selection (here nonsynonymous 
sites) can be computed by integrating the joint SFS for each possible pair of population-size-scaled 
selection coefficients Sw and Sd over the joint DFE. Given that expected SFS, the composite 
likelihood of the nonsynonymous data can be computed by treating it as a Poisson Random Field, 
as in Gutenkunst et al. (2009). The parameters of the joint DFE model can then be inferred by 
maximizing that likelihood, using numerical optimization. For this study, we used the default in 
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dadi, the BOBYQA optimization algorithm as implemented by the NLOpt library. For each selection 
coefficient pair (Sw , Sd ), the expected SFS was calculated from a single integration of the partial 
differential equation (PDE) implemented by Gutenkunst et al. (2009).in the dadi software. 

We integrate over our joint DFE model (Fig. 1D) by summing contributions for the discrete 
components of the DFE. The m2 + m3 component is simplest, being simply a weighting of the single 
SFS corresponding to the two positive selection coefficients assumed in the wild and domesticated 
populations. The m4 and m7 components are integrated over by holding sw or sd fixed and 
integrating over spectra calculated as the other selection coefficient is varied. The m5 component 
is integrated over by considering spectra in which Sw = Sd . The m4, m7, and m5 components are 
thus one-dimensional integrations and employ the numerical methods developed in Kim et al. 
(2017). The m6 component is a two-dimensional integration over independent gamma distributions 
and is carried out as in Huang et al. (2021). This complex summation over spectra to calculate the 
expected SFS under the DFE is much less computationally expensive than calculating the spectra 
for each (Sw , Sd) pair, so those spectra are precomputed and cached. 

For inference, a new, more general demographic model with branch-independent population 
size changes is first fit to the synonymous mutations from each simulation, and then the newly 
proposed joint DFE model is fit to the non-synonymous mutations. This model (Fig 1D) is 
implemented as a custom model using the dadi software and evaluated using the approach of 
Gutenkunst et al. (2009). The one subtlety is that an if statement is used to enable flexibility as to 
whether T1F or T2F is larger 
(https://github.com/CastellanoED/domesticationDFE/blob/main/domestication_new_dadi_functio
ns.py, function name: “Domestication_flexible_demography”). The parameters of the demographic 
model (Figure 1B) are estimated by running 100 optimizations per inference unit. The 2D-SFS for 
selected sites are precomputed conditional on the demography for 1042 values of Sw and Sd (S 
=2Nas, a population scaled selection coefficient for the heterozygote where Na is the ancestral 
population size), 102 negative and 2 positives. For the negative part of the DFE, γ values were 
logarithmically equally spaced between -2000 and -10-4. The expected DFE for selected sites can 
then be computed as a weighted sum over these cached spectra (Kim et al., 2017). The DFE 
parameters shape, scale, pwb, pc, and pcb are then estimated by maximizing the Poisson likelihood 
of the simulated data, with the non-synonymous rate of mutation influx fixed to twice that inferred 
for neutral sites in the demographic history fit. For the DFE inference, optimization is repeated until 
the best three results are within 0.5 log-likelihood units. Ancestral state misidentification is 
modelled, however in our simulations no sites are expected to be misidentified.  

For the purpose of this work, dadi software is downloaded and installed according to the 
instructions provided at the following link: https://bitbucket.org/gutenkunstlab/dadi/src/master/. 
Since dadi operates as a module of Python, the Anaconda3 and Spyder (Raybaut P., 2009; Python 
3.7, Rossum G. V & Drake F. L, 2009; Anaconda, 2016) versions are used in this study.  

Inference units, and confidence intervals in demographic and DFE parameters 

To obtain the sampling variance of parameter estimates and approximate confidence intervals, 
we use a bootstrap approach. We resample with replacement 100 times 20 independent simulation 
runs or chromosomal “chunks” (from a pool of 100 “chunks”) and concatenate them. Hence, each 
concatenated unit (or inference unit) is made of 24 Mb of coding sequence (as comparison, the 
human genome contains ~26 Mb of coding sequence). Uncertainties of DFE parameter inferences 
in polyDFE and dadi are calculated by this conventional bootstrapping, but in dadi we hold the 
demographic model fixed. In polyDFE the distortion introduced by demography (and linked 
selection) is not estimated but corrected with the ri parameters. Note that our procedure with dadi 
does not propagate uncertainty in demographic parameters through to the DFE parameters. To 
obtain the sampling variance of demographic parameter estimates with dadi we use the Godambe 
approach as described in Coffman et al. (2016). A final consideration on the factor of two 
differences across simulation and inference tools. We adjusted the population scaled selection 
coefficients to 2Nas in polyDFE, dadi and SLiM4 to enable a comparative study.  
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Results and Discussion 

Studying the effect of domestication on the DFE of natural populations is particularly 
challenging, especially when available methods for inferring and comparing the DFE have not been 
evaluated using exactly the same dataset. In this study, we conduct simulations using different 
combinations of parameters relevant to the domestication process. A key distinction between the 
domestication demographic model used here and those commonly applied in speciation studies is 
the time scale since the split occurred. In our simulations, domesticated populations experience 
either large or small changes in the number and selective effects of loci under domestication, 
following a bottleneck period, with or without migration. Hereafter, we refer to these as the Wild 
and Domesticated populations.  

This study focuses on the evolutionary process of domestication from the point of divergence 
to the present domesticated lineages. We do not account for the genetic improvement programs 
implemented in recent decades for some domesticated animals, which can significantly increase 
inbreeding levels (e.g., Makanjuola et al., 2020 estimated inbreeding levels as high as 40% in 
certain cattle breeds subjected to intense genomic selection). The simulated models in this work 
include strong selection and reductions in population size, both of which can moderately increase 
inbreeding levels in our simulations. However, Gilbert et al. (2022) reported that only very high 
selfing levels (>80%) severely affect DFE inference. 

The Wild populations have a constant DFE and constant population size, but limited 
recombination across loci to mimic a realistic recombination landscape. Beneficial mutations arise 
at Wild populations following an exponential distribution, while deleterious mutations are drawn 
from a gamma distribution with shape 0.3 and mean S = -100 (where S = 2Nas, the selection 
coefficient s in the heterozygote is -1%, and Na = 5,000 diploid individuals is the ancestral effective 
population size, see Material and Methods: Simulating the Domestication Process). As indicated 
in Materials and Methods section, all mutations, beneficial and deleterious, are co-dominant. The 
Domesticated population originates from the Wild population through a bottleneck and a 
concomitant change in selective effects at a fraction of non-synonymous sites (Figure 1; Table 1). 
The recombination and mutation landscapes are drawn from the same distribution in the 
Domesticated and Wild populations.  

The change in selective effects affects both new mutations that arise within the Domesticated 
population and existing variants that existed before the domestication event. Put simply, not only 
can mutations that were deleterious (or beneficial) before the population split become beneficial 
(or deleterious) within the domesticated population, but even if the direction of the selective effect 
remains the same, the intensity of selection can change. Table 2 shows all the combinations of 
changes in selective effects between Wild and Domesticated populations. Our simulated scenarios 
aim to cover a variety of possible changes in the genetic architecture (number of loci) and the 
strength of selection (selection coefficients) of the trait/s under domestication. Three DFEs for 
beneficial mutations are assumed: (i) pervasive and nearly neutral, where a large fraction of new 
mutations (10%) are on average nearly neutral (Sb = 1), (ii) common and weak, where beneficial 
mutations are still fairly common (1%) but weakly selected (Sb = 10) and (iii) rare and strong, where 
very few mutations (0.1%) are strongly beneficial (Sb = 100). To better understand the role of 
selective sweeps on downstream inference, we also include simulations without a positive DFE. 
Depending on the scenario, a selective change occurs only at a small (0.05) or at a substantial 
proportion (0.25) of sites in the Domesticated population (Table 1, “pc” column). We leave eight 
scenarios as negative controls; the selection coefficients of new and standing variation in the 
Domesticated and Wild populations are exactly the same. Finally, demographic changes affect 
only the Domesticated population; the Wild population evolves under a constant population size. 
Two versions of the same demographic model (Figure 1A) are simulated: (i) one with migration, 
and (ii) another without migration. When there is migration, it only occurs from the Wild to the 
Domesticated population during the domestication bottleneck.  
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Figure 1 - Joint demographic and DFE models simulated and fit. A: Illustration of the joint 
demographic model used in SLiM simulations. Na: Effective population size of the Ancestral 
population. New: Effective population size of the Wild population. Ne1d: Effective population 
size of the Domesticated population during the bottleneck. Ne2d: Effective population size of 
the Domesticated population after the bottleneck. T1: Number of generations in the bottleneck 
period. T2: Number of generations from the bottleneck to the present. m: Wild to Domesticated 
migration rate (migration occurs along T1). B: Illustration of a more general joint demographic 
model used in the dadi inferences. Na: Effective population size of the Ancestral population. 
Npre: Effective population size before the domestication split. N1div: Effective population size 
of the Wild population after the split. N1F: Effective population size of the Wild population at 
the end of the simulation. N2div: Effective population size of the Domesticated population after 
the split. N2F: Effective population size of the Domesticated population at the end of the 
simulation. Tpre: Number of generations before the domestication split. Tdiv: Number of 
generations after the bottleneck. T1F: Number of generations under N1F. T2F: Number of 
generations under N2F. Note that T1F and T2F are estimated independently and that T1F can 
be the same, longer or shorter than T2F. md: Wild to Domesticated migration rate. mw: 
Domesticated to Wild migration rate. Both migration rates occur after the domestication split. 
C: Illustration of the joint DFE model used in the SLiM simulations, with mutation types 
illustrated. In the illustration, the shadow blue regions in the plot represent the possible 
different types of mutations considering the selection coefficient values in each of the two 
populations (from gamma and exponential distributions in wild and domestic and from pwb, pc 
and pcb probabilities see Table 1 and 2). For example, a point in the left-upper region of the 
illustration represents a mutation with positive s in the Domestic population but negative in 
Wild population (type m7). D: Illustration of the joint DFE model used in the dadi inferences 
and the inferred associated parameters, in which a fixed positive selection coefficient is 
assumed.  
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Estimation of demographic parameters in Wild and Domesticated populations 

In this study, we investigate the effects of natural selection—both broadly and in terms of how 
artificial selection alters the selective pressures acting on new and shared genetic variation—on 
the inference of demographic history and DFE during domestication. We do this using two 
commonly used inference tools (polyDFE and dadi) that assume free recombination across loci. 
Note that dadi first infers the demographic history and then infers the DFE assuming those inferred 
demographic parameters, whereas polyDFE operates independently of specific demographic 
histories and is designed to correct for distortions that affect both synonymous and non-
synonymous site frequency spectra equally (Tataru & Bataillon, 2019). Figure 1 A and B show the 
simulated joint demographic model and the joint demographic model used in the dadi inferences, 
respectively. We have increased the complexity of the inference model by introducing additional 
parameters, allowing it to account not only for "simulated" or true demographic changes, but also 
for more complex and unknown demographic histories and the potential influence of linked 
selection on synonymous SFS. The diagnostic plots can be found in Supplementary Figure 1; there 
is good agreement between the model fits and the data.  

Our findings indicate that when positive selection is absent or relatively weak (Sb = 0, Sb = 1 or 
Sb = 10), the estimated onset of domestication tends to be approximately twice as old as the actual 
simulated starting point. Additionally, the inferred bottleneck appears slightly shallower but 
considerably longer than the simulated value (see Figure 2 and Supplementary Table 1 for the 
confidence intervals). This suggests that the influence of linked selection, likely driven primarily by 
background selection, has the effect of elongating the inferred timeline. Consequently, it makes 
the inferred domestication divergence and bottleneck appear more ancient and extended, 
respectively. For the Wild populations we always infer a larger population expansion than for the 
Domesticated populations, but without a bottleneck. This signal of a recent expansion in the Wild 
population is expected because when we consider how linked selection affects the SFS, there are 
more rare synonymous polymorphisms compared to what we would expect if there was free 
recombination under a constant population size (Charlesworth et al., 1993, 1995; Nielsen, 2005; 
Zeng & Charlesworth, 2011; Messer & Petrov, 2013; Nicolaisen & Desai, 2013; Ewing & Jensen, 
2016). Remarkably, when positive selection is rare and strong (Sb = 100), the inferred temporal 
stretch becomes even more pronounced, and the inferred demographic history of both populations 
overlap extensively. The inferred domestication divergence shifts to approximately 50,000 years 
ago, whereas the actual simulated split occurred 10,000 years ago. Additionally, the inferred 
bottleneck appears significantly longer and less severe, while there is an inferred large population 
expansion in both Wild and Domesticated populations. Although in Figure 2 there appears to be a 
change in population size before the domestication split, only five scenarios (with IDs 3, 7, 15, 17 
and 18) are statistically significant (Supplementary Table 1 and Supplementary Figure 2). 
Interestingly, we find the migration rate from Wild to Domesticated (mw2d) and from Domesticated 
to Wild (md2w) are overestimated in most scenarios (Supplementary Table 1 and Supplementary 
Figure 3). We observe that neither migration nor an increase in pc appears to significantly change 
the inferred demographic histories that we have just described.  
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Figure 2 - Lines showing the inferred demographic histories for the twenty-four 
simulated scenarios. In salmon-orange color is represented the Wild population and 
in turquoise-green color the Domesticated population. The dark grey line shows the 
true simulated demography in Domesticated populations. The true Wild population 
is not shown but it is a constant population size with relative Ne = 1. The x-axis 
indicates the number of generations in relation to the ancestral population size Na, 
while the y-axis show the population size at each time in relation to Na (that is, Ne/Na, 
where 1 means that Ne=Na). The 95% confidence intervals calculated using the 
Godambe approximation can be found in Supplementary Table 1.  
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In summary, it was not possible to accurately determine the timing of the onset of 
domestication, the duration of the domestication bottleneck, or to distinguish between the presence 
and absence of migration between populations. We believe that these aspects are crucial for 
contextualizing the role of domestication in human history, and vice versa. Unfortunately, either 
the 2D-SFS or our “free recombination” modeling assumptions (or both) do not seem to be useful 
in this context.  

Beyond domestication, the signal interference between selective and demographic processes 
has been widely studied. Linked selection significantly distorts the SFS, leading to biases in 
inferred demographic parameters. For example, Schrider et al. (2016) found that positive selection 
can mislead demographic inference, even inferring population size changes where none occurred, 
with selective sweeps as the primary cause. Gilbert et al. (2022) used forward simulations to report 
that large population expansions are inferred due to linked selection, particularly in regions of low 
recombination or high gene density. Finally, Johri et al. (2021) demonstrated biases due to 
background selection even after masking functional regions. Together with these other findings, 
our work underscores the persistent difficulty of accurately inferring demographic histories in the 
presence of linked selection using population genomic data, even when using ancestral 
recombination graph based approaches (Marsh & Johri, 2024). 

Thus, the next question is to what extent can the nuisance ri parameters from polyDFE or this 
distorted inferred demography from dadi help to recover the simulated DFE parameters?  

Is it possible to detect domestication as an artificial change in the marginal full DFE 
between the two populations?  

Next, we investigate whether polyDFE captures differences in the marginal (or 1D) full DFE of 
Domesticated and Wild populations across the twenty-four domestication scenarios (Table 1). We 
run five nested models (Table 3) and compare them using likelihood ratio tests (LRTs) 
(Supplementary Table 2). It is important to note that in all our simulations, the marginal full DFE 
for new mutations in both Domesticated and Wild populations is the same within a given scenario 
(as detailed in Table 1). This means that the selection coefficients for sites, whether they are 
monomorphic or polymorphic, are drawn from the same full DFE. In simpler terms, the proportion 
of new mutations that are advantageous or detrimental is identical for both Domesticated and Wild 
populations within a given scenario.  

Table 3 - List of nested polyDFE models and (co)estimated parameters. 

Model ID Negative DFE  Positive DFE 
shape S  pb Sb 

M1 Var Var  - - 
M10 Fix Var  - - 
M2 Var Var  Var Var 
M20 Fix Var  Var Var 
M30 Fix Var  Fix Fix 
Independently estimated parameters for the Domesticated and Wild populations (Var). Jointly 
estimated parameters for the Domesticated and Wild populations (Fix). S is always 
independently estimated to accommodate potential changes in Ne between populations. The 
population mutation rate (Ө), the nuisance parameters (ri) and the mispolarization parameter 
(ε) are all independently estimated across Wild and Domesticated populations.  

LRTs between different nested models allow us to address important questions about the DFE, 
without assuming any prior knowledge of our datasets. First, we assess whether the inferred shape 
of the negative DFE is similar in both populations while also examining if the estimation of the 
shape parameter is influenced by the presence of advantageous mutations. When comparing 
models that do not consider beneficial mutations (models M1 versus M10 in the second column of 
Supplementary Table 2), the model with a distinct shape for Domesticated and Wild populations is 
accepted only in two, rather unrelated, scenarios (scenarios 7 and 11). This indicates that an 
artificial alteration in the shape of the deleterious DFE between Domesticated and Wild populations 

David Castellano et al. 13

Peer Community Journal, Vol. 5 (2025), article e35 https://doi.org/10.24072/pcjournal.540

https://doi.org/10.24072/pcjournal.540


can be inferred. Fortunately, when comparing models that take into account beneficial mutations 
(models M2 vs M20, third column in Supplementary Table 2), all scenarios show a shared shape 
of the deleterious DFE, which is expected based on the simulation parameters. These findings 
suggest that disregarding beneficial mutations can cause an artificial change in the inferred shape 
of the marginal deleterious DFE between populations, as noted previously by Tataru et al. (2017). 
Second, when we contrast models with and without considering the positive DFE (that is, testing 
the nested models M1 vs M2 and M10 vs M20), yields statistically significant results in all scenarios 
(see Supplementary Table 2, fourth and fifth columns). Hence, polyDFE appears to detect 
beneficial mutations, regardless of the true presence and strength of positive selection. Third, we 
investigate whether Domesticated and Wild populations could exhibit an artificial change in the 
beneficial DFEs as a consequence of domestication. When comparing the M20 and M30 models 
(refer to the last column in Supplementary Table 2), polyDFE invokes changes in the positive DFE 
between populations in most scenarios without migration (with IDs 1, 2, 5, 7, 8, 11 and 12). Below 
we characterize this putative change in the marginal DFEs between populations.  

Estimation of DFE parameters in Wild and Domesticated populations 

Under the polyDFE framework, we begin by extracting the Akaike Information Criterion (AIC) 
from every model (Table 3) and then computing the AIC-weighted parameters for all models 
(Tataru & Bataillon, 2019; Castellano et al., 2019). This approach is used because the true model 
generating real data in both Wild and Domesticated populations is unknown. Instead, under dadi's 
framework, we adopt an alternative methodology that utilizes very general, parameter rich and 
versatile joint demographic and DFE models to fit the 2D-SFS. The diagnostic plots of the new 
joint DFE model is shown in Supplementary Figure 1, again there is good agreement between the 
model fits and the data.  

Inferred parameters related to the deleterious DFE: Supplementary Figure 4 and 5 depicts the 
distribution of parameters related to the deleterious DFE that are estimated by performing 
bootstrap analysis using polyDFE and dadi. We observe that both tools have a tendency to 
marginally overestimate the shape parameter of the gamma distribution employed to model the 
deleterious DFE (Supplementary Figure 4). The overestimation is particularly significant in 
polyDFE, when positive selection is strong. In such scenarios, dadi's shape estimation is 
sometimes rather noisy. Regarding the mean of the deleterious DFE (s) (Supplementary Figure 
5), we observe that the inferred mean values across bootstrap replicates vary by up to 20% higher 
or lower, depending on the population, scenario, and inference tool. The largest misinference 
occurs when positive selection is strong and dadi is used and in the Domesticated population when 
polyDFE is used.  

Inferred parameters related to the beneficial DFE: The distribution of parameters associated 
with the beneficial DFE, estimated by bootstrap analysis using polyDFE and dadi, is shown in 
Supplementary Figure 6 and Supplementary Table 3 (only dadi). Depending on the scenario, we 
simulate an average increase in relative fitness (sb) of 0.010, 0.001, and 0.0001. Positive 
selection's strength is usually substantially underestimated by polyDFE and dadi, but only polyDFE 
consistently overestimates the proportion of new advantageous mutations (pb), regardless of the 
true simulated value. Given the distribution of inferred values of pb and sb,  a peak of effectively 
neutral advantageous mutations is being measured by polyDFE. The overall excess of effectively 
neutral advantageous mutations measured by polyDFE is generally balanced by the defect of 
effectively neutral deleterious mutations. Consequently, polyDFE seems to have limited power in 
identifying effectively beneficial mutations on the 1D-SFS (under these simulation conditions). 
More importantly, the apparent spurious difference in the marginal full DFE between populations 
detected by polyDFE disappears when the full DFE is discretized. We conclude that if a significant 
change is detected in the discretized marginal full DFE, it must be considered valid.  

It is noteworthy that both polyDFE and dadi tools typically produce comparable and reasonably 
accurate discretized deleterious DFEs (Figure 3), despite polyDFE’s tendency to infer a peak of 
effectively neutral beneficial mutations. This suggests that, regardless of the inference method 
used, the estimation of the “effective” discretized deleterious DFE remains robust to demographic 
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and selective changes, as well as the pervasive effects of linked selection. In contrast, recent 
studies indicate that in highly selfing species, the deleterious DFE is often misestimated due to the 
influence of linked selection (Gilbert et al., 2022), particularly strong Hill-Robertson interference 
(Daigle & Johri, 2024). These findings highlight that the accuracy of inferring the deleterious DFE 
is not universal but instead depends on factors such as the degree of selfing and inbreeding. 

Thus, we conclude that both tools struggle to infer the positive DFE and tend to be 
overconservative and identify weaker positive selection than what has been simulated. We suspect 
this arises from linkage between beneficial and synonymous mutations, which may lead to an 
excess of high-frequency synonymous mutations and an overcorrection of the excess non-
synonymous polymorphisms at high frequency, either through polyDFE’s ri parameters or dadi’s 
inferred demographic history. Notably, these findings are consistent with what was already pointed 
out by Tataru et al. (2017) and Booker (2020) using a single population. They draw attention to the 
challenge of inferring parameters of positive selection when counting for weakly and strongly 
selected mutations. Indeed, Booker (2020) emphasize that in the case of rare and strong positive 
selection, the SFS can be very noisy, with linked sites playing an important role, making it difficult 
to infer the positive DFE.  

 

Figure 3 - Sampling distributions of estimated discretized full DFE obtained using 
100 bootstrap replicates.  

Estimation of the fraction of mutations with divergent selective effects (pc) between 
Domesticated and Wild populations  

One of the main goals of this study is to determine the proportion of new and standing non-
synonymous mutations with differing selection coefficients in Wild and Domesticated populations. 
The usage of our new joint DFE model is not limited to the current study. Our new model, created 
by mixing multiple distributions to mimic mutation types in our simulations (Table 2; Figure 1C-D), 
is suitable for usage in any recently diverged populations.  
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Figure 4 displays the distribution of the inferred pc for three different positive DFEs, along with 
simulated pc values. When positive selection is not strong, it becomes apparent that scenarios with 
a significant fraction of mutations with dissimilar selective effects (pc = 0.25) can readily be 
differentiated from those where a small (pc = 0.05) or nonexistent (pc = 0) number of sites alter 
their selection coefficient. However, differentiating our negative control from a positive control 
proves difficult when only 0.05 of the sites show a difference in their selection coefficients. Notably, 
we overestimate pc significantly in cases of strong positive selection, indicating that classic hard 
selective sweeps may mimic divergent selection in a substantial amount of non-synonymous 
mutations. We observe no major impact of migration on the inferred pc values across scenarios.  

The overestimation of pc when positive selection is strong is not surprising, since non-
synonymous mutations with stable selection coefficients between populations may be in close 
recombinational proximity and hitchhike with strongly beneficial mutations that are population-
specific. This will exacerbate the apparent fraction of mutations with divergent selective effects. In 
contrast, if positive selection is weaker, recombination will be able to disentangle beneficial 
mutations from the rest of mutation types and simplify our estimation of pc. One way to ameliorate 
this problem would be to remove genomic windows with evidence of recent population-specific, 
complete or partial, selective sweeps and rerun our inference pipeline. For example, these could 
be regions with low neutral genetic diversity. However, we find this heuristic solution might be 
difficult to implement in practice.  

Supplementary Figure 7 shows the observed level of neutral genetic diversity (measured using 
Watterson’s theta (Watterson, 1975) and synonymous sites, θs) and the selective constraint (i.e., 
the ratio of non-synonymous polymorphisms to synonymous polymorphisms per site, Pn/Ps) for 
each independent simulation run. Note the large decrease in the observed θs, driven entirely by 
linked selection in Wild populations, relative to the expected level of neutral genetic diversity 
(expected θs = 0.005 under free recombination). Particularly important is the reduction in the 
average θs across independent simulation runs in Wild populations when positive selection is rare 
and strong (θs is ~20% of the expected value), whereas when positive selection is weaker or 
absent the observed level of genetic diversity is ~40% of the expected value. In strong positive 
selection scenarios, there may be no heuristic correction or genomic region that escapes genetic 
draft (Gillespie, 2000), and our current definition and interpretation of pc would be misleading. We 
also observe that when positive selection is strong, genetic diversity and Pn/Ps are significantly 
further reduced in both Domesticated and Wild populations, causing the two distributions to largely 
overlap. As described above for the reconstruction of demographic history, when selective sweeps 
are strong, the recovered demographic history also tends to overlap between Wild and 
Domesticated populations. The overlap of demographic histories, neutral genetic diversity and 
Pn/Ps distributions could be used as a caution signal and as an indicator of strong positive selection 
and widespread genetic draft. Finally, migration appears to cause a minor reduction in Pn/Ps and 
increase genetic diversity within Domesticated populations. Thus, migration acts slightly 
diminishing the Pn/Ps discrepancy between Wild and Domesticated populations.  

Implications for empirical analysis of populations  

A scenario involving divergent populations, with one undergoing a bottleneck and a shift in the 
selection regime, may also be relevant in other contexts beyond domestication, such as invasive 
species, island colonization or recent parapatric and allopatric speciation events. In this work, we 
observed that selective effects affect the inference of demographic parameters by linked selection, 
but to different extents depending on the DFE. Background selection contributes to the 
misinference of domestication divergence time and the duration of the bottleneck, making them 
appear more ancient and extended than in our simulations. When strong selective sweeps are 
combined with background selection, the inferred temporal stretch becomes even more 
pronounced, and the inferred demographic history of both populations overlaps extensively. These 
demographic distortions in the inference must be considered when interpreting real data using 
these methods or any other methods that make similar assumptions. Nevertheless, under the 
assumptions used in this work, we believe that the discretized deleterious DFE is estimated with 
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reasonable accuracy. This suggests that methods designed to infer the entire DFE could be 
applied first, followed by the estimation of demographic parameters using this information. 
Interestingly, Johri et al. (2021), using a different approach based on a single population and 
considering four classes of deleterious mutations, found that while DFE classes were accurately 
estimated, demographic parameters were not. They proposed a method to jointly infer both 
demography and deleterious mutations using an ABC framework. Although computationally 
intensive, this approach may help address some of the inference challenges highlighted in this 
work. 

Another point of interest for empirical geneticists is the development of a new method to jointly 
infer the DFE between wild and domesticated and their differences in the positive part of the 
distribution. The 2D dadi extension algorithm allows to infer differences in pwb (the fraction of 
mutations that are positively selected in the wild population), pc (the fraction of mutations that 
change the coefficient of selection in the domesticated population), pcb (the fraction of those 
mutations that become beneficial in the domesticated population). 

 

Figure 4 - Sampling distributions of inferred pc (dadi) are obtained using 100 
bootstrap replicates. In light green are shown the scenarios without migration and 
in dark green the scenarios with migration.  
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Conclusions 

In summary, our use of forward-in-time simulations has provided valuable insights into the 
inference of complex genetic demographic history and distribution of fitness effects (DFE) for both 
new and standing amino acid mutations in the context of domestication. Through a comparative 
analysis of two methods, polyDFE and dadi, and the new implementation of a full 2D-SFS full 
inference of DFE, we have uncovered the impact of linked selection on the reconstructed 
demographic history of both wild and domesticated populations. Despite biases in the timelines of 
domestication events and bottleneck characteristics, the estimation of discretized deleterious DFE 
remains remarkably reliable, demonstrating the robustness of these analytical approaches in the 
studied conditions. In particular, the underestimation of effectively beneficial mutations in the DFE 
highlights the influence of linkage between beneficial and neutral mutations, which requires further 
consideration in model design and interpretation. In addition, our results shed light on 
distinguishing scenarios of divergent selective effects between populations under weak and strong 
positive selection, providing a nuanced understanding of the interplay of evolutionary forces. 
Nevertheless, we must approach the results of this work with caution, as the simulated 
demographic and selective patterns are based on specific models/idealizations that may not fully 
capture the complexities of domestication. On the other hand, as we navigate the complex 
landscape of domestication, these methodological approaches contribute significantly to 
unraveling the evolutionary dynamics and adaptive processes that shape the genomes of 
domesticated organisms, and provide a foundation for future research in this critical area of study.  
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