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Abstract
Mediation analysis plays a crucial role in epidemiology, unraveling the intricate pathwaysthrough which exposures exert influence on health outcomes. Recent advances in high-throughput sequencing techniques have generated growing interest in applying mediationanalysis to explore the causal relationships between patient environmental exposure,molec-ular features (such as omics data) and various health outcomes. Mediation analysis handlinghigh-dimensional mediators raise a number of statistical challenges. Despite the emergenceof numerousmethods designed to tackle these challenges, themajority are limited to contin-uous outcomes. Furthermore, these advanced statistical approaches have yet to find wide-spread adoption among epidemiologists and health data scientists in their day-to-day prac-tices. To address this gap, we introduce a method specifically tailored for high-dimensionalmediation analysis using the max-squared method (HDMAX2). This tool aims to bridge thecurrent divide by providing a practical solution for researchers and practitioners eager to ex-plore intricate causal relationships in health data involving complexmolecular features. Herewe improve the HDMAX2 method, and expand its capabilities to accommodate multivari-ate exposure and non-continuous outcomes. This improvement enables its application to adiverse array of mediation analysis scenarios, mirroring the complexity often encounteredin healthcare data. To enhance accessibility for users with varying expertise, we releasean R package called hdmax2. This package allows users to estimate the indirect effectsof mediators, calculate the overall indirect effect of mediators, and facilitates the execu-tion of high-dimensional mediation analysis. We demonstrate its application through twohigh-dimensional case studies examining DNA methylation and gene expression as medi-ators, with binary outcomes and both continuous and binary exposures. These examplesillustrate practical aspects of the method, including latent factor selection and mediatoridentification.
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Introduction
When a statistical association is observed between an external exposure (X ) and an individ-

ual outcome (Y ), one or more intermediate variables (M ) (such as gene expression or epigenetic
changes) may mediate this effect. Identifying and assessing the mediating role of these variables
in the effect ofX onY is crucial for deciphering underlying causal mechanisms in epidemiological
and clinical research. This process, known as mediation analysis, involves studying mediator vari-
ables to define the causal structure between X and Y . The mediated effect, termed the indirect
effect, is equal to the portion of the effect ofX onY mediated throughM , to distinguish from the
direct effect of X on Y unexplained byM (Richiardi et al., 2013). Historically, mediation analysis
has predominantly focused on univariate mediation (Baron and Kenny, 1986), running separate
statistical tests for the effects of X on M and M on Y , followed by estimation of the indirect
effect (Imai et al., 2010; Sobel, 1982). However, in the realm of high-dimensional molecular data
(M , e.g., omic data), extending mediation analysis to high dimensions poses challenges, includ-
ing correction for multiple testing, controlling the false discovery rate (FDR), addressing reverse
causation, adjusting for confounding effects, considering interactions among mediators, and in-
tegratingmultimodal data types (Blum et al., 2020; Zeng et al., 2021). Currently, there remains no
consensus on the optimal combination of models and methodologies for high-dimensional medi-
ation analysis. With the increasingly prevalent use of next-generation sequencing technologies,
there is now an urgent need to develop high-performing methods in high dimensionality and
make them accessible. While recent methods has partially addressed these needs (Dai et al.,
2022; Djordjilović et al., 2019; Sampson et al., 2018; Zhang et al., 2016), particularly in control-
ling the type I error in high dimension, they do not account for unmeasured confounding factors
and do not allow for the consideration of multiple exposures.

In this article, we introduce an R package called hdmax2. The HDMAX2 method was origi-
nally proposed by Jumentier et al., 2023. The fundamental concept behind HDMAX2 methods
is to use a latent factor mixed regression model for estimating unobserved latent factors while
conducting high-dimensional association analysis. HDMAX2 also implements a novel procedure
known as themax-squared test to assess the satistical significance of potential mediators. Finally,
HDMAX2 enables the calculation of an overall indirect effect from a single model that includes
all mediators simultaneously. This approach therefore takes into account correlations between
mediators. A case study investigating the impact of maternal smoking on birth weight identified
epigenetic regions mediating the indirect effect of this exposure (Jumentier et al., 2023). In this
article, we introduce an enhanced version of the HDMAX2 method, expanding its functionali-
ties and making the method accessible to practitioners through a packaged format. The hdmax2
program has been enriched with numerous features, including the ability to accommodate vari-
ous types of variables in the exposure (continuous, binary, categorical, and multivariate), as well
as the capability to incorporate binary outcomes. This package enables users to (i) investigate
associations between the variables X , M , and Y , (ii) compute the mediated effect for each po-
tential mediator, (iii) assess the overall indirect effect for the total model, and (iv) visualize these
results. A graphical model of the package is presented in Figure 1. The package is open-source
and accessible on our GitHub page at https://github.com/bcm-uga/hdmax2.
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Figure 1 – Graphical model of the hdmax2 R package. A. Acyclic graph of HDMAX2method for conducting high-dimension mediation analysis. Exposure variables (X ) canbe univariate of multivariate, the colors represent different types of variable, and thesymbols schematically represent the modalities of the same variable. Intermediary vari-ables (M ) are continuous variables. The outcome variable (Y ) can be binary or continuous.Confounding factors represent observed adjustment factors and unobserved latent fac-tors estimated by LFMM (Latent Factors mixed model) regression. The values a and brepresent the effect sizes for each regression of the mediation model. B. Core structureof the hdmax2 package. Step 1: First, latent factors are estimated by LFMM multivariateregression. Then, the association of X and M and of M and Y are statistically tested insimple regression models, and the significance values obtained are combined, for eachpotential mediator. Step 2: the indirect effects of the mediator variables are estimated,along with various causal measures of interest.
Materials and methods

The package comprises a set of core functions along with a visualization function. Its usage is
guided through a vignette and test datasets. The statistical methodologies embedded within the
package are described below, with the initial application case documented by Jumentier et al.,
2023.
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Input data.
The hdmax2 package is designed to accept one or several exposure variables, X , which can be

continuous, binary, or categorical. The user must provide an exposure data.frame having at least
one column as input. In the R language, categorical variables are encoded as factor objects. The
function as.factor() can be used to encode categorical variables. The functions levels() and
ordered() can be used to define the order of the modalities of categorical variables. By conven-
tion, hdmax2 uses the first modality as a reference to calculate the effects associated with the
other modalities of the variable, as encoded by default in lm() function in R. Continuous inter-
mediary variables, denoted asM , are represented as a matrix encompassing potential mediators,
such as methylome or transcriptome molecular features. The matrix M should be entered as a
separated input, without missing values. The outcome variable, denoted as Y , corresponds to
a vector, which supports both continuous and binary formats. Continuous and binary variables
must be encoded in numeric format. Optional covariates, Z , can be included as observed adjust-
ment factors in the model. The package hdmax2 also takes as input the number of latent factors
to be estimated, K . The optimal K can be estimated using various analysis methods, including
Cattell’s rule applied to the eigenvalues of principal component analysis (PCA) (Cattell, 1966).
Step 1: Identification of potential mediators.

The function hdmax2::run_AS() evaluates the association between exposure variables, in-
termediary variables and the outcome variable using a latent factor mixed model (LFMM Caye
et al., 2019) to estimate K unobserved latent factors U . First this function tests the significance
of association between the exposure variables and the potential mediator variables. Then it tests
association between the potential mediator variables and the outcome variable. Finally it evalu-
ates the significance of the indirect effects.

For univariate (continuous, binary and categorical) exposure, a significance value P1,j is com-
puted by the hdmax2 program for the test of a null effect size for exposure variable X on inter-
mediary variable Mj , for each j . For multivariate exposure, the hdmax2 program applies partial
regression models, and returns a single P-value, P1,j , for the test of a null effect size of the full
exposure variable X on the intermediary variable Mj , for each j (see Figure 1.A, regression 1).
Then, the hdmax2 program returns a significance value P2,j corresponding to the association of
each intermediary variableMj with the outcome variable Y (see Figure 1.A, regression 2).

Finally hdmax2 identifies potential mediators by combining the significance values P1 and P2to compute aP-value for each intermediary variable using themax-squared (max2) test (equation
(1)). This test rejects the null hypothesis of no effect of exposure on potential mediators or no
effect of potential mediators on the outcome.

P = max(P1,P2)
2.(1)

The hdmax2::run_AS() function returns an object of class hdmax2_step1, including the fol-
lowing attributes:

- the mediation P-values resulting of the max-squared test,
- U , score matrix for the K unobserved latent factors calculated from an LFMM regression

(model M1),
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- the input variables of the model: exposure variables X , the outcome variable Y , and adjust-
ment factors Z (when applicable).
Step 2: Estimation of indirect effects.

The function hdmax2::estimate_effect() takes as input an object hdmax2_step1 and a
list of potential mediators MS to be analyzed in subsequent steps. The subset MS is defined
by the user based on the output of hdmax2_step1. We provide a series of helper functions to
guide the user in the selection of MS . These functions include a False Discovery Rate (FDR)
control approach (based on q-values estimation), or the possibility to aggregate mediator regions
according to their location on the genome. Illustrations of these approaches can be found in
Jumentier et al., 2023 and in the hdmax2 vignettes.

For each univariate exposure variable and the subset of mediatorsMS , the
hdmax2::estimate_effect() function computes several estimates to evaluate the indirect ef-
fects in the path between exposure variables and the outcome variable. Initially, this function
assesses each mediator variableMS

j individually and computes causal measures of interest such
as (i) the Average Causal Mediated Effect (ACME, corresponding to the indirect effect) and (ii)
the Proportion Mediated (PM). The ACME differs from the Average Direct Effect (ADE), which
represents the unmediated effect. PM corresponds to the proportion of the total effect that is
mediated by the mediator (ratio of the indirect effect to the total effect). ACME and PM are com-
puted by the mediation::mediate() function of the package mediation, that automatically
detects the type of statistical model used in the mediation analysis (Tingley et al., 2014). The
function mediation::mediate() calculates uncertainty estimates by a quasi-Bayesian Monte
Carlo approach described in Imai et al., 2010. In addition, it estimates the intermediary effect
sizes aj and bj and their standard deviations (see Figure 1A). Eventually, hdmax2 calculates an
Overall Indirect Effect (OIE) from a single model that includes all mediators MS simultaneously.
The OIE corresponds to the sum of the indirect effect associated with all mediators. As a result,
the number of mediators considered in step 2 will directly impact the value of the OIE. The confi-
dence interval (CI) of the OIE is estimated by a bootstrap approach. Along with the OIE, hdmax2
estimates the Overall Total Effect (OTE) corresponding to the effect of exposure variables on
the outcome variable, as well as the Overall Direct Effect (ODE) corresponding to the effect of
exposure variables on the outcome variable when the mediators MS are included in the model.
For categorical variables, all estimates (ACME, PE, OIE, OTE, ODE and size effects) are calcu-
lated relative to a reference corresponding to the first modality of the variable. In the case of a
multivariate exposure, each variable is treated independently, the other variables being included
in the covariable matrix of the mediation model.

The hdmax2::estimate_effect() function returns an object of class hdmax2_step2, includ-
ing the following attributes:

- ACME (average causal mediated effect), ADE (average direct effect), PM (proportion medi-
ated) and TE (total effect), for each mediator,

- OIE (overall indirect effect), OTE (overall total effect) and ODE (overall direct effect),
- summaries of regression models adjusted during the mediation analysis.
The function hdmax2::plot() takes as input an object hdmax2_step2 and enables graphical

visualization of mediated effects. This function returns an ACME forest plot, a PM forest plot, a
plot of the overall effects and a plot of the indirect effect sizes a and b.
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Data collection and preprocessing.
The breast cancer datasetwas collected from the TCGA-BRCApublic repository. DNAmethy-

lation data underwent filtering to remove probes containing NA values, resulting in the retention
of approximately 20,000 CpG sites. Gene expressions were normalized using standard DESeq2
parameters (Love et al., 2014) and pseudo-log transformed. The multiple sclerosis dataset was
collected from the GEO public repository (accession number : GSE137143 (Kim et al., 2020)).
RNA-seq data underwent normalization using standard DESeq2 parameters (Love et al., 2014)
and were filtered to retain only coding genes with detectable expression (>0 in at least one sam-
ple). Filtered data were subsequently transformed using pseudo-logarithmic transformation.
Bioinformatic analysis.

Gene set enrichment analysis were performed using the fgsea (Korotkevich et al., 2021)
and msigdbr R packages, using the defaults parameters. Gene ranks correspond to -log10 (max-
squared pvalues).

Results
Description of the package vignette.

We provide package vignettes to demonstrate the use of the package with simulated data
and the two use cases presented in the article. The vignettes include descriptive plots to ver-
ify that the assumptions of the max-squared test are met, namely weak correlations among
p-values and a uniform distribution of p-values. For each example, the vignettes illustrate (i)
the use of hdmax2::run_AS(), (ii) the selection of potential mediators, (iii) the application of the
hdmax2::estimate_effect() function, and (iv) visualization with the hdmax2::plot() function.
The selection of candidate mediators is inherently tied to the biological question under investi-
gation and the intended purpose of the results (e.g., experimental validation of candidates, pub-
lic health recommendations, or data mining). Users can adopt various approaches for mediator
selection based on their objectives, such as a top-ranking approach, statistical testing, FDR con-
trol, multiple testing correction, or p-value aggregation. In this paper and the package vignettes,
we present two use cases to demonstrate the functionality of the hdmax2 package with differ-
ent types of exposures and outcomes in high-dimensional mediation analysis. For simplicity, we
opted for a top-ranking approach in both examples. Finally, the vignettes also illustrate the use
of the package’s helper functions.
First use case : HER2 and breast cancer.

In this example study, we employed mediation analysis to assess the potential causal role of
DNA methylation in the pathway linking HER2 status of Breast Cancer to a survival prognos-
tic factor, namely the risk score. Our investigation utilized data from the TCGA-BRCA reposi-
tory. The risk score was derived from a six-gene expression signature, as described by (Yin et
al., 2024), and is inversely correlated with patient survival. HER2 positive status contributes to
the molecular subtyping of breast cancer, which includes ’estrogen and progesterone receptor-
positive, HER2 negative’ (Luminal A), ’hormone positive and HER2 negative’ (Luminal B), as well
as ’HER2 positive’ and ’triple-negative breast cancer (TNBC)’ subtypes (Orrantia-Borunda et al.,
2022). The computation of the risk score was based on RNAseq data, following themethodology
outlined by (Yin et al., 2024). We categorized patients based on HER2 status, dividing them into
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Figure 2 – Summary of the breast cancer use case. A. Estimates of indirect effect (ACME)and B. proportions of mediated effect (PM) for the top 10 mediators. The effect estimateis represented by a dot and its 95% CI by the bar. Symbols correspond to the significancecut off of 5% (square for p-value ≥ 0.05, circle p-value < 0.05). Colors correspond tothe sign of the effect (green for estimated effect ≤ 0 , red for estimated effect > 0). C.Effect sizes of Overall Direct Effect (ODE), Overall Indirect Effect (OIE) and Overall TotalEffect (OTE). Error bars correspond to standard deviation (ODE and OTE) or confidenceinterval (OIE). D. Indirect effect sizes for the selected mediators. Black corresponds tothe ACME, violet to the effect of exposure X on mediator M in the model X ∼ M , andblue corresponds to the effect of mediator M on outcome Y in the model Y ∼ M + X .
HER2-positive (n=176) and HER2-negative (n=752) groups, while filtering out equivocal (n=22)
and indeterminate (n=8) cases. Our analytical model included X as a binary exposure variable
representing HER2 expression (0 = negative, 1 = positive),M encompassing 20,000 methylation
probes, and Y denoting the continuous risk score.

In a preliminary analysis, after adjusting for the confounding effect of age, we found that the
total effect of HER2-positive status resulted in a 0.30 higher risk score (t-test, p=0.007, sd =
0.11). For the initial step of the HDMAX2 approach, we opted to use K = 2 latent factors in
the association study. The choice of K was guided by the PCA scree plot (Supplementary Figure
1A). Subsequently, we identified the top 10 potential mediators with the lowest max-squared
p-values. Since our focus was on selecting the top 10mediators rather than testing for statistical
significance, no false discovery rate (FDR) control or multiple testing adjustment was required.
We observed that the selection of the top 10 mediators is only partially robust to the choice of
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K = 2, suggesting that, depending on the downstream application, users may wish to evaluate
multiple values of K and consider the intersection of the resulting mediators (Supplementary
Figure 1B-C). We then estimated the individual indirect effect of each mediator by computing
the Average Causal Mediation Effect (ACME) as depicted in Figure 2A, along with the propor-
tion mediated shown in Figure 2B. Following this, we calculated the Overall Indirect Effect and
its corresponding Overall Direct Effect, as illustrated in Figure 2C. In our analysis, we observed
a negative direct effect of HER2 on the risk score, suggesting that HER2 expression in breast
tumors has a protective effect on survival. However, the indirect effect mediated by the top 10
CpG probes corresponded to a 0.59 increase in the risk score (standard deviation = 0.07). This
indicates that the mediated effect is detrimental to patient survival, resulting in the observed
total effect of 0.23 (sd = 0.11) on the risk score, similar to our preliminary observation. Inter-
estingly, in our analysis, we noted that for 8 out of the 10 identified mediators, the positive
Average Causal Mediation Effect (ACME) resulted from a double negative effect: firstly, from
HER2 status (X ) to methylation (M ), and secondly, from methylation (M ) to risk score (Y ) (Fig-
ure 2D). This observation suggests a complex interplay between the exposure, mediators, and
outcome, where the presence of the mediator counterbalance the negative effect of the expo-
sure on the outcome. This phenomenon highlights the complex relationships within biological
pathways involved in tumor growth and patient survival. This result highlights the importance
of considering mediators to understand the mechanisms underlying seemingly simple observed
associations. Remarkably, most of the top 10 identified mediators were associated with genes
known to be involved in breast cancer biology (see Table 1). This association relies on ‘PubMed
hits’ defined as the number of outputs from the search (Breast cancer) AND (Gene Symbol), it
represents a preliminary assessment of biological relevance that should further be investigated
by experimental approaches.

Table 1 – Top10 mediators. ID corresponds to the CpG probe name. Chromosome andStart are coordinates provided by the Illumina services. Gene Symbol corresponds togenes known to be associated with the CpG probes (Illumina annotation file). Pubmedhits corresponds to the number of output from the search "(Breast cancer) AND (‘GeneSymbol‘)".
ID Chromosome Start Gene Symbol Pubmed hitscg11911951 chr16 1380215 AL031721.1;UNKL 0;0cg26530341 chr8 23225840 RP11-1149O23.3;TNFRSF10A 0;54cg01804429 chr4 68350359 YTHDC1 7cg03684977 chr17 39737550 GRB7 123cg11203041 chr12 16347252 MGST1 6cg00138126 chr20 57711641 PMEPA1;RP5-1059L7.1 17;0cg13760253 chr8 66020465 DNAJC5B 0cg03070194 chr1 109668062 GSTM2;GSTM4 9;7cg15852891 chr5 77639121 OTP 8cg00400263 chr20 59939146 FAM217B;PPP1R3D 0;0

Second use case : Gender and multiple sclerosis subtypes.
In this second case study, we conductedmediation analysis to explore the role of gene expres-

sion in the pathway linking patient gender to the occurrence of Multiple Sclerosis (MS) specific
subtypes : Clinically Isolated Syndrome (CIS) and Relapsing-Remitting (RR). We used the pub-
licly available dataset GSE137143 (Kim et al., 2020). This dataset comprises peripheral blood
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Pathway Gene ranks NES pval padj
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HALLMARK_HYPOXIA 1.12 8.8·10−2 4.6·10−1

HALLMARK_COMPLEMENT 1.12 9.1·10−2 4.6·10−1

HALLMARK_KRAS_SIGNALING_UP 1.13 9.1·10−2 4.6·10−1

HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.12 9.6·10−2 4.6·10−1
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Figure 3 – Effect of gender on MS subtypes. A. Barplot ot subtype occurence accordingto gender. The total number of individuals : 104. B. The pathways represent the top 10selected gene sets. Gene ranks were determined using the -log10 of the max-squaredp-values. NES (Normalized Enrichment Scores) were computed using the GSEA function.Additionally, p-values (pval) and adjusted p-values (padj) via Benjamini-Hochberg correc-tion were associated with each pathway NES.
mononuclear cells (PBMCs) from healthy individuals and patients with MS. Upon observing a
significant decrease in RR-MS occurrence among women (see Figure 3A), we sought to investi-
gate this phenomenon further. Although the prevalence of MS is known to be higher in women
(Harbo et al., 2013), men tends indeed to presentworst disease progression (Voskuhl et al., 2020).
We found that being female was associated with a 1.58-fold lower risk of developing Relapsing-
Remitting Multiple Sclerosis (Wald-test, p=0.0036, sd = 0.54). In the original dataset, gene ex-
pression was assessed in CD4+, CD8+ T cells, and monocytes. To avoid potential confounding
effect from paired data (i.e. different measures on the same individual), we focused solely on
CD4+ T cell transcriptome to examine the effect of gene expression in the path between gender
and MS subtypes. Our analytical model incorporated X as a binary exposure variable represent-
ing gender (0 = male, 1 = female), M encompassing 18,010 coding gene expressions, and Y

denoting MS subtypes (0 = CIS, 1 = RR).
We conducted amediation analysis on gene expression to assess the indirect effect of gender

on MS subtypes. We used K = 2 latent factors in the association study, based on the PCA scree
plot (Supplementary Figure 1D). Due to the small cohort size, we did not identify any significant
mediators when applying an FDR control strategy. Alternatively, we opted to perform Gene Set
Enrichment Analysis (GSEA) (Korotkevich et al., 2021) to detect biological pathways enriched
in our mediation analysis (see Figure 3B). We ranked the mediators using the max-squared test
p-values and screened the mSigDB Hallmark collection of gene sets (Liberzon et al., 2015). In
the Figure 3B, we present the top 10 upregulated pathways identified. It was expected to find
hallmarks associated with blood in PBMCs, such as coagulation or heme metabolism. Given the
inflammatory nature ofMS, it was also reassuring to find immune-related gene sets, such as com-
plement activity or allograft rejection, which correlates with cytolytic activity. Interestingly, we
also identified several pathways previously associated with MS disease that thus appear promis-
ing for elucidating the causal relationship between gender, gene expression, and MS subtypes
: (i) several studies previously established a link between hypoxia and MS disease progression
(Halder andMilner, 2020); (ii) some studies have demonstrated the pivotal role of the interleukin
2 receptor pathway in autoimmune response, particularly in MS progression (Peerlings et al.,
2021), and (iii) p53 has been associated with immune regulation (Muñoz-Fontela et al., 2016).
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All of these findings present intriguing avenues for further investigation into the gender impact
on MS subtypes.

To further investigate the role of top mediators, despite the low level of significance in the
max-squared test, we focused on the top two mediators: NT5E (HDMAX2 max-squared p-value
= 2.10−06) and MVB12B (HDMAX2 max-squared p-value = 5.10−06). Interestingly, these media-
tors exhibit opposite effects on the pathway between gender andMS subtypes (Figure 4). NT5E
is an ecto-5’-nucleotidase known to play a role in immune response deregulation in MS. It has
been reported that ectonucleotidases are associated with RR MS in relapsing patients (Álvarez-
Sánchez et al., 2019). Notably, NT5E expression appears to be elevated in women, thereby in-
creasing the risk of developing RRMS in this population (ACME = +0.03 with a CI of [0.01,0.04];
PM = 8% with a CI of [4,12]). On the other hand, MVB12B is a member of the ESCRT-1 com-
plex. This protein was recently identified in a genome-wide protein quantitative trait locus study
aimed at identifying drivers of immune-related diseases (Zhao et al., 2023). In our study,MVB12B
was associated with a reduced risk of RR MS in women (ACME = -0.1 with a CI of [-0.13,-0.07];
PM = 33% with a CI of [23,46]). Given that different values of K produce slightly different top
mediator lists, further investigation may benefit from exploring additional potential mediators
(Supplementary Figure 1E-F). These findings underscore the ability of high-dimensional analysis
to provide insightful understanding into the biological mechanisms underlying observed statisti-
cal associations, even with a small cohort size.

Discussion
In this article, we introduced the hdmax2 R package, dedicated to high-dimensional mediation

analysis. TheHDMAX2method includes unobserved latent factors through a latent factor mixed
model approach. It supports the use of exposures of various types and the consideration of
both continuous and binary outcomes. We provide a detailed usage vignette and showcase the
relevance of our approach through transcriptome and methylome dataset analyses use-cases.
The package is available on GitHub for easy access and contribution.

While the HDMAX2method has been optimized for high-dimension analysis, it can naturally
be applied outside of this framework, as long as the number of mediators considered is superior
toK (the number of confounders estimated by the latent factor mixedmodels). The use cases we
propose have been selected for demonstration purposes, taking advantage of publicly available
data. The choice of mediators to consider should be made by the user based on their specific
needs and scientific questions. To take sample size in consideration in high-dimensional medi-
ation studies, we suggest not relying solely on statistical significance, instead we recommend
using FDR control with flexible thresholds. For small candidate lists (like our top 10), higher FDR
thresholds (e.g., 30%) may be acceptable, allowing for individual examination of candidates while
acknowledging potential false discoveries. While limited sample sizes affect statistical power,
results can still be meaningful when analyzed with appropriate FDR thresholds and biological
validation. We provide helper functions in a separate vignette, allowing for conducting mediator
selection under FDR control, or for the aggregation of p-values to study regions of interest. Ag-
gregated Methylated Regions (AMR) are a typical example of regions of interest, when studying
DNA methylation mediated effect. AMR are made of CpG with significant p-value, in a given ge-
nomic region, they can be viewed as the parallel of Differentially Methylated Regions in classical
EWAS. Although mediation analyses can establish a statistical association between an exposure,
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Figure 4 – Summary of the multiple sclerosis use case. A Estimates of indirect effect(ACME) and A proportions of mediated effect (PM) for the top2 mediators. The effectestimate is represented by a dot and its 95% CI by the bar. Symbols correspond to thesignificance cut off of 5% (square for p-value ≥ 0.05, circle p-value < 0.05). Colors corre-spond to the sign of the effect (green for estimated effect ≤ 0 , red for estimated effect
> 0).C Effect sizes ofOverall Direct Effect (ODE), Overall Indirect Effect (OIE) andOverallTotal Effect (OTE). Error bars correspond to standart deviation (ODE and OTE) or confi-dence interval (OIE).D Indirect effect sizes for the selected mediators. Black correspondsto the ACME, violet to the effect of exposure X on mediator M in the model X ∼ M , andblue corresponds to the effect of mediator M on outcome Y in the model Y ∼ M + X .

a mediator and an outcome, they do not guarantee a causal role in the biological processes ob-
served. The user must then be careful not to over-interpret his results, and to build his models
taking into account the sequentiality of the elements observed and the interactions between
the different variables included in the model.

We believe that the HDMAX2 method and its implementation as a package could find wide
applications in the fields of environmental and clinical epidemiology, as well as in computational
biology approaches aimed at gaining deeper insights into the biological background of diseases
such as cancer, for which omics datasets are readily available in the public domain. It is worth not-
ing that recent studies have proposed methods for conducting mediation analysis in the context
of survival outcomes (Clark-Boucher et al., 2023; Luo et al., 2020; Zhang et al., 2021) . This is a
significant demand in healthcare, and we are considering including this capability in the hdmax2
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package once we have conducted a comprehensive analysis of the methodological approach to
implement.
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Supplementary figures

Supplementary figure 1. Choice of K, the number of latent factors.A-B-C. Illustration onthe choice of K for the first use case (HER2 and breast cancer). A. Scree plot of the PCAapplied to the potential mediator matrix M. Cattell’s rule was used to select K=2. B-C.UpSet plots showing all intersections of the top-10 (B) and top-100 (C) mediators basedon themax-squared p-value rankings from hdmax2-step1 results when K varies from1 to3. The number of mediators in each intersection is represented by the histogram on theleft. Dots without con- necting lines indicate no overlap with other lists, while dots withconnecting lines indicate overlaps among the top mediators between different hdmax2-step1 settings.D-E-F. Illustration of the choice of K for the second use case (Gender andmultiple sclerosis subtypes). D. Scree plot of the PCA applied to the potential mediatormatrixM. Cattell’s rule was used to select K=2. E-F. UpSet plots showing all intersectionsof the top-2 (E) and top-100 (F) mediators based on the max-squared p-value rankingsfrom hdmax2-step1 results when K varies from 1 to 3. Interpretation of the UpSet plot:The number of mediators in each intersection is represented by the histogram on theleft. Dots without connecting lines indicate no overlap with other lists, while dots withconnecting lines indicate overlaps among the top mediators between different hdmax2-step1 settings.
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