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Abstract
Population trends derived from systematic monitoring programmes are essential to iden-
tify species of conservation concern and to evaluate conservation measures. However,
monitoring data pose several challenges for statistical analysis, including spatial bias due
to an unbalanced sampling of natural regions or habitats, variation in observer expertise,
frequent observer changes, and overdispersion or zero-inflation in the raw data. An ad-
ditional challenge arises from so-called ‘rolling’ survey designs, where each site is only
visited once within each multi-year rotation cycle. We developed a GAMM-based work-
flow that addresses these challenges and exemplify its application with the highly struc-
tured data from the Ecological Area Sampling (EAS) in the German federal state North
Rhine-Westphalia (NRW). First, we derive a routine that allows informed decisions about
the most appropriate combination of distribution family (Poisson or negative binomial),
model covariates (e.g., habitat characteristics), and zero-inflation formulations to reflect
species-specific data distributions. Second, we develop a correction factor that buffers
population trend estimates for variation in observer expertise as reflected in variation in
total bird abundance. Third, we integrate region-specific trends that adjust for between-
year variation in the representation of habitat or natural regions within the yearly subset
of sampled sites. In a consistency check, we found good match between our GAMM-
based EAS trends and TRIM-based trends from the German Common Bird Monitoring
scheme. The study provides a template script for R statistical software so the workflow
can be adapted to other monitoring programmes with comparable survey designs and
data structures.
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Introduction 

Bird populations decline worldwide (Klvaňová et al., 2009; Sauer et al., 2017; Burns et al., 

2021), with the European Union alone facing an approximate loss of 560–620 million bird 

individuals (17–19%) within 40 years (Burns et al., 2021). Such knowledge of population sizes and 

their trends heavily relies on standardised monitoring programmes to provide reliable population 

density estimates. The resultant population trend estimates allow allocating conservation 

resources to species of highest conservation concern (Niemelä, 2000; Buckland & Johnston, 

2017), provide feedback on the efficiency of conservation efforts (Johnston et al., 2015), and raise 

awareness for the value and state of biodiversity among decision makers and the public (Jennings, 

2021).  

However, many monitoring programmes pose substantial challenges for statistical inference 

that can reduce the reliability and robustness of the estimated trends if not treated with care 

(Buckland & Johnston, 2017). Our study focuses on a monitoring scheme with a rolling (or 

‘rotating’) survey design that generates multi-year intervals between repetitive surveys per site 

(Buckland & Johnston, 2017). Rolling surveys can cover more study sites and thus a wider range 

of habitats or natural regions across years than monitoring schemes with a yearly coverage of all 

sites but result in a large fraction of sites with missing values each year and frequent observer 

changes. In this context, we develop an analytical protocol to cover three core aspects. First, rolling 

monitoring programmes rest on spatially structured sampling designs, often coupled with between-

year variation in the representation of habitat types, which needs integration into the analysis (van 

Strien et al., 2004; Buckland & Johnston, 2017). Spatial bias arises when relevant natural regions 

or habitats are not represented according to their spatial coverage in the monitoring sample  (van 

Strien et al., 2004). As a result, when population trends vary between natural regions or habitats, 

the estimated overall population trend can be biased towards overrepresented natural regions, or 

reflect changes in sample composition rather than a true change in abundance (Buckland & 

Johnston, 2017; Bowler et al., 2022).  

Second, detection probabilities and survey quality can vary strongly among and (over time) 

within observers, potentially introducing random and systematic trend estimation errors when 

ignored (Sauer et al., 1994; Link & Sauer, 1998; Kéry et al., 2005; Jiguet, 2009; Farmer et al., 

2014). When average observer expertise remains constant, between-observer variation primarily 

increases (random) variation in abundance estimates between sites and years (Sauer et al., 1994; 

Johnston et al., 2018). In contrast, within-observer learning and systematic changes in average 

observer expertise introduce (systematic) biases in trend estimates. For example, initial 

familiarisation with a new study site and the specificities of the monitoring programme usually 

cause underestimated bird abundances in early survey years (Link & Sauer, 1998; Jiguet, 2009). 

Moreover, observer expertise usually increases with time after active engagement in bird territory 

surveys, while species detectability declines with age if hearing impairment reduces the detection 

of high-pitch bird vocalisations (Farmer et al., 2014). In rolling survey design, these general issues 

typically go along with a high turnover in observer identities between successive surveys of the 

same site, which adds further variation. 

Finally, count response data as typical for bird census require models to reflect distribution 

properties such as overdispersion or zero inflation (Blasco‐Moreno et al., 2019; Campbell, 2021). 

Overdispersion arises when the variance of count data exceeds their mean value. It is typically 

resolved by modelling trends with a negative binomial error distribution instead of a Poisson 

distribution (Blasco‐Moreno et al., 2019; Campbell, 2021). Zero-inflation occurs when datasets 

contain so-called structural zeros. This implies a disproportionally large fraction of unoccupied sites 

that cannot be explained solely by sampling variation among sites considered suitable, but rather 

arises from survey sites that are unsuitable. Where present, structural zeros are modelled 

separately from the count distribution in zero-inflated model components (Korner-Nievergelt et al., 

2015; Blasco‐Moreno et al., 2019; Campbell, 2021; Tirozzi et al., 2021).  
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The software TRIM (Pannekoek & van Strien, 2001) represents a common analytical tool for 

the analysis of monitoring data and is used, for example, in the Pan European Common Bird 

Monitoring Scheme (Vorisek et al., 2008) and the national bird monitoring programmes of Sweden 

(Jiguet et al., 2013), Finland (Pöysä et al., 2013), or Germany (Kamp et al., 2021). TRIM computes 

trends and annual population indices from loglinear Poisson regressions. It corrects for 

overdispersion, serial correlation and missing values and allows weights to account for spatial bias 

(van Strien et al., 2004). Yet, designed for monitoring schemes with almost yearly surveys per site 

by the same observer, TRIM estimates are considered robust unless the turnover in survey sites 

between years leads to a ≥ 60 % fraction of missing values (van Strien et al., 2001; Bogaart et al., 

2020; Dakki et al., 2021). Moreover, TRIM is restricted to categorical covariates, requiring climate 

or landscape composition covariates to be transformed into categories (Bogaart et al., 2020). 

Finally, long-term trend analyses beyond yearly index estimates are restricted to linear trends and 

breakpoint analyses, while more recent developments favour the integration of trend smoothers, 

e.g. with general additive (mixed) models (GA(M)Ms) (e.g., Fewster et al. (2000); Knape (2016)). 

Using a smoothing function, GA(M)Ms can also capture non-linear short- and long-term trends 

while allowing to identify periods of strongly increasing or decreasing trends and breakpoints of 

(linear) trend direction (Fewster et al., 2000; Zuur, 2012; Knape, 2016; Wood, 2021). 

We develop a user-friendly tool that integrates high observer turnover, long time gaps between 

successive surveys, spatial bias, as well as overdispersion and zero-inflation into an analysis of 

bird abundance trends from rolling surveys. It is exemplified with data from the Ecological Area 

Sampling (EAS), a monitoring programme of the German federal state North Rhine-Westphalia 

(NRW) with a six-year rolling sampling scheme. As a quality check, we compared the predicted 

population trends with West German trends derived from the German Common Bird Monitoring 

scheme (MhB) with yearly surveys per site. The statistical approach is provided as an R script 

(Rieger et al., 2025a) and package (Rieger, 2024) that can be adjusted to other datasets with a 

comparable structure. 

Material and Methods 

The Ecological area sampling (EAS) dataset 

The Ecological Area Sampling (EAS) is a long-term biodiversity monitoring programme of the 

State Agency for Nature, Environment and Climate in North Rhine-Westphalia (LANUK, former 

LANUV) with 170 study sites that represent the average landscape of North Rhine-Westphalia 

(NRW) (LANUV, 2016b). Sites are distributed across six natural regions and two biogeographic 

regions (atlantic lowlands, continental highlands) (Figure 1) proportional to their spatial coverage. 

Another 21 metropolitan sites were added in 2011 to represent habitat characteristics of the Rhine-

Ruhr metropolis region (Weiss & Schulze‐Hagen, 2014). The program targets an alternating six-

year cycle for successive surveys of a given site but could not yet strictly impose it given 

restructuring in the yearly balance of sites among natural and metropolitan regions (see section 

‘Spatial bias’). The dataset for the survey period 2002-2020 typically covered 25 to 36 (max. 47) 

sites per year, two to four replicated surveys per site, and 614 surveys in total. Each site is visited 

at least nine times per sampling year (two to eight hours per date) between February and July with 

complete coverage of its 1 km² area (LANUV, 2016a). The repetitive surveys are used to derive 

the territory count per species and km², which represents the response variable abundance in all 

statistical analyses (LANUV, 2016a). Survey effort (survey number and duration) constitute 

relevant model covariates but the respective information is not available for the current dataset 

(Further detail on EAS methodology in Appendix 1). 

Site characterisation 

Sites were distributed into six natural regions and whether they were located in a metropolitan 

area or not (Figure 1). We combined these two layers of information to produce a new natural 

regions variable with seven levels, all sites within the metropolitan area being classified as 
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“metropolitan area” while others were classified according to the natural region they belong to. 

Another site-specific categorical variable was biogeographic region (atlantic, continental). Natural 

regions showed near-complete separation between biogeographical regions, where the 

continental region encompasses the natural regions ‘silicate hillside’ and ‘limestone hillside’ and 

the Atlantic region the remaining five natural regions including the ‘metropolitan area’ (Figure 2 

right). We therefore only considered biogeographic region in the post-modelling process (see 

section ‘Population trends’). 

Quantitative site characteristics included altitude above sea level (ATKIS, 2013), ten 

parameters of climate and three of landscape compositions to account for variation in mean 

environmental attributes between the site subsets surveyed per year. Climate parameters included 

long-term spring and winter averages between 1981 and 2010 (CDC, 2010) of minimum, mean, 

and maximum temperatures, precipitation, and sunshine duration. Landscape composition 

variables were the coverages of forest, arable land, and settlements (ATKIS, 2013). Given 

substantial collinearity between these 14 attributes, we integrated their principal components (PC) 

with eigenvalues exceeding 1 into the statistical models (three PCs in our case; for details see 

Appendix 2).  

 

Figure 1 - Sites and study area of EAS coloured by six natural regions (middle) and 
two biogeographic regions (left), both including the Rhine-Ruhr metropolis, which 
was implemented as seventh natural region. Map adapted from LANUV (2016b). 

Spatial bias 

The initial sample of 170 EAS monitoring sites almost perfectly represented the proportional 

coverage of natural regions in NRW, but sampling bias arose from two sources. First, the 

monitoring programme added 21 metropolitan sites overrepresenting the metropolitan area to the 

other six natural regions in 2011. Second, the yearly subsampling of sites was highly unbalanced 

with respect to natural regions in the early phase of the EAS programme (Figure 2), with 

improvements since 2007 and almost perfect balance since 2013.  

To account for the uneven allocation in early programme years and for the overrepresentation 

of metropolitan areas since 2011, we analysed annual trends per natural region. 
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Figure 2 - Natural region shares in annual EAS samples (main panel) and their 
spatial coverage per biogeographic region (atlantic - atl, continental - con) and in 
NRW (right panel). Bar widths are proportional to the number of surveyed sites per 
year.  

Observer effects 

The delineation of breeding territories is prone to under- and overestimation arising from 

variation in observer expertise in species identification and detection, territory delineation, and 

general field survey quality (Südbeck et al., 2005; Johnston et al., 2018), even in programmes such 

as the EAS that hire skilled ornithologists (König, 2020). Observer effects add further noise to trend 

estimates when observers change between successive surveys of a given site. Excluding data 

from first year surveys, an established standard in monitoring data with yearly site coverage (e.g., 

German Common Bird Monitoring (Kamp et al., 2021)), is unfeasible for rolling surveys: In the EAS 

dataset, 434 out of 614 breeding bird surveys between 2002 and 2020 (71 %) were such first-year 

combinations of observer and site. To characterise observer expertise and learning effects, we 

therefore categorised observers as (i) unfamiliar with the survey programme and site, (ii) familiar 

with survey programme but unfamiliar with the site, or (iii) familiar with both. Yet, we excluded this 

predictor from final models since it did not improve model fit, most likely because site familiarisation 

introduced no detectable bias into the EAS trend estimates given the high observer turnover rates 

among successive surveys. 

Instead, we identified surveys with suspiciously high or low territory counts summed across all 

species. The procedure assumes that severe observer effects typically manifest in a general 

under- or overestimation of territory numbers (= abundance), so that total abundance (summed 

across species) for a given site and year stands out against average total abundance for that site. 

Based on this logic, we calculated  

(1) Observer effect =  
𝑁𝑗𝑠

𝑁𝑠̅̅̅̅
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with 𝑁𝑗𝑠 the total abundance across species on site 𝑠 in survey year 𝑗, and 𝑁𝑠
̅̅ ̅ the mean total 

abundance across species on site 𝑠 across all survey years (Rieger, 2024). This observer effect is 

a ratio, so that a value of 1 indicates no deviation from the mean, and a value of 0.75 (1.25) a 

deviation of -25% (+25%) from the observed mean. We integrated the observer effect as a 

categorical predictor variable classified as ‘negative’ (or ‘positive’) when the abundance sum of a 

given survey was at least 25% smaller (or larger) than the mean per site, and as ‘none’ otherwise. 

As a sensitivity analysis, we also checked observer effect thresholds of 20% and 15%. 

Distribution characteristics and the statistical analysis of EAS 

We analysed species-specific abundance trends between 2002 and 2020 for all species with ≤ 

90 % zero-sightings in both biogeographic regions (and thus at least 61 non-zero records) to allow 

plausible trend detection. The criterion was fulfilled in 61 (out of 148) species. For conciseness, 

this study focuses on a subset of 14 species that cover the observed range of abundance 

distributions and proportions of zero counts (Table 1). 

Trends in Abundance, i.e. the territory count per site and year, were analysed using generalised 

additive mixed models (GAMMs) within a Bayesian framework as implemented in the package 

brms (v.2.21.0; (Bürkner, 2017) for R (v.4.3.3; (R Core Team, 2024). The brms package fits 

Bayesian models using Stan via the package cmdstanr (v.0.7.1; (Gabry & Češnovar, 2020) and 

allows to more flexibly integrate the required error families and model structures. We implemented 

four different error structures to account for zero-inflation or overdispersion, namely a Poisson error 

structure (Pois), negative binomial (nb), zero-inflated Poisson (zip), or zero-inflated negative 

binomial (zinb), all using a log link (Table 2, Appendix 3). Since the underlying survey method 

generates .5 abundances for peripheral territories, we multiplied abundance by two (so it would be 

number of territories for 2 km²) and added an offset of two to all models. 

The main model was constructed as follows, and we explain each model component below: 

(2) 2*Abundance ~ s(Year, by = Natural region) + Natural region + Observer + poly(PC1, 2) 
+ poly(PC2, 2) + poly(PC3, 2) + offset(log(2)) + (1|siteID) 

Survey Year as the main continuous predictor was modelled with a smoothing function (thin 

plate regression splines with an automatic selection of the degree of smoothing and k = 10 default 

basis dimension, (Wood, 2021)) to account for non-linear changes in abundance over time while 

allowing adjacent years to be related to each other (Fewster et al., 2000; Zuur, 2012; Knape, 2016; 

Wood, 2021). Thus, smoothers buffer against the property of rolling surveys that sampled site 

subsets differ between successive years, so that year-to-year changes in abundance cannot 

differentiate among-site variation from true short-term change in population size (Zuur, 2012). 

Smoothers were modelled separately per Natural region to allow detecting regional differences in 

population trends and – for the overall trend estimates – accounting for spatial bias that may arise 

from unbalanced sampling design among regions (see above) in the post-modelling process 

(Figure 2). 

We added Natural region as a categorical main effect (Wood, 2021) to contrast population 

densities and trends between the seven natural regions. Since natural regions showed near-

complete separation between biogeographical regions (see Figure 2 right and section ‘Site 

characterisation’), we therefore refrained from adding biogeographic region as a separate 

predictor, but extract population trends per biogeographic region by combining the respective 

natural region trends (see section ‘Population trends’).  

Observer effects as outlined in section ‘Observer effects’ were added as a categorical 

covariate. For numeric covariates, we included linear and quadratic terms of site-specific 

environmental attributes captured in the first three principal components PC1 to PC3 as outlined 

in section ‘Site characterisation’ and Appendix 2. Finally, we added site-ID as a random intercept 

to reflect repeated measures per site and to model variation in mean abundance between the 

different site subsets per year.  
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The zero-inflation model component, where needed (Table 1), represents a binomial (Bernoulli) 

model with a logit link to estimate the additional occurrence of structural zeros. We kept this 

component as simple as possible (formulation 3) and estimated separate zero-inflation parameters 

per Natural region, environmental PC, or study site-ID (formulations 4-6) only where needed to 

improve model convergence and better reflect the observed distribution of zero counts (Figure 3, 

Table 2): 

(3) zi-formula ~ 1 
(4) zi-formula ~ Natural region 
(5) zi-formula ~ PC1 + PC2 + PC3 
(6) zi-formula ~ (1|siteID) 

We did not integrate temporal autoregressive structures (van Strien et al., 2004; Korner-

Nievergelt et al., 2015) because variograms plotted with the variog function of the package geoR 

(v.1.9-3; (Ribeiro Jr & Diggle, 2020) did not reveal issues with temporal autocorrelation. This may 

result from the difficulty of detecting autocorrelation with just 2-4 observations per site as well as 

from the six-year gaps between repeated measures (usually accompanied by a change in 

observer), which may add more variation to model residuals than expected from the remaining 

temporal pattern. 

Table 1 - Overview of model types (main model family, coefficients in the optional 
zi-binomial model) and number of case study species per model type. Species 
names are given for the 14 exemplary species shown in this paper. Details for all 
species are in Appendix 7. Models are ordered according to their parsimony (top = 
most parsimonious). 

model family binomial model coefficients # species (%) exemplary species 

pois  3 (4.9%) 
European Green Woodpecker (Picus viridis), 
Eurasian Nuthatch (Sitta europaea) 

nb  13 (21.3%) 
Eurasian Blue Tit (Cyanistes caeruleus), 
Common Chiffchaff (Phylloscopus collybita) 

zip ~ 1 7 (11.5%) 
Black Redstart (Phoenicurus ochruros),  
Willow Tit (Poecile montanus) 

zinb ~ 1 13 (21.3%) Great Tit (Parus major) 
zip ~ PCs 3 (4.9%) Grey Wagtail (Motacilla cinerea) 

zinb ~ PCs 6 (9.8%) 
Eurasian Jay (Garrulus glandarius),  
Common Chaffinch (Fringilla coelebs) 

zip ~ NR 1 (1.6%) Common Kestrel (Falco tinnunculus) 
zinb ~ NR 3 (4.9%) Barn Swallow (Hirundo rustica) 
zip ~ (1|ID) 5 (8.2%) Common Buzzard (Buteo buteo) 
zinb ~ (1|ID) 7 (11.5%) Eurasian Magpie (Pica pica) 

pois = Poisson, nb = negative binomial, zip = zero-inflated Poisson, zinb = zero-inflated 
negative binomial, PCs = Principal Components PC1 + PC2 + PC3, NR = Natural region, 
(1|ID) = random intercept of site-ID. 

To fit Bayesian models, we used weakly informative prior distributions for coefficients (normal 

with mean = 0, SD = 2.5 for categorical coefficients, mean = 0, SD = 10 for numeric coefficients) 

and a maximum tree depth of 10 for the Hamiltonian Monte Carlo algorithm in Stan. Each model 

ran four Markov chain Monte Carlo chains with 1,000 warm-up and 2,000 post-warm-up samples 

per chain. We used the 8,000 post-warm-up samples for posterior predictive checks of the model’s 

ability to simulate the observed abundance distribution. Criteria included distributional 

characteristics (mean and standard deviation) as well as the model’s ability to reflect extreme 

values (maximum value) and potential zero inflation (proportion of zero counts, propZ) in the data. 

In all these cases, we calculated the proportion of simulations exceeding the observed raw data 

value (Bayesian p-value, Korner-Nievergelt et al. 2015). Bayesian p close to 0.5 imply a good 

match because the observed values are roughly central within the distribution of simulated data, 

while values approaching 0 or 1 flag models that clearly under- or overestimated the observed 

value.  
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We further checked several conversion indicators of the coefficient estimates: Rhat-values ≤ 1.1 

(observed max = 1.01) (Brooks & Gelman, 1998), effective posterior samples ≥ 10% of total 

samples (observed min = 9.4%) and Monte Carlo standard errors ≤ 10% of the standard deviation 

(observed max = 4.3%) (Korner-Nievergelt et al., 2015). To select the model with the best 

predictive performance per species, we did a k-fold-cross-validation using 16 folds resulting in a 

theoretical expected log pointwise predictive density (ELPD) per model, as well as ELPD 

differences (model with best ELPD compared to others) and the respective standard error of the 

difference (se ELPD  difference) (Bürkner, 2017). When several models resulted in near-identical 

performance (ELPD difference ± 1.96*se ELPD difference included 0), we continued with the most 

parsimonious model, i.e., the model with the lowest number of covariates or model components 

(see Table 1), that fulfilled our conversion indicators. Note that cross-validation leads to a high 

computational cost: Runtime per model and species without cross-validation span between just 

one and five minutes, whereas cross-validation (16 additional models) took 15 to 60 minutes per 

species on a machine with 16 threads. 

From the post-warm-up samples we also derived mean covariate coefficient estimates with 

their 95% credible intervals (CrI) and the posterior probability that the estimate exceeds 0, P(β > 

0). Posterior probabilities approaching 0 or 1 indicate increasingly strong evidence for a directional 

coefficient. 

Population trends 

Model predictions ± 95% CrI were derived via brms.fitted (Bürkner, 2017) to display trends 

graphically. When estimating trends over years and differences between natural regions, values 

of the remaining model covariates were set to their natural region-specific sample mean 

(continuous covariates), to the level ‘none’ (for ‘observer effect’) (Korner-Nievergelt et al., 2015), 

and group-level effects (‘site ID’) were generalised beyond the specific grouping level by using the 

argument re_formula = NA. We derived trends across biogeographic regions by combining these 

natural region-specific trends according to the natural region’s share of the biogeographic region 

(Atlantic (continental): A = 11.7% (2.1%), B = 20.9% (9.2%), KB = 5.1% (20.1%), KM = 15.1% 

(0.4%), SB = 0.0% (64.7%), ST = 35.1% (1.2%), metro = 12.1% (2.3%)). Overall trends were 

derived alike by combining the region-specific trends according to their share of NRW (55.5% 

Atlantic region and 44.5% continental region). Based on pairwise differences of predicted 

abundances, we estimated trends as changes in abundance per km² between the start and end 

date of any desired time period as 

(7) change = 
𝑁𝑖𝑗− 𝑁𝑖(𝑗−𝛥𝑡)

𝛥𝑡
 

with 𝑁 the predicted abundance per km² for the 𝑖th posterior draw at times 𝑗 and 𝑗 − 𝛥𝑡, where 

𝛥𝑡 is the desired time period. If the 95% CrI of these changes in abundance excluded 0, the trend 

estimate was considered robust. We specifically produced pairwise differences to estimate annual 

changes (𝛥𝑡 = 1) and a mean long-term trend between 2008 and 2019 (𝛥𝑡 = 12, 𝑗 = 2019).  

Population index 

For comparison with other monitoring programmes, we integrated the option to transform 

predicted mean abundances per km² into an index relative to a user-selected baseline year (here: 

2006). Even though the first few years of the monitoring programme suffer from non-representative 

sampling (see section ‘Spatial bias’), weights and smoothing-function enabled accurate estimates 

in these years without distorting successive estimates (Buckland & Johnston, 2017). Abundance 

indices were calculated as 

(8) Abundance index =  
𝑁𝑖𝑗

𝑁𝐽̅̅̅̅
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with 𝑁𝑖𝑗 the predicted abundance of the 𝑖th posterior draw in year 𝑗, and 𝑁𝐽
̅̅ ̅ the mean predicted 

abundance of all simulations in the baseline year 𝐽 (here J = 2006). Based on 10,000 simulations, 

we calculated the mean index and its 95% CrI for each time step 𝑗. Note that this computation 

calculates an uncertainty also for the baseline year J, which implies that confidence intervals 

display the uncertainty of the calculated index value and not of the change in index relative to the 

reference year. Users who prefer a fixed baseline year index without uncertainty need to replace 

the mean abundance denominator, 𝑁𝐽
̅̅ ̅ in the formula by 𝑁𝑖𝐽 , i.e. the 𝑖th simulation in the baseline 

year.  

Data exclusion  

Based on an internal validation process of the LANUK, some abundance data were classified 

as implausible and therefore excluded from the analysis. This process was species-dependent, 

leading to sample sizes of 608 to 614 per species (full dataset: 614, Appendix 7).  

Consistency check 

We checked our EAS trends for NRW for consistency with population trends in all West 

Germany according to the German Common Bird Monitoring scheme (MhB), coordinated by the 

German association for field ornithologists. MhB study sites are ideally surveyed each year by the 

same observer (four surveys per site between 10 March and 20 June; full programme details in 

Kamp et al. (2021)).  

The consistency analysis included 59 widely distributed species spanning a broad range of 

habitat associations and breeding strategies for which we had trend estimates available from the 

MhB and from the EAS. It is obviously difficult to compare trend estimates between programmes 

that rest on different methodologies and survey efforts (nine vs. four surveys per year), have 

different spatial coverage (NRW vs. West Germany) with just a partial match in study sites, and 

employ fundamentally different analytical approaches (GAMM smoothers in EAS vs. yearly point 

estimates in MhB). Nevertheless, largely consistent estimates from EAS and MhB would reassure 

that the analytical approach developed for rolling sampling strategies produces reliable trends that 

are robust to the underlying survey design. With these limitations in mind, we expected that yearly 

samples in the MhB versus 6-yearly samples in the EAS should generate largely consistent long-

term trend estimates, except for cases where a species’ biology would objectively favour one 

survey and analysis routine over the other (see Discussion).  

To assess trend consistency we calculated two parameters for each species: (i) a Pearson 

‘correlation’ coefficient between the annual TRIM-based MhB indices and the annual EAS-indices 

extracted from model smoothers between 2005 and 2020, and (ii) the Median Symmetric Accuracy 

(Morley et al., 2018), which estimates the median percentage error between both annual indices 

𝐼𝑗: 

(9) Median Symmetric Accuracy =  100 ∗ exp (𝑚𝑒𝑑𝑖𝑎𝑛 (𝑎𝑏𝑠 (log (
𝐼𝑀ℎ𝐵𝑗

𝐼𝐸𝐴𝑆𝑗
̅̅ ̅̅ ̅̅ ̅̅ )))) − 1  

Note that the baseline year 2006 (both indices = 1) was excluded for both methods. 

Results 

Breeding bird trends were analysed for 61 out of 148 bird species (full detail in Appendix 6, 7), 

but we focus the description of model assessment results on 14 exemplary species (Table 1). 

Exemplified data for four species, script, and code are available from Github (https://github.com/m-

rieger/EAS_bird; Rieger et al., 2025a) as well as a package with helper functions 

(https://github.com/m-rieger/EAS; Rieger, 2024). 
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Distribution characteristics: Species-specific optimisation 

Model selection via k-fold cross validation resulted in different best-performing model families 

and a species-specific selection of coefficients added to the binomial part of zero-inflated models 

(Table 1, species-specific overview in Appendix 7). We illustrate below the selection of model 

structure on four species that strongly vary in overall mean abundance, abundance dispersion, 

and the proportion of sites with zero counts: European Green Woodpecker, Eurasian Blue Tit, 

Black Redstart, and Eurasian Jay. The four measures that inform abundance distribution (propZ, 

mean, SD, max) can – but do not necessarily need to – vary with each other, so that an over- or 

underestimation of zero counts often goes along with an under- or overestimation of the population 

mean, and an over- or underestimation of SD with an over- or underestimation of maximum 

abundance.  

Table 2 - Examples for model assessment and procedure to select species-specific 
models from six alternative model structures (for further species and models see 
Appendix 3). Models differ in family and the presence of a zero-inflated model 
component (zinb and zip), the latter also in binomial model coefficients. Model 
assessment quantifies whether simulated data from the model is consistent with the 
observed response variable (abundance) with respect to its proportion of zeros 
(propZ), mean and maximum value, and standard deviation (SD). Bayesian p-values 
close to 0.5 indicate that the observed values are central within the posterior 
distribution of simulated raw datasets (8000 in total), indicating good model fit. 
Values close to 0 and 1 indicate substantial under- or overestimation and thus poor 
model fit. Final model selection is based on ELPD differences by selecting the most 
parsimonious model (bold, top to bottom) out of all models with an ELPD difference 
± 1.96*SE of ELPD difference including 0 (bold values). Abbreviations see Table 1. 

species 
model 
family 

binomial 
model 
coefficients 

Bayesian p-value ELPD 

   propZ mean SD max diff. se diff. 

European 
Green 
Woodpecker  
Picus viridis 

pois   0.01 0.49 0.79 0.65 -11.86 7.89 
nb   0.01 0.42 0.62 0.68 -204.94 47.02 
zip ~ 1 0.12 0.44 0.87 0.72 -6.65 6.77 
zinb ~ 1 0.13 0.46 0.91 0.80 -8.06 6.73 
zip ~ PCs 0.16 0.46 0.88 0.71 -3.66 6.92 
zinb ~ PCs 0.16 0.48 0.90 0.76 -18.57 7.91 

         

Eurasian 
Blue Tit 
Cyanistes 
caeruleus 

pois   0 0.50 0.01 0.02 -510.17 69.13 
nb   0 0.64 0.70 0.37 -11.2 5.77 
zip ~ 1 0.10 0.34 0.01 0.02 -498.39 66.54 
zinb ~ 1 0.07 0.58 0.69 0.37 -19.9 8.09 
zip ~ PCs 0.11 0.39 0.01 0.02 -509.75 71.86 
zinb ~ PCs 0.07 0.60 0.70 0.38 -6.2 5.83 

         

Black 
Redstart 
Phoenicurus 
ochruros 
 

pois   0 0.51 0.56 0.47 -23.37 10.14 

nb   0 0.59 0.82 0.59 -3654.6 780.81 

zip ~ 1 0 0.30 0.48 0.45 -8.51 9.42 

zinb ~ 1 0 0.42 0.76 0.56 -4.01 7.52 

zip ~ PCs 0 0.42 0.54 0.48 -12.87 9.19 

zinb ~ PCs 0 0.51 0.79 0.51 0 0 
         

Eurasian 
Jay 
Garullus 
glandarius 

pois   0 0.50 0.76 0.77 -37.68 11.47 

nb   0 0.69 0.89 0.70 -117.44 22.38 

zip ~ 1 0 0.31 0.78 0.76 -27.5 8.37 

zinb ~ 1 0 0.34 0.83 0.81 -28.52 8.11 

zip ~ PCs 0.19 0.36 0.77 0.67 -23.57 10.83 

zinb ~ PCs 0.19 0.39 0.81 0.72 -15.08 10.25 

 

European Green Woodpecker (Table 2, Figure 3a) represents species with typically low 

territory numbers and many zero counts. While all models underestimated the number of zero 

counts, a Poisson model sufficiently captured other distribution parameters, resulting in a good 

predictive performance. 

Eurasian Blue Tit (Table 2, Figure 3b) is an abundant and widespread species that occurs in 

nearly all study sites. Here, abundance varied clearly more within sites and/or between year than 
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reflected by a Poisson distribution. This issue of an underestimated SD was solved by using a 

negative binomial model family, even though leading to a slight overestimated SD. 

Black Redstart (Table 2, Figure 3c) is widespread at typically medium densities, resulting in a 

larger fraction of unoccupied sites than expected under a Poisson distribution. All models failed to 

capture this zero-bias, but models with a zero-inflation component were closer to the observed 

value. Since zero-inflated models mostly resulted in comparable ELPDs, we used the most 

parsimonious model (zero-inflated Poisson with no additional binomial coefficient) for further 

analyses. 

Eurasian Jay (Table 2, Figure 3d) is a widespread species with low territory numbers. Using 

zero-inflated models with environmental PCs as binomial model coefficient sufficiently captured 

the observed number of zero counts, and the zero-inflated negative binomial model resulted in the 

best predictive performance. 

Spatial bias 

For many species, (long-term) trends varied between natural regions, confirming the need to 

account for spatial bias. Especially long-term trends in metropolitan areas differed considerably 

from trends in other natural regions, usually showing steeper decreases in abundance per km² 

(except for a steeper increase in Black Redstart, Figure 4). Ignoring the overrepresentation of 

metropolitan sites (or any other unbalance in natural region samples) in the EAS dataset would 

therefore result in biased (long-term) trends for biogeographic regions and overall. In case of 

Eurasian Magpie and Eurasian Nuthatch, trends would be more negative and for Black Redstart 

more positive. 

Observer effects 

We found a strikingly inhomogeneous distribution of observer effects across years, bearing 

substantial potential for biased population trend estimates when unaccounted for. High total 

abundances occurred disproportionally often since 2015, and strikingly low abundances before 

2006 (Figure 5, left), irrespective of the chosen threshold value (Appendix 4). Models ignoring 

observer effects generally produced more positive long-term trend estimates, i.e., resulted in 

steeper increases or less steep declines than models with the covariate Observer (Figure 5, right). 

For Chaffinch, correcting for observer effects even reversed the increase in abundance in the non-

corrected model to a decrease in the corrected model (Figure 5, right). OE-corrected trend 

estimates were generally more consistent with West German trend estimates from the MhB 

programme (Appendix 4) where consecutive surveys at a given site are always from the same 

observer. 

Consistency check 

Correlation coefficients between our annual EAS indices and West German MhB indices 

revealed solid matches – i.e., with correlation coefficients and their 95% CI > 0 – for 34 out of 59 

species (e.g., Nuthatch and Chiffchaff in Figure 6a, b). Only five species (e.g., Eurasian Jay in 

Figure 6d) tended to have negatively correlated yearly indices, but their 95% CI always included 

0. Likewise, median symmetric accuracies (MSA) between index estimates were reasonably low, 

with 43 (or 26) out of 59 species deviating ≤ 20% (or ≤ 10%). Strong positive correlations do not 

necessarily go along with low MSA values, because the latter are rather sensitive to the chosen 

index baseline year as illustrated by the Chiffchaff data (Figure 6b). Here, EAS- and MhB-analyses 

revealed rather consistent trend patterns for the period 2007–2020. Yet, the MSA-values were 

high, first because the exceptionally low MhB index in the baseline year 2006  shifted most other 

annual MhB-index values up so they exceeded the EAS values, but also because the smoothed 

trend did not reflect the magnitude of index differences between the early years 2005 + 2006 and 

later years. In contrast, Great Tit and Eurasian Jay exemplify how poor correlation between annual 

index values can go along with low MSA values (Figure 6c, d), here because a rather stable vs. 

more fluctuating trend (Great Tit) that is identified by a weak correlation shows only minor 

Mirjam R Rieger et al. 11

Peer Community Journal, Vol. 5 (2025), article e45 https://doi.org/10.24072/pcjournal.550

https://doi.org/10.24072/pcjournal.550


deviations in trends (low MSA) or largely overlapping but slightly diverging trends (Eurasian Jay, 

especially due to year 2005) fail to correlate. Correlation coefficients, MSA values, and trend 

displays for all 59 species are in Appendix 5. 

 

Figure 3 - Reasoning for selecting appropriate model structures for four species. 
Upper panels: Model performance with respect to the proportion of zero counts 
(propZ), mean, and standard deviation (SD) of the response variable ‘abundance’. 
Symbols with error bars display the median ± 50% CrI (thick bars) and 95% CrI (thin 
bars) for 8000 posterior raw datasets simulated from the selected models as given 
in the legend. Optimal models have a close match between observed and model-
predicted data. Lower panels: Density distributions of observed abundances (blue, 
dashed line = mean) and Poisson distributions (grey) based on simulated responses 
derived from the respective Poisson model. Y-axes differ in scale. 
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Figure 4 - Mean annual change in abundance per km² (long-term period 2008-2019) 
per natural region (See Figure 1 for acronyms) and combined per overarching 
biogeographic region (atlantic - atl, and continental - con, grey boxes) for four 
example species. 

 

Figure 5 - Left: Proportion of surveyed EAS sites per observer effect level per year. 
Bar widths are proportional to the number of surveyed sites per year. Right: Mean 
annual change in abundance per km² (long-term period 2008-2019) estimated from 
models with and without the covariate observer effects for 14 species (example 
trend curves in Appendix 4). 
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Figure 6 - Trend comparison of EAS monitoring programme (this study, confidence 
intervals CI show uncertainty in the estimated index) and West German data from 
the German Common Bird Monitoring scheme (MhB, for comparison, CIs show 
uncertainty in index change) for four species. Left (per panel): Median Symmetric 
Accuracy (MSA) based on annual comparisons of indices. Right (per panel): 
correlation and correlation coefficients (± 95% CI) of annual indices from 2005 to 
2020. Both approaches exclude the baseline year 2006.  

Discussion  

Count data are the raw unit for many population trend analyses, but their distribution poses 

several challenges during statistical analyses to account for overdispersion (42 out of 61 species 

in our current dataset) and/or zero inflation (45 out of 61 species). Moreover, many biodiversity 

monitoring programmes rest on ‘rolling’ sampling designs where each study site is visited only 

every so many years and observer identity frequently changes between years. We developed a 

workflow that takes these challenges into account (Figure 7) (Rieger, 2024; Rieger et al., 2025a). 

First, we derive a routine that allows informed decisions about the most appropriate combination 

of residual families (Poisson or negative binomial), model covariates (e.g., habitat characteristics), 

and zero-inflation formulations to reflect species-specific data distributions. Second, we develop a 

correction factor that buffers population trend estimates for variation in observer expertise. Third, 

we integrate region-specific trends that adjust for between-year variation in the representation of 

habitat or natural regions within the yearly subset of sampled sites. Finally, by using generalised 

additive mixed models, we account for missing values due to rolling surveys. With these 

corrections in place, we find – within limits of the comparison – good consistency between the EAS 

trends and trends from the standard German Common Bird Monitoring scheme.  

Distribution characteristics: Species specific optimisation 

We found substantial variation in model structures that best reflected the empirical abundance 

distributions and fraction of structural zeros across the 61 study species. Model formulations 

spanned from simple Poisson or negative binomial models (e.g., European Green Woodpecker, 

Eurasian Blue Tit; 26.2 % of all modelled species) to models with elaborate zero inflation formulae 

to account for variation in the fraction of structural zeros across natural regions, study sites, or 

environmental covariates (e.g., Great Spotted Woodpecker or Willow Tit; 73.8 % of all modelled 

species, Table 1). This variation often tied in with breeding ecologies (cf. examples in section 

‘Distribution characteristics: Species-specific optimisation’). Widespread and abundant species 
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with intermediate territory counts in many study sites typically required rather simple count models 

but no correction for structural zeroes. In contrast, heterogeneously distributed species with a high 

fraction of unoccupied sites or colonial breeders with often large territory numbers at the few 

occupied sites almost exclusively required the integration of zero inflation formulae, possibly 

connected with controls for variation in zero frequencies between regions, sites or environments. 

This diversity in distribution and abundance patterns is typical for most (bird) monitoring 

programmes independent of the chosen modelling approach, with similar choices documented 

elsewhere (Etterson et al., 2009; Tirozzi et al., 2021, 2022; Hernández-Navarro et al., 2023). 

 

Figure 7 - Workflow to address several challenges that arise when analysing 
breeding bird trends. 

Spatial bias 

Modelling trends per natural region is a useful tool to reduce distorted trends due to spatial 

bias. This was exemplified by species such as Black Redstart, Eurasian Magpie, and Eurasian 

Nuthatch, showing striking diverging trends between metropolitan areas and other natural regions 

(Figures 2, 4), which would otherwise bias regional or overall trends if discrepancies between 

natural region shares would be ignored. Similar distortions of trends or species distributions due 

to spatial bias often occur when using citizen science data since the sampled sites are selected by 

the observer and thus biased by its preferences (e.g., urban sites, sites of ecological interest 

(Johnston et al., 2020; Bowler et al., 2022)) 

Monitoring schemes should obviously aim to avoid the extreme disbalance in sampling that 

characterises the early phase of the EAS monitoring, where each year focused on a subset of 

natural regions. Such bias is difficult to correct a posteriori and bears the risk that compensating 

for missing values leads to a high level of uncertainty, masking possible trends. However, when 

the yearly sampling subsets are representative and include all present natural regions, as in the 

EAS programme since 2013 (Figure 2), our approach can unfold its full capacity by accounting for 

minor bias in habitat coverage or the overrepresentation of metropolitan areas among study sites. 
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Observer effects 

We found negative observer effects to occur disproportionally often during the early years of 

the EAS programme but positive effects primarily in recent years. This likely arises from a 

combination of a temporal increase in expertise with ongoing involvement in the EAS programme 

but also the new involvement of observers with individually higher population estimates during the 

later programme years, with both effects visible in Figure 4.3 of Appendix 4. This unfavourable 

combination of observer effects apparently caused substantial deviations in our abundance 

estimates compared to West German breeding bird trends, with a systematic shift towards more 

positive trends compared to MhB trends. In many cases, this bias was successfully mitigated by 

adding observer effect as a model covariate, now yielding trend estimates that were far more 

consistent with those of the West German Common Bird Monitoring programme (MhB, Appendix 

4).  

Our approach to categorise observer effects from site-specific abundance data risks to mask 

drastic increases or declines in true bird abundance, e.g., after a substantial change in habitat 

quality or land-use. Such extreme shifts, however, will typically have diverging species-specific 

effects on abundance with winners and losers (Lemoine et al., 2007), and thus will massively affect 

total abundance across species just in exceptional extreme cases. Moreover, steady increases or 

declines in total abundance with habitat quality will also change mean total abundance across 

survey years, so that the threshold beyond which survey years are flagged as ’extreme‘ (positive 

or negative) also increases or decreases accordingly. Our categorisation fails, however, to identify 

cases of species-specific observer effects, such as insufficient expertise in discriminating ‘difficult’ 

species (e.g., songs of Garden Warbler vs. Blackcap) since total abundance is not affected by this, 

or hearing impairment for high pitched vocalisations (e.g., Goldcrest and Firecrest). For EAS, such 

cases are marked as implausible via an internal validating process and excluded from analysis 

(see section ‘Data exclusion’). 

Alternative indices may capture components of observer effort beyond our rather simplistic 

representation of expertise. A widespread approach integrates survey duration or transect length 

as model covariates, or combines both measures into survey duration per unit length (Kéry et al., 

2005). Kéry et al. (2005) found higher survey effort to increase the detection rates of many bird 

species, resulting in higher abundance estimates. Others integrated observer age as a (quadratic) 

model covariate to correct for age-related changes in survey completeness (Farmer et al., 2014). 

Citizen Science data, e.g. those reported through online platforms such as ornitho 

(https://www.ornitho.de/) or ebird (https://ebird.org/), further allow estimating observer- and 

species-specific detection rates from species checklists, providing even more precise correction 

factors (Johnston et al., 2018). So far, the EAS monitoring programme cannot provide the data 

required to extract any of these covariates (i.e., effort, age, detection rates), but we highly 

recommend their integration to more precisely correct for possible observer effects in the future. 

Some of the observer effects inherent to the EAS dataset likely arise from individual differences 

in the approach to delineate breeding territories. In future refinements of the program, this could 

be mitigated by using point observations per survey instead of territories as the basis for trend 

analyses, possibly in hierarchical models comparable to those used in other monitoring 

programmes such as the Swiss Breeding Bird survey (Kéry et al., 2005; Strebel et al., 2020). 

Alternatively, territory delineation could be automated from raw point observations, e.g., using the 

AutoTerri algorithm from TerriMap online developed by the Swiss Ornithological Institute 

(Wechsler, 2018).  

Consistency check 

Population trend estimates for 59 species revealed a reasonably close match between the 

GAMM-based trend smoothers applied on the EAS dataset and TRIM-based yearly point estimates 

applied in the West German Common Bird Monitoring scheme. Despite substantial differences in 

the chosen modelling approach and spatial coverage, most trend estimates had solid positive 

correlations and/or a good Median Symmetric Accuracy between annual indices (Figure 6, 
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Appendix 5). In many cases, smoothed GAMM-trends for the EAS data captured even short-term 

population fluctuations at a 3–7-year scale, similar to the – by definition – more fine-grained yearly 

MhB indices (e.g., Common Blackbird, Eurasian Wren, Firecrest, Appendix 5). Neutral or even 

negative correlations between yearly EAS- and MhB-indices occurred primarily in two species 

subsets. The first concerns colonial birds (e.g., Common Swift, Eurasian Tree Sparrow, Common 

House Martin, Barn Swallow, Appendix 5) where trend estimates are highly sensitive to the share 

of study sites with colonies present, the influence of few large colonies on the trend estimates, the 

precision of nest counts, and observer access to a given colony (Südbeck et al., 2005; LANUV, 

2016a). The second subset concerns species with pronounced affinity to urban areas as derived 

from low or high coefficient estimates for the linear effect of PC3 (Appendix 6), where affinity can 

be positive (e.g., Eurasian Magpie, Dunnock, Common House Martin, Common Kestrel and Black 

Redstart) or negative (e.g., Common Chaffinch, Eurasian Jay, Marsh Tit or Crested Tit). Given an 

exceptionally high share and density of urban areas in NRW compared to other West German 

federal states, NRW trends are plausibly more positive than West German MhB trends for urban 

specialists (e.g., Eurasian Magpie, Dunnock, Common Kestrel, Black Redstart, Appendix 5) and 

more negative for non-urban species (e.g. Common Chaffinch and Crested Tit, Appendix 5). 

Conclusion 

We developed a modelling routine for bird population trend analyses that can handle several 

common problems in monitoring data. Our approach accounts for unbalanced sampling of natural 

regions, optimises species-specific model structure with respect to zero-inflation and 

overdispersion, partially accounts for variation in observer expertise, and integrates GAMM-based 

smoothing to bridge even extensive gaps between replicated surveys in a ‘rolling’ sampling design. 

Our consistency check against trends from the Germany Common Bird Monitoring programme 

indicates that our routine produces reliable and robust trends for most species. The R script and 

package provided with this study can be adapted to other monitoring programmes with comparable 

survey designs and data structures. 
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