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Abstract
Molecular dating is the inference of divergence time from genetic sequences. Knowing the
time of appearance of a taxon sets the evolutionary context by connecting it with past
ecosystems and species. Knowing the divergence times of gene lineages would provide
a context to understand adaptation at the genomic level. However, molecular clock infer-
ence faces uncertainty due to the variability of the rate of substitution between species,
between genes, and between sites within genes.When dating speciations, per-lineage rate
variability can be informed by fossil calibrations, and gene-specific rates can be either av-
eraged out or modeled by concatenating multiple genes. By contrast, when dating gene-
specific events, fossil calibrations only inform about speciation nodes, and concatenation
does not apply to divergences other than speciations. This study aims to benchmark the
accuracy of molecular dating applied to single gene trees and identify how it is affected by
gene tree characteristics. We analyze 5205 alignments of genes from 21 Primates in which
no duplication or loss is observed. We also simulated alignments based on characteristics
from Primates under a relaxed clock model to analyze the dating accuracy. Divergence
times were estimated with the Bayesian program Beast2. From the empirical dataset, we
find that the date estimates deviate more from the median age with shorter alignments,
high rate heterogeneity between branches, and low average rate, features that underlie
the amount of dating information in alignments, hence, statistical power. The smallest de-
viation is associated with core biological functions such as ATP binding and cellular organi-
zation, categories that are expected to be under strong negative selection. We then inves-
tigated the accuracy of dating with simulated alignments, by controlling the three above
parameters separately. It confirmed the factors of precision, but also revealed biases when
branch rates are highly heterogeneous. This suggests that in the case of the relaxed un-
correlated molecular clock, biases arise from the tree prior when calibrations are lacking
and rate heterogeneity is high. Our study finally reports the scale of the gene tree features
that influence the dating consistency with median ages, so that comparisons can be made
with other genes and taxa. To tackle the molecular dating of events only observed in single
gene trees, like deep coalescence, horizontal gene transfers, and gene duplications, future
models should overcome the lack of power due to limited information from single genes.
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Introduction 

The phylogenetic tree is the most prevalent concept for representing evolutionary relationships, 
but a species tree and a gene tree do not necessarily tell the same story: while nodes in a species 
tree represent speciations, meaning the divergence of sister species from their parent, nodes in a 
gene tree represent the divergence of genes which do not result directly from speciation, but from 
the coalescence of alleles or from locus duplication and horizontal transfer. Therefore, reconstruct-
ing a species tree generally requires sequences assumed to be orthologous and congruent with 
the species history; subsequent inferences such as dating taxon divergences usually lump together 
many genes to increase statistical power, for example by concatenating orthologs. However, the 
specificities of gene evolution are not only a nuisance that hinders species tree inference, they are 
also the raw material of morphological evolution, adaptation and species diversification. In this 
regard, focusing on single genes instead of concatenations can reveal gene-specific evolutionary 
processes. In particular, genes have heterogeneous substitution dynamics due to functional spec-
ificities or location in the genome, or as a consequence of events of duplication and transfer. Esti-
mating the rate and timing of sequence evolution is the subject of molecular clock dating and we 
evaluate here its accuracy and precision when applied to single genes. 

The molecular clock is a set of methods to date the divergence between DNA or protein se-
quences by linking absolute time to the number of observed substitutions (Zuckerkandl & Pauling, 
1962, 1965; Margoliash, 1963; Doolittle & Blombäck, 1964). The model considers a sequence that 
evolves by substitution over a given lapse of time t. It states an approximately proportional rela-
tionship between time t and the number of substitutions N, by modelling N as a Poisson distributed 
random variable of expectation r×t, where r is the rate of substitutions per unit of time. Thus an 
average of r×t substitutions occur in the duration t. In the simplest model the rate is assumed to be 
constant over the entire phylogenetic tree (Langley & Fitch, 1974). The number of substitutions 
can be obtained from the branch lengths inferred with classic phylogenetic tree inference programs 
(PhyML, Iqtree, RaxML, Phylobayes, MrBayes, PAUP, etc), but to infer the rate, times must be 
known, and vice-versa. Fossils typically provide independent dating and are used to assign ages 
to some of the speciation nodes, allowing the rate to be derived and all non-calibrated nodes to be 
dated. 

However, while rate constancy is a convenient simplification, it has been observed that rates 
of substitution per unit of time vary across taxa (Wu & Li, 1985; Britten, 1986; Pagel et al., 2006). 
In particular, when considering a single site in an alignment, the across branch rate variation is 
called heterotachy (literally “different rates”; Philippe et al., 2003). The causes of variations are 
diverse and may include population size, impact of selection at the molecular level, generation 
time, efficiency of the DNA repair system, metabolism, etc (Gillespie, 1991). For some of these 
reasons, rates also vary across the genome (Wolfe et al., 1989). At the scale of a single sequence, 
the heterogeneity of the rate across branches does not necessarily follow the same pattern be-
tween sites, meaning that different sites accelerate or decelerate in an independent manner. This 
results in a complex pattern of variation across sites and genes and across branches. Some au-
thors (Kumar & Hedges, 1998) have argued that by selecting many genes these variations are 
attenuated, their mean rate is approximately constant and the molecular clock can still be used, 
especially in recent clades. Elsewhere it is generally accepted that such simple models can gen-
erate overconfident but wrong results (Revell et al., 2005; Wertheim et al., 2010; Duchêne et al., 
2015; Lozano-Fernandez et al., 2017). 

Initially, tests of constancy such as the relative rate tests (e.g. in Sarich & Wilson, 1966; Fitch 
& Langley, 1976; Gu & Li, 1992; Tajima, 1993) or the likelihood-ratio test of the clock (Felsenstein, 
1981) were developed to assess these rate variations. Nowadays, most models accommodate a 
non-constant molecular clock providing that enough calibrations are specified. How to relax the 
clock constancy is not settled: autocorrelated rates assume a progressive change between con-
nected branches (Thorne et al., 1998; Kishino et al., 2001) while uncorrelated clock rates just follow 
an overall distribution across branches (Drummond et al., 2006). In the uncorrelated case, the 
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branch-wise rates are most commonly modeled as a lognormal, gamma or exponential distribution, 
and the branch lengths in units of substitution are usually obtained by multiplying these rates by 
the absolute time difference. As a consequence, the variance of the branch length scales quadrat-
ically with the time difference. Alternatively, the “white noise” model is totally uncorrelated at all 
times (i.e. within branches) and has the interesting property that the variance of the branch length 
scales only linearly with the time difference (Lepage et al., 2007). Different empirical studies sup-
port either the uncorrelated rates model (Drummond et al., 2006; Rannala & Yang, 2007; Linder et 
al., 2011; Heath et al., 2012) or the autocorrelated clock rates (Thorne et al., 1998; Lepage et al., 
2007; Smith et al., 2018; dos Reis et al., 2018), while a mixture of the two models over different 
timescales has also been proposed (Lartillot et al., 2016; Bletsa et al., 2019). However, it is uncer-
tain that autocorrelation can actually be detected (Linder et al., 2011; Ho et al., 2015; Tao et al., 
2019) and the modalities of the rate relaxation are likely specific to each taxonomic group, time-
scale studied and calibration scheme. Algorithmic implementations include widely used software 
such as Beast 2 (Bouckaert et al., 2019) and MCMCTree (Rannala & Yang, 2007) which exploit 
the Bayesian framework through Markov Chain Monte Carlo (MCMC) sampling, while some faster 
alternatives take advantage of least squares strategies, like LSD (To et al., 2016) and treedater 
(Volz & Frost, 2017). Accelerating probabilistic algorithm has also been made possible by using 
approximate likelihoods (Thorne et al., 1998; Guindon et al., 2010; dos Reis & Yang, 2011). 

In contrast to the early ages of molecular biology in the nineteen-sixties where analyses could 
only be performed on a single protein at a time such as haemoglobins, cytochrome c or fibrinopep-
tides (Margoliash, 1963; Doolittle & Blombäck, 1964; Zuckerkandl & Pauling, 1965), modern high-
throughput sequencing gives access to hundreds or thousands of genes per genome, providing a 
more general insight. The modern procedure to date species divergences therefore uses many 
loci whose sequences are concatenated. This concatenation approach aims to increase the 
amount of information, thus the precision (Bromham et al., 2000; Lanfear et al., 2010; Smith et al., 
2018; Bletsa et al., 2019). Even in a favorable situation with many genes, the accuracy of molecular 
dating has been questioned, because of flawed procedures such as reusing inferred dates as sec-
ondary calibrations without propagating uncertainty (Graur & Martin, 2004; Schenk, 2016), but also 
because of inherent limitations of the problem (Pulquério & Nichols, 2007; Burbrink & Pyron, 2008; 
dos Reis & Yang, 2013; Zhu et al., 2015; Kumar & Hedges, 2016; Warnock et al., 2017); the most 
critical limitations are the difficulty of characterizing the type of clock relaxation and the uncertainty 
in calibration points themselves (reviewed in Ho, 2014; dos Reis et al., 2015; Mello & Schrago, 
2024). Assessing the adequacy of different models of rate variation has been investigated by a 
number of simulation-based studies (Aris-Brosou & Yang, 2002; Ho et al., 2005; Rannala & Yang, 
2007; Battistuzzi et al., 2010; dos Reis et al., 2014; Duchêne et al., 2015) but with a focus on 
multiple-loci datasets and speciation dates. 

If accurate dating requires sufficient sequence information as well as calibrations, this means 
that inferring dates in single gene or transposable element evolutionary histories is even more 
difficult than with concatenations of hundreds of genes. Indeed, on such short sequences, low 
statistical power amplifies the following known limitations of dating by molecular clock: methodo-
logical errors in tree topologies and substitution rates, rate variation of multiple biological origins 
and inherent stochasticity in the substitution process, all of which create a disproportionate amount 
of noise. 

Here we assess molecular clock dating from single gene trees taken individually, and what 
characteristics of a gene tree are related to precision and accuracy. We first evaluate a dataset of 
primate genes under a cross-validation procedure where we date speciation events in each tree 
and compare each individual tree estimate with the median age over all trees. Using the median 
age as a point of reference produces a measure of the precision of dating. In these primate gene 
trees we find characteristics correlated with the deviation from the median, mainly the length of the 
sequence alignment, the heterogeneity of the rate between branches and the mean rate of the 
tree. In addition to measuring the deviation from the median we also compare with reference ages 
from TimeTree, and observe a bias towards younger ages. Because several explanations for such 
bias cannot be disentangled from the empirical dataset, we simulated gene trees to also measure 
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how the accuracy of dating vary depending on alignment length, rate heterogeneity between 
branches and mean rate of substitution. 

Results 

Single gene estimates show a high dispersion and a bias towards younger ages 

We perform a benchmark on dating speciation nodes from single gene trees with an empirical 
dataset of trees that include genes from 21 primate species obtained from Ensembl version 93. 
We focus on the Simiiformes clade as ingroup, which contains all Primates but the Lemuriformes 
that we use as outgroup. Speciation ages for all nodes have been estimated many times inde-
pendently based on fossil-calibrated dating on concatenation of genes, and resulting consensus 
ages can be obtained from TimeTree (Kumar et al., 2017). Because our aim is to replicate the 
uncertainty in dating nodes that lack fossil calibrations, we do not set any calibration except for the 
Simiiformes ancestor at 43.2 My (C.I [41.0, 45.7]). We then quantify the uncertainty relative to the 
surrounding interval of 43.2 My. The choice of this root calibration and its associated uncertainty is 
arbitrary because all trees are then compared by this yardstick. Likewise, the choice of Primates 
for the source trees is arbitrary; the specific selection of species does not matter, what matters is 
that we collect natural replicates of the same tree. We selected 5205 gene trees that do not display 
any duplication or loss in this tree of 21 primate species, so that each gene tree shares exactly the 
same topology. These were dated with Beast 2, providing 5205 age estimates at each internal 
node (Figure 1). Because the gene trees were independently subjected to dating, and the dated 
output trees were all scaled to 43.2 My, their differences in mean rate (i.e. the “gene effect”, Ho 
2014) are not considered in this part. The impact of genes specific features is investigated in the 
subsequent part. 

By comparison with the reference age estimates from TimeTree, we obtain clearly younger 
estimates on all nodes, sometimes even outside of the confidence interval from the reference (me-
dian, Figure 1). The highest shift of 10 My affects Cercopithecidae. This suggests that either our 
estimates are biased, or less plausibly that the reference ages themselves are inaccurate. In our 
dating procedure, several simplifications may bias ages. To start with, calibrating only one node is 
unlikely to lead to accurate variable rates, but this is precisely the purpose of our analysis, since 
we study gene trees for which nodes lack calibrations. With one calibration but variable branch 
rate, rate and time are unknown because they are conflated into the branch length. In fact, molec-
ular clock “dating” is as much about estimating rates using calibrations than estimating dates from 
rates, this shift in focus being due to the high variability of molecular rates. Without many calibra-
tions, variation in rates cannot be faithfully inferred, and in turn dates remain uncertain. Accord-
ingly, our empirical dataset is expected to display heterogeneous branch rates of different origins. 
First there are species-specific rate variations, in which all genes experience the same trend in a 
specific lineage (also called lineage effects; Gillespie 1989; Muse and Gaut 1997; Smith and Eyre-
Walker 2003). For example, the average branch length of Cercopithecidae is higher than their 
Hominoidea sister (supp. info. S1). This is consistent with the known generation times in these 
clades: based on Pacifici et al. (2013) the averages are 4035 days for Cercopithecidae versus 
6132 for Hominoidea. In addition to species trends, each gene tree may experience particular 
variations of branch rates, therefore producing dispersed ages when compared (called residual 
effects, i.e. variation remaining after gene and lineage effects; Gillespie 1991). Finally, independent 
across-branch rate variation also likely occurs within genes, between sites. However, these gene 
and site heterotachies should just cause dispersion but not loss of accuracy, as we expect that the 
distortions on branch lengths should compensate themselves on average (after correction for lin-
eage specific rates). Another simplification of our inference is to consider instantaneous segrega-
tion of genes at speciations. In reality, speciation takes up to several million years and segregated 
genes can correspond to older allelic divergence. This phenomenon of deep coalescence should 
cause speciations to appear older than they are, and not younger as is the case in our results. 
Conversely, shallow coalescence caused by introgression between recently diverged species 
would produce younger age, but we deem implausible that introgression would be so pervasive 
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among genes so as to strongly bias ages. In summary, variation in lineage specific rates is the 
most plausible explanation for our bias towards younger ages, unless the inference obtained from 
Beast is not statistically consistent. 

 

Figure 1 - Distribution of speciation ages estimated on primate gene trees inde-
pendently (5205 trees). Each histogram is rescaled to display the same height, but 
their total count is each equal to 5205. Dating was performed with Beast under the 
nucleotide substitution model HKY and a relaxed clock rate (see Methods). 

Aside from comparisons with the reference ages, we quantified the dispersion of the estimates 
at each node with the following metrics: the mean absolute deviation from the median (MAD) of 
the node age and the 95% inter-quantile range (IQR95); the averages of these metrics over the 12 
speciations yield 3 My and 16 My, respectively. These dispersions are larger for deeper nodes, 
such as Catarrhini with a MAD of 5.6 My and an IQR95 of 32.4 My. Divided by the Simiiformes 
calibration of 43.2 My, they represent 13 % and 75 % of this interval, respectively. In other words, 
the confidence interval for the age of Catarrhini is barely shorter than the age of Simiiformes. 

In the following, we break down the causes leading to the dispersion of our estimates by meas-
uring gene features and searching for a relationship with the deviation from the median ages. 

The dispersion of age estimates is associated with low statistical signal and branch rate 
variation 

We computed 56 features from each gene tree related to alignment quality and substitution 
rate estimations (supp. info. S2). We regressed them against the absolute deviation from the me-
dian age averaged across all speciation nodes, chosen to describe the dating imprecision in a 
single gene tree. In order to select a restricted set of independent variables we used a Lasso 
regression with a regularization parameter ‘alpha’ of 0.02, which retained 10 parameters further 
fitted by Ordinary Least Squares (adjusted R² = 0.288, Figure 2). Variables were normalized so 
that coefficients can be compared and they were centered. Apparent outliers, such as trees with 
extreme rates, were discarded from the regression (see Methods), which was therefore based on 
5170 trees. 
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Figure 2 - Coefficients of regression of the gene tree features against the age dis-
persion. Features were selected with a Lasso regression with parameter al-
pha=0.02. Adjusted R² = 0.288. Error bars indicate the 95% confidence intervals. 

By order of coefficient size, the length of the sequence alignment comes first (coefficient  
0.35), associating short alignments with high dispersion. It is followed by the rate heterogeneity 
across branches which is positively associated with the dispersion (0.30). Next comes the mean 
rate of substitution (-0.14). We hypothesize two distinct causes for these correlations: first, the 
strength of the statistical signal is linked to the alignment length and to the mean rate, because 
both influence the number of observable substitutions, thus the amount of information available to 
infer ages; also because of rescaling all trees to the same height of 43.2 My, trees with the lower 
mean rate are expected to display a higher dispersion. Second, some model parameters are in 
practice difficult to infer individually. In particular, a variability in branch rates cannot be estimated 
when there is only one calibration, meaning that a branch specific rate could take arbitrary values 
as long as the product of rate by time equals the branch length in substitutions. Consequently, it 
would take values dictated by the tree prior (the Birth-Death branch process) that cannot possibly 
recover the exact Simiiformes speciation dates (dos Reis & Yang, 2013). Here the rate heteroge-
neity is the standard deviation of the rate across branches, as inferred by Beast. This indicates 
that while Beast manages to detect a high-rate heterogeneity in a given gene tree, the ages it infers 
in such a tree are quite distinct from the median ages, and probably far from their true age. The 
fourth largest association is a measure of the incongruence between the species tree and the gene 
tree reestimated using IQtree. This means that lack of support for the species topology is associ-
ated with high deviation from the median ages. This could be attributable to either actual incongru-
ence being masked by the reconciliation step in our dataset, to low signal from short sequences 
or to such departure from a strict clock that the true topology cannot be recovered. 

The next five coefficients have p-values below 0.05, and correspond to characteristics of the 
substitution process or the alignment, for which we provide the following interpretations. The kappa 
parameter (for codon position 3), or ratio of transitions over transversions, is negatively correlated. 
It may relate to the degree of saturation: saturation brings this ratio closer to one, and it should 
increase dating uncertainty, although we think that very few gene trees show saturation in our 
Primates dataset. Next is the proportion of synonymous substitutions at equilibrium, negatively 
correlated. This value that we measured with ‘codeml’ from PAML depends on the alignment and 
represents the amount of substitutions that would be synonymous if the ratio dN/dS was equal to 
one. This result indicates that gene sequences that offer more opportunity for synonymous 
changes favor precise dating. For the standard deviation of the GC-content between sequences 
of the alignment, the correlation is positive. This could have two causes that are not mutually ex-
clusive, one methodological, one biological: in the substitution model, sequence composition is 
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assumed homogeneous. Only few phylogenetic models can actually model composition changes 
over the tree (Foster, 2004) while this is known to highly impede phylogenetic inferences. Under a 
purely biological explanation so even if we fitted the appropriate model, genes subject to compo-
sition shifts could be evolving heterogeneously in other aspects, in particular with heterogeneous 
rates. The next variable is the standard deviation of root-to-tip path lengths, an approximation of 
the branch rate heterogeneity that can easily be computed on any phylogram. It is, as expected 
negatively correlated but weakly, probably because our more precise measure of across-branch 
rate heterogeneity already captures most of the effect. In Smith et al. (2018) it is used as a criterion 
for selecting trees which are suitable for dating, and we can expect a better predictive power by 
using a more refined measure of rate heterogeneity instead; we also performed the regression with 
only the root-to-tip variance as the sole measure of rate heterogeneity, and it has a lower coefficient 
than the more refined measure (supp. info. S3). Last to be significant, the shape of the site-wise 
gamma distribution of rates is a parameter in which a lower value means a more skewed gamma 
distribution. Thus, as indicated by the negative coefficient (Figure 2), rates that are heterogeneous 
site-wise (not only branch-wise) appear to also increase dating uncertainty. 

To situate these features in their real scale, we summarized them in the 10% of trees with 
highest or lowest predicted dispersion (Table 1). Additionally, we searched for gene functions 
overrepresented in these two extreme subsets compared to the full set of 5170 genes, based on 
human Gene Ontology (GO) annotations (Table 2, supp. info. S4). For the most dispersed trees 
no enriched function was detected. On the other hand, well dated trees (low dispersion) appear to 
have constrained functions. Negative selection on this set is further evidenced by 67 “Human Phe-
notype Ontology” overrepresented terms related to various developmental abnormalities (nervous 
system, eye, ear morphology, movement, see supp. info. S4). These functions are a subset of the 
functions retrieved when using the 10% longest genes (supp. info. S5), indicating that the length 
is the main driver of the functions found in the set of genes that have the lowest dating deviation 
from the median. 

In this regression of gene tree characteristics, the explained variable (deviation from the me-
dian) is a measure of dispersion, not of accuracy. However, we can only measure accuracy if we 
have access to the “true” age. Besides, the distribution of ages (Figure 1 suggests a bias in our 
estimates that empirical data alone is powerless to explain. Furthermore, empirical data is the 
product of several confounding factors, where for example an apparent rate heterogeneity might 
instead be caused by undetected incongruence in the gene tree. We therefore performed a simu-
lation to confirm the features that impact dating accuracy. 

 

Table 1 - Characteristics of gene families whose dispersion is predicted to be the 
lowest/highest (mean ± standard deviation) 

Subset of gene fam-
ilies 

Observed dispersion 
(My) 

Alignment length (nucl) Rate heterogeneity 
(10-4 subst/nucl/My) 

Mean rate 
(10-3 subst/nucl/My) 

10% highest pre-
dicted dispersion 

3.45 ± 1.6 1008 ± 506 11.3 ± 9.76 2.16 ± 1.25 

10% lowest predicted 
dispersion 

1.41 ± 0.576 5255 ± 3247 4.69 ± 3.94 2.75 ± 1.13 
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Table 2 - Overrepresented Gene Ontology terms in gene families with lowest/high-
est predicted dispersion, using g:Profiler with default parameters: significance 
threshold 0.05 and multiple testing correction g:SCS. 

Subset of gene fam-
ilies 

GO category GO term IDs GO term names 

10% highest pre-
dicted dispersion 

– – – 

10% lowest predicted 
dispersion 

Molecular Function GO:0005524 
GO:0032559 

GO:0030554 

ATP binding 
Adenyl ribonucleotide binding 

Adenyl nucleotide binding 

 Biological Process  GO:0071840 

 GO:0016043 

 GO:0007010 

 GO:0006996 
  

 Cellular component organization or biogenesis 

 Cellular component organization 

 Cytoskeleton organization 

 Organelle organization 

  

 Cellular Compartment GO:0005604 
GO:0043228 

GO:0043232 

Basement membrane 
Non-membrane-bounded organelle 

intracellular non-membrane-bounded organelle 

 

Simulating gene tree variability impact on dating 

Simulations allow to measure two facets of the dating quality: first the precision or how fine-
grained the estimates are; second and more importantly, the accuracy or how close the estimates 
are from the true value on average. We focused on the top 3 variables obtained from the regres-
sion: alignment length, across-branch rate heterogeneity and mean rate of substitution. Our three 
variables of interest were set to representative values spanning their observed range in the real 
trees (supp. info. S6). For each set of parameters, we first simulated branch lengths on the fixed 
primate tree according to a relaxed clock model, then simulated codon sequence evolution along 
this tree (see Methods- Simulating Alignments). Dates were then reconstructed from simulated 
data with the same method as for the empirical dataset. We expected the three variables to repro-
duce the same effect on dispersion as with the above empirical dataset. However, we expected 
the accuracy to be unaffected because the model we use to simulate alignments and trees is very 
similar to the model used to reconstruct dates: Beast dating was thus performed without discrep-
ancy between its inference model and the process that generated the data, and in this condition, 
we expect it to be statistically consistent, i.e. converge to the true value as the amount of data 
increases. 

We ran 500 simulations for each parametrization, by fixing two parameters and varying the 
third, around a central point defined by length=3000 nucleotides, mean rate=0.004 substitu-
tions/codon/My and branch rate heterogeneity=¼ (defined as the standard deviation divided by the 
mean of the branch rates, abbreviated σ/µ). 

The dispersion, as seen by the interquantile range covering 95% of the data (IQR95) (Figure 
3) varies with each variable in the same direction as observed in the regression of primate gene 
trees: it increases for shorter alignments (Figure 3b), higher rate heterogeneity Figure 3c) and 
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lower evolutionary rate (Figure 3d). In almost all speciation nodes and parameter values, we re-
cover an unbiased median age, falling accurately on the age from the underlying species tree. 
However, we find shifts for the highest rate heterogeneity between branches (Figure 3d, σ/µ = 1). 
Cebidae appears younger while Catarrhini appears older than in reality, an effect that we find when 
sampling from the prior (supp. info. S7). This shows that in presence of very high across-branch 
rate variation and uninformative calibrations, the prior on the time tree (Birth-Death) strongly influ-
ences the ages. 

 

Figure 3 - Speciation dates on simulated alignments, under a relaxed clock model 
and a fixed species tree of Simiiformes, under various parameter values. Central 
dots represent the median date, and segments represent the range [0.025, 0.975] 
of the distribution. a) Dated species tree from TimeTree; b) the number of sites in 
the alignments, in number of nucleotides; c) the diffusion parameter, defining the 
degree of relaxation of the clock rate, such that the ratio σ/µ (standard deviation of 
the rates over the mean rate) equals one twentieth, one quarter, and one; d) The 
mean rate of substitution, in number of substitutions per site per million years. When 
not specified, length is 3000, rate is 40e-4 and σ/µ is ¼. 

Discussion 

Factors of consistency between ages inferred from separate gene trees 

From an empirical dataset of 5205 gene trees in 21 Primates, we identified characteristics re-
lated to the deviation of age estimates from the median age. More statistical power, provided by 
higher rates or longer alignments, lowers the dating deviation while an increase in rate variation 
between branches increases the deviation. This confirms previous observations that the number 
of sites and substitutions is a limiting factor with regard to statistical power (Bromham et al., 2000; 
Lanfear et al., 2010; Smith et al., 2018; Bromham, 2019; Bletsa et al., 2019), and also that the 
clock rate does not appear to be constant across branches. In our analysis the deviation also 
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correlates with characteristics of the substitution process (kappa, GC content), indicating either 
that the dating model is too simple, or that multiple kinds of heterogeneities (composition, rates) 
co-occur in some trees. The 5205 selected gene trees only contain strict orthologs and as such 
represent a biased fraction of the 24,614 gene trees extracted from Simiiformes: this selection 
likely represents a more reliable subset for dating, because the absence of gene duplication and 
loss may be associated with a more stable evolution in terms of constancy of rate and selective 
pressure. On the other hand, even this selection of trees can contain incongruent trees not identi-
fied as such, because of the reconciliation method that forces gene trees into the species topology 
without a model for incomplete lineage sorting (ILS) or introgression. This is suggested by the 
fourth detected factor in our regression being the discordance between the recomputed gene trees 
and the species tree. Despite having kept a few polytomic species nodes to lift some of the con-
straints on the topology, it is likely that it still distorts branch lengths (Mendes & Hahn, 2016; Car-
ruthers et al., 2022). 

In the regression based on empirical gene trees, the adjusted R² is low (0.29), indicating a low 
fraction of explained variance. To investigate the missing variance, we should incorporate addi-
tional biological characteristics of the sequences, but as we show in simulations, stochastic prop-
erties of the mutational and evolutionary processes already account for a large uncertainty. Fur-
thermore, in our empirical dataset, ILS, introgression or reciprocal paralog loss may also obfuscate 
the relationship between molecular change and time, but we have not used models able to identify 
these processes. Among other simplifications we used, our dating method employs a nucleotide 
substitution model which cannot distinguish neutral from non-neutral substitutions. According to 
the nearly neutral theory the majority of amino-acid changes is slightly deleterious which causes 
molecular divergence patterns to be more clock-like in absolute time, whereas strictly neutral sub-
stitutions should show a generation time effect (Ho, 2014). A codon model would be able to sepa-
rate synonymous from non-synonymous substitutions and test this hypothesis, but being more 
complex (using 61 character frequencies instead of 4) it also requires more data, which as we have 
seen is the limiting factor at the scale of single gene trees. 

Limiting the bias when dating single gene trees 

In the empirical estimates, we observed a shift towards ages younger than the TimeTree refer-
ence. Then we simulated sequences without species-specific rates and that bias was not repro-
duced. This is unsurprising because we used the same model for inference as for simulating the 
data, and thus were expecting statistical consistency. However, in the simulated case with very 
high-rate heterogeneity, the ages are biased by the time tree prior (Birth-Death model). Other 
sources of bias have been demonstrated, in particular incongruence with the species tree as 
caused by incomplete lineage transfer (ILS) (Mendes & Hahn, 2016; Carruthers et al., 2022). In 
the latter extensive empirical and simulation study, it was shown that the length of branches de-
scending from incongruent nodes (such as terminal branches) was overestimated, while the length 
of branches predating incongruent nodes was underestimated. This produces older ages than the 
actual speciation times, and the authors propose to mitigate this by considering congruent 
branches only. In the real primate trees, we observe younger ages instead so it is likely that the 
bias is instead driven by species-specific rates, a factor that was absent from our simulations. 
Other studies on empirical data have found biases caused by heterotachy (Wertheim et al., 2012), 
especially if the rate change is punctuated (Dornburg et al., 2012). In presence of substantial line-
age rate variation, the relaxed clock model requires calibrations on internal nodes to properly infer 
branch rates and times (Duchêne et al., 2014). Here, the choice of a single calibration was made 
precisely with the aim of measuring the dating accuracy on uncalibrated nodes, such as those 
occurring in gene trees if we consider events other than speciations. Some studies use the relative 
ordering of events from different taxa (Lutzoni et al., 2018) or from different gene families (Pittis & 
Gabaldón, 2016; Vosseberg et al., 2021), but across-branch rate heterogeneity is a major hurdle 
to doing so and conditions for applicability need to be rigorously verified, in particular the absence 
of systematic bias (Susko et al., 2021). 
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How to reduce uncertainty 

Stochastic uncertainty is the amount of information that is lost assuming that the model is cor-
rect, as opposed to inductive uncertainty due to inadequate modelling (Holland, 2013). Inadequate 
modelling generally produces systematic errors. Our simulations show what level of stochastic 
uncertainty to expect in gene trees with realistic rate characteristics, and they confirm the drivers 
of uncertainty identified in empirical gene trees. We highlight the requirement for a high number of 
sites and substitutions, which is critical for statistical power. This problem can probably only be 
circumvented by incorporating information beyond single genes, such as genomic context and 
linked model parameters between multiple gene trees, as recent developments suggest (Duchêne 
et al., 2020). However fossil calibrations are quantitatively as important as sequence data alone to 
accurate dating (dos Reis et al., 2015). These solutions are unfortunately harder to design for gene 
trees with duplications or transfers because they do not share the same set of branches. Some 
pragmatic approaches that have been proposed to handle gene specific heterogeneity are the 
removal of loci with apparently non constant rate prior to the analysis (Jarvis et al., 2014), a “gene-
shopping” approach (Smith et al., 2018), but discarding data might be unsatisfactory for genome 
scale analyses that look for the most general picture. Our results may be extended to a similar 
gene filtering approach as it pinpoints gene features that are correlated with the dating uncertainty, 
although its predictive power would need to be improved. Beyond identifying outliers, it would be 
interesting to understand why they are so, in terms of function, selection pressure or genomic 
context. In this high-throughput era, homologous sequences from a wide variety of taxa are acces-
sible. A few genes have received considerable attention because of very distinctive evolutionary 
dynamics, such as PRDM9 which is generally evolving under positive selection and is a “speciation 
gene” in mammals (Oliver et al., 2009) or MHC immune genes that display elevated polymorphism 
in populations (Piertney & Oliver, 2006). Since our evaluation used only one calibration, it is a 
worst case setting that could occur in gene trees with many duplications or transfers, events for 
which fossil calibration is less informative (but see Davín et al., 2018, who use horizontal transfers 
as relative time constraints). Key adaptations or transitions may result from these gene specific 
events, in particular duplications (Aguileta et al., 2006; Vosseberg et al., 2021), horizontal and 
endosymbiotic transfers of genes (Ochman et al., 2000; Koonin, 2016), or movements of trans-
posable elements (Boissinot et al., 2000; Ovchinnikov et al., 2002; Khan et al., 2006). 

Regarding inductive uncertainty, richer models avoid overconfident but erroneous results. No-
tably, there is room for refining the models of sequence evolution, for example by considering 
indels evolution, or the domain composition of proteins, or their 3D structure and the consequence 
on residue coevolution. Also, when the inference of tree topology, substitutions and clock rates is 
performed jointly by an integrative method such as Beast, it guarantees that uncertainty is properly 
cumulated at all steps. However, in our experience it appears challenging to run a complex para-
metric inference such as Beast at the scale of comparative genomics. Such integrative methods 
might not be numerically tractable because they generally require MCMC which implies prohibitive 
running times and in addition, MCMC requires a thorough and experimented human inspection to 
validate the inference output. In the face of this, numerous projects aiming at sequencing broad 
segments of biodiversity on Earth are emerging, under the auspices of the Earth Biogenome Pro-
ject (EBP; Lewin et al., 2018, 2022). Extremely large datasets, composed of tens of thousands of 
genes, will become common place. Therefore, the development of faster non-parametric algo-
rithms is still relevant, alongside improvements in the computational footprint of probabilistic algo-
rithms (Mello & Schrago, 2024). 

Research on the molecular clock enters an exciting time, with huge amounts of data and in-
creasingly sophisticated methods to dissect the hidden mechanisms of sequence evolution. How 
the rate of molecular evolution varies still holds mysteries, both at the scale of lineages and at the 
scale of genomes. Future developments answering this question will be methodologically chal-
lenging but shall shed light on important evolutionary processes. 
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Methods 

Source and number of trees 

The species tree and gene trees were obtained from Ensembl Compara 93 (July 2018; Zerbino 
et al., 2018) Metazoa dataset: 99 species descending from Opisthokonta (the last common ances-
tor of fungi and metazoan) and 23,904 reconciled gene trees. Low quality genomes, aberrant gene 
branch lengths, split genes were removed (supp. info. S8, Species and gene trees preprocessing). 
Nodes from the species tree were assigned an age from TimeTree (data retrieved Jan. 2019; Ku-
mar et al., 2017). The corresponding sequences of the coding domain of the longest transcribed 
isoforms (fasta format) were downloaded as fasta multiple sequence alignments via the Ensembl 
Perl API. Focusing on the 21 primate species (18 Simiiformes and 3 Lemuriformes), we extracted 
24,614 subtrees at their Simiiformes node plus two of the outgroup sequences with shortest branch 
lengths. From those we selected the 5235 gene trees without duplications and losses within Simi-
iformes, so that they share a single tree topology. 

Multiple Sequence Alignment building and cleaning 

We built codon alignments: protein sequences were aligned using FSA version 1.15.9 (Fast 
Statistical Alignment, Bradley et al., 2009) with default parameters, then back-translated to the 
corresponding nucleotide (codon) alignment. HmmCleaner (version 0.180750; Di Franco et al., 
2019) finds segments of sequence that appear inconsistent with the other aligned sequences, 
interpreting them as sequencing errors. We apply it and replace the detected segments by gaps. 
It was applied to the 5235 alignments that do not have duplications or losses, on the amino-acid 
data which were then back translated to codons. Out of these, 30 alignments caused HmmCleaner 
to fail, resulting in the 5205 subtrees under study here. 

Bayesian node dating with Beast 2 

Using the alignments as input for Beast 2.6.3 (Bouckaert et al., 2019) we ran the following 
model: a HKY nucleotide substitution model with two site partitions corresponding to the codon 
positions {1,2} and 3. The “Birth-Death model” is set as the tree prior (Gernhard, 2008), and a 
relaxed uncorrelated lognormal clock rate is fitted on branches, with mean and standard deviation 
being estimated. All 12 Simiiformes clades (see species tree in Figure 1) as well as Primates and 
Lemuriformes were constrained to be monophyletic (note that Macaca, Papionini and Platyrrhini 
are polytomic). Only Primates and Simiiformes were calibrated precisely, the others having unin-
formative priors. The calibrations were specified as gamma distributions manually tuned to match 
TimeTree point estimate and 95% interval: offset 70.8 My, shape 4.6 and scale 0.656 for Primates, 
and offset 40.9 My, shape 4.0 and scale 0.575 for Simiiformes (therefore the mean prior age for 
Primates is 70.8 + 4.6×0.656 = 73.8 My, and for Simiiformes it is 40.9 + 4.0×0.575 = 43.2 My). 
BEASTGen (v1.0.1) was used to automatically generate the parameter file for each alignment from 
a common template. The MCMC was run in one chain of 20,000,000 iterations, after a pre-burnin 
of 1,000,000. The 390 trees which had an ESS (effective sample size) under 200 for any variable 
were resumed and extended with 20,000,000 additional iterations, leading to 13 trees with one 
ESS under 200 that we discarded. The resulting mean dates were annotated on the species tree 
using TreeAnnotator from Beast 2. 

Global age dispersion from all primate trees 

Given that all speciation nodes in the primate species tree are replicated in our set of 5205 
gene trees, we measured the dispersion of estimated ages for each speciation. We used two met-
rics of dispersion, the MAD and the IQR95. The mean absolute deviation from the median (MAD) 
is a robust estimate of dispersion: it is less influenced by skewed distributions than when using the 
mean as center, and less influenced by outliers than the standard deviation. It is also still sensitive 
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enough compared to median deviation from the median or interquartile range. The IQR95, or in-
terquantile range covering 95% of the data (between percentiles 2.5 and 97.5) is more robust but 
less sensitive. 

Regression 

Statistical analyses on the output dates were performed with Python 3.8 and additional scien-
tific computing packages including Numpy, Pandas, Statsmodels, Scikit-learn, Biopython and Ete3 
(supp. info. S9). 

Quantifying the average deviation of ages for a single gene tree 
As the dependent variable to regress, we used the average deviation of ages in each gene 

tree: for one gene tree, the absolute deviation from the median speciation age is obtained at each 
node, then the deviations of the 12 nodes are averaged. 

Retrieving mean rate and rate heterogeneity per tree 
The clock model that we fit in Beast is unlinked between codon positions {1,2} and position {3}, 

meaning that the rate parameters are inferred separately for each of these site partitions. Beast 
outputs different types of rates: First, it outputs the sampled parameters of the uncorrelated log-
normal clock model (its mean and standard deviation). Additionally, it computes a posteriori the 
mean and variance of the branch rate. The latter estimation differs in that it is not a parameter of 
the model, but a statistic that is computed at the end of each iteration on the proposed tree. We 
monitor both estimates because they yield quite different values, although being correlated (supp. 
info. S10). For each sampled tree, it then produces the mean and variance. We use the latter rate 
statistics as variables in the regression. Since there are as many values as sampled trees of the 
MCMC chain, we take the median over the chain as final value. 

As we estimated separately the mean rates m1,2 and m3 for the corresponding codon posi-
tions, we finally combined them to obtain the total rate of substitutions per codon: 
𝑚 = 2 ×𝑚!,# +𝑚$ 

This rate by codon equals three times the average rate by nucleotide, but we chose the codon 
metric for consistency with the simulation parameters based on a codon model in INDELible. 

Similarly, as measure of across-branch rate heterogeneity, we summed the rate standard de-
viations based on the returned variances v1,2 and v3 from Beast: 
𝑠 = 2 × '𝑣!,# +'𝑣$ 

Collecting features of the gene families 
We measured 56 characteristics of the gene families as explanatory variables in the regression. 

They include (full list in supp. info. S2): 
• Tree features: 

- mean bootstrap values of nodes, from Ensembl; 
- the root-to-tip deviation, or standard deviation of the path lengths from the root to the 
leaves, from the Ensembl trees. 
- whether the gene tree was a posteriori edited to fit the species tree topology (See supp. 
info. S8, Species and gene trees preprocessing). 

• Alignment features: 
- global statistics such as alignment length and proportion of pairs of sequences that do 
not share sites (indicative of “split genes”); 
- statistics over sequences like the mean frequency of gaps, the mean percentage of am-
biguous nucleotides, the mean GC-content, the mean CpG content; 
- statistics over sites, like the column entropy and the parsimony score; 
- proportions of sequences cleaned by HmmCleaner; 

• Substitution process features estimated with the program ‘codeml’ from PAML 4.9e 
(Yang, 2007): 
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- proportion of synonymous substitutions at equilibrium, based on measured codon fre-
quencies and the fitted substitution matrix (using names from ‘codeml’ output, it is 
S/(N+S)); 
- mean and standard deviation of ω (dN/dS) under the free-ratio model; 

• Substitution process features estimated during the Beast dating inference, separately for 
codon positions {1,2} and {3}: 
- the ratio of transitions over transversions (kappa); 
- the gamma shape for site variable rates; 
- the mean clock rate; 
- the standard deviation of the clock rate; 

• MCMC related statistics of the Beast runs: 
 - the number of iterations the chain was run (either 20 or 40 million); 
 - whether any parameter had an ESS below 200. 

Transforming regressed features 
We chose the appropriate transformation of features in order to stay close to the assumptions 

of a linear modelling framework with ordinary least squares, that is explanatory variables with low 
skew. For this, a semi-automated procedure was set up, where the transform that minimizes the 
skew was selected from the predefined set made of ‘no transform’, ‘logarithm base 10’, and ‘square 
root’, with additional increment or sign modification if needed by the function domain of validity. 
Some variables were binary encoded in cases where a large proportion of values was constant, or 
where distributions were clearly bimodal. Transforms for each variable can be found in supp. info. 
S11. Finally, all variables were normalized (divided by their standard deviation) and centered be-
fore the regressions. 

Reducing multicollinearity 
Multicollinearity being known to impede ordinary least squares fitting, we reduce it prior to the 

regression with two strategies:  
• First, we obtained covariances from a Factor Analysis (analogous to Principal Component 

Analysis, but accounting for discrete and ordinal data). From the results, we removed some 
features from clusters of heavily correlated features. We also “decorrelated” pairs of fea-
tures by dividing one by the other or by computing the residues of the simple regression 
between the two linked variables. For instance, we decorrelated standard deviation metrics 
when they correlate with the mean of the same variable (supp. info. S11). 

• Afterwards we checked the multicollinearity condition number, which is the square root of 
the highest eigenvalue divided by the smallest eigenvalue of XTX (X being the design ma-
trix). Since the multicollinearity condition number was already less than the usual cutoff of 
20, it was not needed to remove additional features. 

Removing trees with outlier values 
To avoid a misleading impact of outliers on the linear regression, trees with excessive rates 

computed by Beast were excluded. The cutoffs were chosen based on the histograms, which dis-
play very long tails. As mentioned above, the 13 trees with insufficient ESS (less than 200) were 
discarded as well. Finally, alignments including pairs of sequences which do not share any com-
mon site, i.e. unaligned pairs, were also excluded, as this can lead to meaningless branch lengths. 
In total these filters removed 35 outlier gene trees (supp. info. S12). 

Final feature selection with Lasso and OLS refitting 
Lasso (Tibshirani, 1996) is a regression fitting algorithm which simultaneously performs feature 

selection, thus dealing with highly dimensional design matrices. We therefore apply it in a first pass 
to discard coefficients with an absolute value inferior to 0.01, using a penalty value (parameter 
alpha) of 0.02. However, Lasso coefficients are biased (by design), so that p-values and R² cannot 
be readily computed. For this reason, we subsequently refit by ordinary least squares (OLS) using 
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the selected features, with a covariance set to MacKinnon and White’s (1985) heteroscedasticity 
robust type 1. Finally, the p-values were subjected to a Bonferroni correction by multiplying them 
by the number of features used in the Lasso step. Statsmodels 0.13.2 implementations were used. 
Detailed regression output statistics are in supp. info. S13. 

Gene functional annotation overrepresentation 

From the 5170 gene trees without duplication or loss retained in the regression, human genes 
were used as the reference set of functions. Overrepresentation of the 517 human genes from the 
most dispersed and least dispersed trees was done with the online tool g:Profiler version 
e111_eg58_p18_30541362 (Raudvere et al., 2019) using default parameters (significance thresh-
old 0.05 and multiple testing correction by g:SCS). 

As specified in table 1, the set of most (or least) dispersed trees is obtained from the fitted 
regression line. It is therefore a predicted dispersion, distinct from the observed dispersion dis-
played in column 1. 

Simulating alignments 

Alignments were generated by simulating the evolution of a sequence along the above tree of 
Primates, using INDELible v1.03 (Fletcher & Yang, 2009). The three tested parameters were the 
mean rate, the rate heterogeneity across branches and the alignment length, with 500 simulation 
replicates for each set of parameter values. These parameters were chosen to represent the extent 
of variation in the real data of 5205 trees (as measured to be used in the regression, see below 
and supp. info. S6). To generate the variable branch rates, we applied an independent log-normal 
relaxed clock simulation with the ‘simclock’ R package; the tested mean rates were 5×10-4, 40×10-
4 and 80×10-4 substitutions.site-1.My-1. To obtain the desired rate heterogeneities, we tuned the 
“diffusion” parameter s² so that the standard deviation of the branch rates is comparable with em-
pirical estimates, as per the relation between standard deviation σ, mean µ and diffusion s² of a 
log-normal distribution: 

𝑠² = 𝑙𝑜𝑔 -1 +
𝜎²
µ²1

 

The chosen diffusion values (s²) of 0.6931, 0.0606 and 0.0025 correspond to a standard devi-
ation of the branch rate equal to 1, ¼ and 1/20 of the mean rate (σ/µ), respectively. For the align-
ment length, we set the root sequence lengths to 300, 3000 or 30,000 nucleotides in INDELible. 
The evolutionary model includes insertions and deletions, which were parametrized to occur at a 
rate of 8.4×10-7 and 16.8×10-7 My-1 respectively (corresponding to 1/14 and 2/14 of the median 
substitution rate 1.177 codon-1.My-1, a ratio taken from Fletcher and Yang 2009), with lengths fol-
lowing a Lavalette distribution with parameters (2, 300). The sequences evolve according to a 
codon model with kappa = 4 (transitions/transversions) based on estimates from the Primates 
gene trees (supp. info. S14), omega = 0.175 (dN/dS) and codon frequencies taken from the con-
catenated alignments of Simiiformes genes. No across-site rate heterogeneity was modeled. The 
random seed was set to 9342. 

We then dated Primates speciations from these simulated sequences with Beast 2, as for the 
real Primates dataset above, except that the tree prior is “Calibrated Yule” for panels b and d of 
Figure 3. This tree prior was updated to Birth-Death in panel c because it was showing a bias 
towards younger ages. The number of trees with any ESS under 200 is given in supp. info. S15. 

Data, scripts, code, and supplementary information availability 

The Python statistical analysis, the source data and the intermediate data are archived at Ze-
nodo.org (https://doi.org/10.5281/zenodo.14000603; Louvel, 2024). The core phylogenetics/bioin-
formatics library is also available at https://github.com/DyogenIBENS/Phylorgs (version 0.1.0). 
Supplementary information is available online (https://doi.org/10.5281/zenodo.15203103; Louvel 
& Roest Crollius, 2024). 
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