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Abstract
Tracking and understanding the movements of animals in the wild is a fast-growing area
of research, known as movement ecology. However, tracking small animals such as fly-
ing insects, which cannot easily carry an electronic tag, remains challenging as exist-
ing field methods are costly either in terms of equipment or tracking effort (e.g. VHF
radio-tracking, scanning harmonic radar). Here we attempted to record the movements
of free-flying butterflies from an unmanned aerial vehicle (UAV), maintaining a static po-
sition in the sky and recording video vertically downwards. With an appropriate flight
height and image filtering algorithm, we recorded 166 flight tracks of Pieris butterflies
(P. brassicae and P. rapae), with a median tracking length of 40 m (median flight dura-
tion 13 s), and a high temporal resolution of 30 positions per second. Average flight
direction varied significantly over the course of the flying season, from a northward az-
imuth in June and early July, to a southward azimuth in September, congruent with a
trans-generational migratory behaviour that has previously been documented by field
observations or experiments in flight cages. In addition, UAV imagery unlocks the pos-
sibility to measure high-resolution flight movement patterns (e.g. path tortuosity and
transverse oscillations), which will possibly help understand perceptual and locomotor
mechanisms underlying spatial behaviour. We explore the technical details associated
with UAV tracking methodology, and discuss its limitations, in particular the biases as-
sociated with a 2D projection of 3D flight movements, the limited spatial scale, and the
difficulty to distinguish between visually similar species, such as P. brassicae and P. rapae.
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Introduction 

Tracking the movements of an animal in the wild provides insights on its ecology, such as 
habitat use (e.g. Da Silveira et al., 2016), dispersal and migration behaviours (Whitfield et al., 2024; 
Rotics et al., 2016). When the movement data are detailed enough, both spatially and temporally, 
it is also possible to extract biological information on the animal’s locomotor biomechanics (Sherub 
et al., 2016; Hedrick et al., 2018; Ruaux et al., 2023), its spatial search strategies (Shepard et al., 
2011; Hernández-Pliego et al., 2017; de Margerie et al., 2018), and more broadly the perceptual 
and cognitive processes involved in movement (Kashetsky et al., 2021). All of these biological and 
ecological aspects of animal movement have been advantageously integrated into a synthetic 
movement ecology framework (Nathan et al., 2008; Abrahms et al., 2017; Joo et al., 2022), that is 
progressively articulated with other major fields of biological research (e.g. community ecology: 
Schlägel et al., 2020; animal physiology: Hetem et al., 2025). 

However, not all animal species are easy to track. Large-enough animals (approx. > 100 g) can 
carry GPS receivers (Cagnacci et al., 2010; Wilmers et al., 2015), which are now often enhanced 
with additional sensors (accelerometers, barometers, cameras) to better infer the animal’s 
behaviour along its route (Kays et al., 2015; Joo et al., 2022). To track the movements of smaller 
species such as flying insects, tracking tags need to be much lighter, and alternative technologies 
to GPS are employed. Beacons emitting simple VHF radio beeps have been used successfully for 
decades to track the movements of flying and non-flying insects (Kissling et al., 2014). Yet, VHF 
radio-tracking involves following the animal with one or multiple antennae (or deploying a fixed 
antennae array; e.g. Knight et al., 2019), and the spatio-temporal resolution is inferior to GPS 
tracking. Even lighter, passive tags (of a few mg, without any battery) can be used to track the 
movements of flying insects (Ovaskainen et al., 2008; Lihoreau et al., 2012; Maggiora et al., 2019). 
The downside of these passive tags is that a scanning harmonic radar (SHR) - a heavy and 
expensive device - has to be deployed in the field. The tracking range of SHR is near 1 km, and 
the temporal resolution of the data is one position every 3 s (Ovaskainen et al., 2008). Other 
shorter-range, passive-tag tracking systems also exist (portable harmonic radar, RFID tags; see 
Kissling et al., 2014; Batsleer et al., 2020; Rhodes et al., 2022 for reviews). 

For all animal-borne tracking systems, whether GPS receivers or other types of tags, the impact 
of the tag on the animal’s movements is a matter of concern. The carried mass, but also the drag, 
the position, or the method of attachment of the tag must be carefully considered. Impact studies 
are often necessary, both from an ethics point of view and in terms of the reliability of the collected 
movement data (Wilson & McMahon 2006; Batsleer et al., 2020). 

There are other routes to track flying insects, without having to place tags on animals. First, the 
classic mark-recapture method allows to demonstrate the movement of an individual from one 
point to another, and was thus used for studying insect dispersal and migration (e.g. butterflies; 
Chowdhury et al., 2021, 2022). Trapping techniques along flight routes, sometimes combined with 
isotope analyses to determine the geographical origin of individuals, can also provide information 
on large scale movements (e.g. dragonflies; Knoblauch et al., 2021; Oelmann et al., 2023). At a 
finer, local scale, if the insect flies slowly enough, in an open environment where it remains visible, 
it can be followed by foot and its passed positions can be drawn on a map (Brussard & Ehrlich 
1970) or recorded by a GPS receiver carried by the observer (Delattre et al., 2013; Fernández et 
al., 2016). Tracking butterflies crossing a body of water from a small boat is another possible 
technique (Srygley & Oliveira 2001). Also, when flying insects move in swarms of many individuals, 
radars (weather surveillance radars or smaller scale biological radars) can be used to detect and 
measure the direction of these flights (e.g. Stefanescu et al., 2013). With biological  radars, 
individual movement variables such as flight direction, height and ground speed can be extracted 
(Bauer et al., 2024). 

To complement these “tagless” tracking approaches, sometimes called “passive sensing” 
(Rhodes et al., 2022), we wondered whether flying insects could be tracked in video images filmed 
from a UAV (Unmanned Air Vehicle, or drone) positioned above them in the sky. 
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Image-based tracking from ground-based cameras is a known technique to reconstruct the 2D 
and 3D trajectories of animals, and in particular flying insects, with a high sampling frequency (> 1 
Hz). It can be used in laboratory settings (e.g. Lihoreau et al., 2016a), semi-natural outdoor 
insectaries (Kitamura & Imafuku 2015; Le Roy et al., 2021; Kleckova et al., 2024) or even natural 
environments (Stürzl et al., 2016; Jackson et al., 2016). Most often used to address biological 
questions related to perception, cognition or locomotion, image-based tracking techniques, which 
are less invasive, are also attracting growing interest in ecology (Dell et al., 2014). Hybrid 
techniques tracking tagged animals in videos are also being developed (Crall et al., 2015; Walter 
et al., 2021). 

On the other hand, in the last decade, commercial UAVs have greatly improved in terms of 
compactness, stability and image resolution, while decreasing in cost, making them valuable tools 
for wildlife inventory and conservation (Wang et al., 2019; Charbonneau & Lemaître 2021). 
Tracking animal movements using videos recorded from a UAV is a next logical step, and it has 
already been achieved for a variety of large species (e.g. reef shark: Rieucau et al., 2018;  wild 
dog: Haalck et al., 2020; zebras and geladas: Koger et al., 2023). For flying insects, UAV-image-
based tracking has been proposed previously (Ivosevic et al., 2017), but remains to be tested and 
validated. Most recently, Vo-Doan et al. (2024) successfully tracked a honey bee from a special 
UAV-borne optical system (Fast Lock-On), but this technique requires that the insect carries a 
reflective marker. 

Here we explore the validity of a UAV as a platform for remote, passive observation of the 
movements of untagged insects in flight. The motivation for this exploration is the many potential 
benefits of such an approach, namely (1) non-invasiveness, i.e. tracking of animals moving freely, 
without tags and associated capture procedures, (2) in an open natural environment, over 
distances greater than in an insectary, (3) with a spatio-temporal resolution superior to VHF, SHR 
or GPS tracking. If this type of fine movement data in natural conditions can be collected easily, it 
could be very useful for bridging the gap between laboratory studies on perceptual, cognitive and 
locomotor mechanisms, and movement patterns observed in the natural environment at the local 
scale (daily routine movements) or beyond (insect dispersal or migration). 

To begin this methodological exploration with a relatively simple case, we have focused on 
Pieris butterfly species (large white Pieris brassicae and small white Pieris rapae) because of their 
relatively slow flight, good visibility and abundance in the field. We limited the present study to the 
simple situation of a single, static UAV in the sky, filming vertically downwards (Figure 1A) to 
reconstruct flight trajectories in only 2 horizontal dimensions.  We also chose to record flights 
accross areas with low ecological resources, which are likely to promote simple directed 
movements rather than highly tortuous, resource-searching movements (Schtickzelle et al., 2007; 
Fernández et al., 2016; Schlägel et al., 2020). 

Material and Methods 

This section describes the general methods we used to film butterflies in the field, reconstruct 
their flight trajectories and describe their movements. We later explored and validated these data 
using diverse specific methods and statistics, which are detailed at the start of each results sub-
section, for ease of reading. 
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Figure 1 – UAV field of view (FOV). (A) Video recording geometry, showing the 
influence of UAV flight height (H) and camera angular horizontal FOV (hFOV) on 
ground horizontal FOV (ghFOV) and ground pixel pitch (gPP). (B) Aerial view of the 
study site, showing FOV over western (WF) and eastern field (EF). Source for aerial 
photography: geoportail.gouv.fr (C) Variation of ghFOV and gPP, as functions of H. 
These linear relationships depend on camera angular hFOV and recorded image 
width IW (see equations 1-2). (D-E) Examples of video frames recorded on July 8th 
2021, over WF and EF, respectively. White arrows identify 2 reference crosses 
painted 20 m apart on the road, and used for image scaling. 

Study site 

We recorded butterfly flights from June to September 2021, in an agricultural area near the city 
of Rennes, France (coordinates 48.105444, -1.560029). The local landscape is covered with 
cultivated fields, few tree patches, small roads and farms, with the closest urbanized area situated 
1.7 km away. We filmed butterflies flying above 2 fields situated on each side of a narrow road 
(Figure 1B). The western field (WF) contained an organic mixed crop (mainly wheat, fava and 
lucerne) which was harvested in August, whereas the eastern field (EF) contained forage grass, 
which was cut in June and August. We chose to record butterflies above two different fields (filmed 
in alternance) to test our image filtering method above various backgrounds, and also control 
whether the flight trajectories could be influenced by ground vegetation: while EF crop was devoid 
of any identified ecological ressource, WF contained a few nectar-bearing flowers that might attract 
butterflies, and hence influence their flight trajectory. 

On the central road were the UAV takeoff/landing area, the UAV pilot (EDM), the technical 
assistant (KM), and an ultrasonic anemometer (Gill Maximet 501) recording wind speed and the 
direction from which the wind originates every second, at 2 m height. We painted two permanent 
red crosses 20 m apart along the central road (Figure 1D, E), as a reference line segment for 
positioning the UAV, and later for scaling the video frames. The ground slope in the recorded area 
was less than 2°. 

4 Emmanuel de Margerie & Kyra Monmasson

Peer Community Journal, Vol. 5 (2025), article e61 https://doi.org/10.24072/pcjournal.566

https://doi.org/10.24072/pcjournal.566


UAV video recording 

We used a Mavic Air 2 UAV (DJI, Nanshan, Shenzhen, China), which is a small commercial 
quadricopter (takeoff weight 570 g, retail price ~1000 € in 2021). This UAV has a CMOS sensor 
(6.4 ́  4.8 mm) which can record 3840 × 2160 pixel videos (i.e. “4K” images, with 16:9 aspect ratio). 
According to the UAV manual, the camera lens has an f/2.8 aperture and an 84° field of view. As 
most recent UAVs can record with various aspect ratios and resolution levels (which may involve 
sensor cropping, i.e. digital zoom), we prefered to measure FOV in the lab, by placing the UAV 
camera at a known distance from a wall, and measuring the horizontal distance along the wall that 
is effectively included in the UAV camera image. The “horizontal” FOV (hFOV, i.e. along image 
width), was measured at 68.3° in the default “4K wide” recording mode, that we used throughout 
the present study. This angular hFOV value was used to choose a flight height. We computed the 
horizontal field of view on the ground (ghFOV, in meters) when the UAV camera aims vertically 
downwards: 

(1) 𝑔ℎ𝐹𝑂𝑉 = 2𝐻 tan ,!"#$
%
- 

where H is the UAV height (m), and hFOV is the horizontal angular FOV (°). 
 
Proportional to ghFOV is the corresponding pixel pitch on the ground, i.e. the distance on the 

ground covered by a single pixel side (gPP, m): 

(2) 𝑔𝑃𝑃 = 𝑔ℎ𝐹𝑂𝑉 𝐼𝑊⁄  

where IW is the video image width, in pixels. 
 
The total recorded ground area (gaFOV, m2), can also be of interest: 

(3) 𝑔𝑎𝐹𝑂𝑉 = &'
&(
𝑔ℎ𝐹𝑂𝑉%  

where IH is the video image height, in pixels. 
 
Based on these relations, we chose a 45 m UAV flight height, which covers a ghFOV of 61 m 

(gaFOV = 2096 m2), and corresponds to a gPP of 16 mm (Figure 1C). This pixel pitch value was 
voluntarily chosen at a fraction of the body size of the Pieris species we wanted to track, which 
have a forewing length around 30 mm.  

We performed preliminary tests in the field that confirmed that at H = 45 m, Pieris butterflies 
flying near the ground were projected in recorded images as pixel “blobs” with an area around 10 
pixels, which is large enough to be reliably tracked from frame to frame (see Figure 2A, C). Higher 
camera height would allow larger FOV area on the ground, and hence longer tracking durations, 
but automatically tracking smaller blobs would become less reliable. 

Note that at H = 45m, the butterflies are not visible to the UAV pilot through the live video 
feedback on the UAV controller screen. The video feedback has lower resolution (IH = 720 or 1080 
pixels) than the recorded video, and the controler screen (Ipad Mini 5, Apple, Cupertino, USA) also 
has limited magnification and contrast in outdoor conditions. Butterflies in UAV footage were only 
detectable a posteriori, when playing recorded videos at full resolution on a computer screen in 
the lab. 

All videos were recorded at “30 fps” (29.97 video frames per second), which in 4K resolution 
produced video data at a rate of 13 MB/s. The UAV firmware automatically cut videos lasting more 
than 5 min in multiple 4 GB files, which can be stitched in post-processing, but with the loss of one 
video frame between files (this may depend on the UAV model). For simplicity, we decided to keep 
each video duration below 5 min. Recording at 60 fps was another possible option, but with a 15 
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MB/s data rate, this implied less data collected per video frame. We sticked to 30 fps, aiming to 
obtain the best possible image quality per video frame. 

Constant, manual exposure was tested initially, but proved unpractical as the ground luminance 
could vary by several exposure values (Ev) when cloud shadows crossed the FOV. Hence, we 
used auto-exposure with an exposure compensation of -0.7 to -1.3 Ev, as it improved the contrast 
between the white butterflies and the background. 

Time distribution of UAV flights 

In order to distribute observations accross the Pieris flight season (which in France can span 
from April to October; Lafranchis et al., 2015), we chose to collect videos once a week, over the 
months of June, July and September 2021. Each week, we chose a day that was favorable for 
butterfly flight, i.e. with a weather forecast as warm, sunny and not very windy as possible. We 
went on site in the afternoon (14:00-16:30). After takeoff, the UAV was positioned at H = 45 m 
above the EF. The UAV camera was tilted to a vertically-downward position, and the pilot used the 
video feedback to place the scale points on the road to the left margin of the FOV (see Figure 1E). 
The pilot started the video recording, and the UAV then relied on its own sensors (GPS, altimeter, 
etc.) to maintain its position without any pilot input, for about 4 min 30 s. Then the video recording 
was stopped, the UAV was relocated to the WF, height and scale alignment (now on the right 
margin of the FOV, see Figure 1D) were checked, and another 4 min 30 s video was recorded. 
Repeating these steps, we could record a second EF video and a second WF video before the 
UAV battery dropped to 20-30% of capacity, inciting landing the UAV and swapping its battery. 
With this sequence, each UAV battery (rated at 11.6 V, 3500 mAh, 40.4 Wh) allowed to record 
about 18 min of video. As we used 3 fully charged batteries per field session, we were able to 
collect about 1 hour of video per field session. Weather allowing, 3 field sessions could take place 
in June (1st, 9th, 15th), 4 field sessions in July (1st, 8th, 15th, 22nd) and 4 in September (6th, 16th, 22nd, 
29th), for a total video duration of 10.7 hours (48.8% over WF, 51.2% over EF). 

Video processing 

In order to automate the tracking of butterflies in videos, pixels corresponding to the butterfly 
should be easily distinguished from the background. In the present case, Pieris butterflies appear 
in the raw video as blobs of bright pixels, but the background formed by the vegetation also has 
multiple bright areas (Figure 2A), which rules out a simple detection of the butterfly by thresholding 
the raw video luminance levels. In addition, as the UAV is not perfectly static, and the wind can 
cause vegetation on the ground to move slowly, the background is moving, which does not favour 
background subtraction approaches (Piccardi 2004). We found a solution to this issue by designing 
a custom filter that selects the pixels that blink in the video: when a butterfly passes over an area, 
the pixels in that area become brighter for only 1 frame, and then revert to the background 
luminance. To apply this filter, we first transformed the RGB video frames into greyscale. Each 
pixel then has a single luminance value (v) in the range [0, 255]. Then the “blink” filter script 
performs the following calculations: 

Pixel value variations from current frame (t) to next (t+1) and previous (t-1) video frames: 

(4) ∆𝑣) = 𝑣*+, − 𝑣* 
(5) ∆𝑣- = 𝑣*., − 𝑣* 

If both variations have the same sign, there was a luminance peak (positive or negative), and 
a blink value (b) is computed. On the contrary, if variations have different signs, there was no 
blinking, only monotonous pixel value variation. 

(6) if 𝑠𝑔𝑛(∆𝑣)) = 𝑠𝑔𝑛:∆𝑣-;  ®  𝑏* = −𝑠𝑔𝑛(∆𝑣)) ∗ min	(|∆𝑣)|, C∆𝑣-C) 
(7) else  ®  𝑏* = 0 
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Figure 2 – Video frame filtering. (A) Magnified view of an original video frame, 
containing a Pieris brassicae image (as identified after butterfly capture). (B) Same 
view after applying the blink filter (i.e. b frame). (C) A hypothetical 30 mm forewing 
length Pieris, with wings fully stretched, projected onto a pixel grid with a 16 mm 
gPP. If all partially covered pixels appear brighter, the pixel blob area would be 
around 12 pixels. (D) Merging successive b frames reveals P. brassicae flight trace 
in a synthetic, diachronous image (i.e. B image). (E) Example trace of Pieris rapae. 
(F) Example trace of a dark-coloured species, either Vanessa atalanta or Aglais io 
(contrast ×2.0). (G) Example trace of Melanargia galathea. (H) Example trace where 
the shadow of a Pieris butterfly is also visible (contrast ×1.5). 
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Note that b can be positive (bright blob passing over darker background) or negative (dark blob 
passing over brighter background). 

Interestingly, when going through a series of successive video frames, keeping memory of 
extreme b values for each pixel (notated B) can be used to reveal flight trajectories as a series of 
blobs, in a synthetic, diachronous image. 

(8) if |𝑏*| > |𝐵| ®  𝐵 = 𝑏* 

For easy display of b frames (and B synthetic images), pixel blink values are rescaled from [-
255, 255] to [0, 255].  

(9) 𝑏 = (𝑏 + 255)/2 

As a result, background appears as medium grey (b = 128), with blinking pixels as lighter or 
darker gray blobs. Figure 2 shows example results of the blink filter. 

We used the blink filter in two processing steps. For the initial exploration of our videos, we cut 
each video into 20 s bouts, and generated a single B image summarising each bout. This enabled 
us to quickly detect which video bouts contained butterfly tracks. On this basis, the FOV entry and 
exit times of each butterfly were precisely noted by playing the original videos on a large screen. 
Based on these time limits, we then generated for each butterfly track a new greyscale, 
uncompressed video file, containing the series of b frames. This filtered greyscale video was then 
used to automatically track the blobs. 

We used DLTdv8 (Hedrick 2008) to extract blob coordinates (in pixels) in successive video 
frames. The blob was manually digitized (i.e. mouse clicked) in the first few frames, and then 
DLTdv8 uses a Kalman filter and 2D cross-correlation to find the blob in following frames (without 
thresholding). As blob size and contrast can vary, and filtered b frames still contain some noise in 
the background, the automatic tracking process needed human supervision and frequent manual 
corrections, but with a convenient user interface to navigate through video frames, DLTdv8 offered 
vast time savings compared to a fully manual digitization. The average time spent on screen to 
process the videos was approximately 15 min per track. There are numerous alternative options 
to DLTdv8 for tracking blobs through video frames (e.g. Sridhar et al., 2019; Lauer et al., 2022; 
Chiara & Kim 2023). Regardless of the tracking software used, starting from the blink-filtered video 
will help solve the natural, moving background issue. 

For scaling the butterfly track to real-world coordinates, we measured pixel coordinates of the 
two painted reference crosses in one video frame (at mid-duration of the track), and fitted a 
geometrical transformation (combining rotation, scaling and translation; fitgeotrans function in 
Matlab) that resulted in (0, 0) and (0, -20) coordinates in real-world meters. This same 
transformation was then applied to the whole butterfly coordinate series, transforming coordinates 
in pixels to meters. We had measured with a compass in the field that the central road had a 6°E 
azimuth. We checked and refined this value in a GIS software (https://www.geoportail.gouv.fr), and 
thus applied a 5.83° CW rotation to all butterfly coordinates, so that in all graphical representations, 
y axis has a 0°, northward azimuth. 

Track selection 

When we explored the B images synthesizing our videos, we mainly found flight traces of Pieris 
butterflies (large white P. brassicae, small white P. rapae), appearing as clearly visible white dotted 
traces (Figure 2D, E). These two species were also the most easily observed from the ground 
during the field sessions. We also found a few flight traces of other species, that we had observed 
in the field, such as the marbled white (Melanargia galathea), the red admiral (Vanessa atalanta) 
or the peacock (Aglais io). However, as these traces were less frequent, and usually barely visible 
and discontinuous (Figure 2F, G), we did not analyse them further. 

For some Pieris traces, the shadow of the butterfly formed a second, dark trace (Figure 2H), 
which may potentially be used to determine the height of the butterfly relative to the ground 
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(knowing the associated sun elevation angle). These shadows were only visible on almost bare 
ground (September videos, after crop harvest), and thus concerned a small number of Pieris 
traces. We have therefore not used this additional source of 3D data in the present study. 

 
Among the Pieris tracks, we applied the following exclusion criteria: 
• A 10 m wide strip, containing the road and the adjacent flowered ditches, was excluded 

from the analysis, so that each field (WF and EF) included a homogeneous area in terms 
of ground vegetation. 

• Many very brief tracks (< 5 s), often crossing just one corner of the FOV, were considered 
less informative and excluded from analysis.  

• We chose to focus on butterflies in continuous movement: Tracks marking one or more 
stops while crossing the FOV were excluded (a stop being defined as remaining for at 
least 1 s within a radius of 0.1 m). These tracks with stops were in the minority (~ 1 out 
of 6 tracks). 

• Tracks in which the butterfly interacted with another individual (e.g. flight inflection 
towards another butterfly, chases) were also excluded (~ 1 out of 13 tracks). 
 

In the end, our sample comprised N = 166 Pieris flight tracks. Despite our constant sampling 
efforts, these were not evenly distributed through the season: we recorded 12 tracks in June, 125 
in July and 29 in September. Taking all these tracks together, 70524 butterfly positions were 
recorded, representing a total of 39 min of flight time, and a flight distance of 7.4 km.  

When the tracks contained missing positions (caused by the absence of blob in some b frames), 
the (x, y) coordinates were linearly interpolated. These interpolated positions represented 2.2 % 
of the dataset (1544 positions). The interpolated positions were rarely contiguous, and the longest 
interpolated segment represented 7 successive positions (i.e. 0.23 s). 

Track descriptive variables 

For this pilot study, we computed a small set of basic descriptive variables for each 2D track.  
• Track duration is the time the butterfly remained within the FOV (road zone excluded). 
• The change in 2D position from a frame to the next frame is named a step vector. Track 

length is computed as the sum of step vector norms. 
• Step speed is equal to step vector norm divided by the elapsed time (i.e. 1/29.97 s). 

Average speed is the arithmetic mean of the series of step speed values. It indicates 
how fast, on average, the butterfly flew along its 2D track. Average speed is also equal 
to track length divided by track duration. Note that average speed is a ground speed, not 
an air speed. 

• A “beeline” vector is defined as the vector from the first to the last recorded position of 
the butterfly. The beeline vector is equal to the vectorial sum of step vectors, and hence 
represents the butterfly’s resultant, directed movement across the FOV. Beeline azimuth 
was the direction of the beeline vector, a circular variable in the interval [0°, 360°[, 0° 
corresponding to a northward azimuth. 

• Track straightness is computed as the ratio of the beeline vector norm to the track 
length. Straightness value is in the interval [0, 1]: 0 indicates that the butterfly performed 
a loop (i.e. had the same entry and exit positions), while 1 indicates a perfectly straight 
flight path. Straightness is inversely related to path tortuosity. Track straightness is also 
known as “Net to Gross Displacement Ratio” (NGDR, Buskey 1984). 

• Beeline speed is the norm of the beeline vector divided by track duration. It reflects how 
fast the butterfly, on average, progressed in its directed movement. Beeline speed is also 
equal to average speed multiplied by straightness. Note that beeline speed is also a 
ground speed, not an air speed. 

• Wind speed and direction for each track were computed from the vectorial sum of the 
n wind vectors recorded during track duration, divided by n. 
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Processing and statistics software 

Pixel blob tracking in videos was performed using DLTdv8 (Hedrick 2008; 
https://biomech.web.unc.edu/dltdv/). Other analyses, from video processing to statistics, were 
performed using Matlab R2018b (The MathWorks, Natick, MA, USA). We used the CircStat2012a 
toolbox for circular statistics (Berens 2009). For a small number of captured butterflies, forewing 
length measurement from field photographs were performed with ImageJ V1.54g 
(http://imagej.org). 

Results  

Track general description 

Figure 3 shows the reconstructed 2D tracks, and associated variable distributions. We collected 
66 Pieris flight tracks over WF, and 100 tracks over EF. Tracks had a median duration of 12.8 s 
(range 5.1 to 56.5 s, Figure 3B), for a median track length of 40.0 m (13.4 to 134.9 m, Figure 3C). 
The median value for average speed was 3.3 m.s-1 (1.9 to 9.2 m.s-1, Figure 3D), and 2.9 m.s-1 for 
beeline speed (0.2 to 9.1 m.s-1, Figure 3F). Straightness distribution was strongly skewed towards 
straight tracks, with a median value of 0.93 (range 0.10 to 0.99, Figure 3E). High straightness 
values imply similar values for average speed and beeline speed in most tracks. 

 

Figure 3 – Pieris flight tracks description. (A) Reconstructed 2D tracks over WF and 
EF. Black dots indicate last position of each track. (B-F) Distributions of descriptive 
variables: (B) track duration, (C) track length, (D) average speed, (E) track 
straightness and (F) beeline speed. 
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We used two-sample Kolmogorov-Smirnov (KS) tests to assess distribution differences 
between WF and EF tracks, and found no significant difference for track duration (D(66,100) = 0.10, 
p = 0.78), track length (D(66,100) = 0.09, p = 0.86), average speed (D(66,100) = 0.09, p = 0.86), or 
beeline speed (D(66,100) = 0.18, p = 0.15). However, there was a significant difference between 
straightness distribution over WF and EF (D(66,100) = 0.26, p = 0.009), with straightness for EF 
tracks being even more skewed towards 1 (median 0.94) than WF tracks (median 0.90; see Figure 
3E). 

Beyond average speed and straightness, the 30 fps butterfly flight tracks extracted from UAV 
videos also contained fine-scale instantaneous information about flight speed and azimuth 
variation along the tracks. For example, Figure 4 shows a track segment that depicts interesting 
movement patterns, in the form of meter-scale, sub-second transverse oscillations along the flight 
path. 

 

Figure 4 – Benefit of 30 Hz positional data. A 12 s flight track segment, 
reconstructed with the present method, showing all recorded 2D positions (+, 361 
in total). The insert shows a magnified view. The 5 circles represent the positions 
that could have been recorded with a SHR tracking system, that has a 90-fold lower 
sampling frequency (1 position every 3s.). Note that on the other hand, SHR benefits 
from a larger FOV, and hence longer tracking durations (see discussion). 

Controlling UAV stability 

During video recording, the UAV was not perfectly static, and whether this could have an effect 
on the reconstructed flight tracks was an important issue. For a small random subset of tracking 
videos (N = 10), we digitized the two reference points painted on the road, describing a 20 m 
reference segment (RS), not only at mid-duration, but on every video frame (using automatic 
tracking in DLTdv8), which allowed to monitor how the RS was transformed throughout the duration 
of tracking, due to UAV movements. We assumed that a combination of rotation, scaling and 
translation could affect the RS projection. Using the fitgeotrans function in Matlab, we obtained the 
geometric transformation matrix from the first frame’s RS to each following frame, which allowed 
to monitor rotation, scaling and translation movement components separately. 

Figure 5 shows that the RS projected image was indeed affected by a combination of geometric 
transformations through time. Over the investigated tracking durations (13 to 40 s), rotation of the 
RS could attain 0.26° (Figure 5A), and was on average 0.07° (root mean square, RMS). Scaling 
variation could attain ± 1.13 % (0.36 % RMS; Figure 5C). Horizontal (x) or vertical (y) translation 
of the RS image (Figure 5B) could reach ± 11.2 pixels (3.6 pixels RMS), which represents less 
than 0.3 % of image width, or 0.18 m when projected on the ground. The amounts of transformation 
usually did not grow monotonically through time, reflecting that in the absence of pilot input, the 
UAV does not simply drift away from its initial position, but uses inputs from its onboard sensors 
to try and maintain position and azimuth. Digitizing the RS only once at track mid-duration - i.e. 
assuming that the UAV is fully static during each track - resulted in a maximal 0.28 m error (0.08 
m RMS) on the butterfly reconstructed 2D position (Figure 5D). For the present work, we 
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considered these levels of error to be acceptable, which is why we used the single RS digitizing 
method for all the remaining tracks.  

 

Figure 5 – UAV movements. Reference segment transformation through time for 
10 tracking videos, decomposed into (A) rotation, (B) translation and (C) scaling 
components. (D) Resulting 2D error on the butterfly 2D position, when only a single 
digitization of the RS is performed at mid-duration. 

Controlling butterfly flight height 

With the present recording geometry, the flight tracks of all butterflies passing through the 
pyramidal FOV (Figure 1A), regardless of their flight height, are projected on a single sensor plane. 
We reconstructed these tracks in 2D by assuming that the butterflies moved in the same plane as 
our reference 20 m segment, i.e. flew at ground level. How this simplification departed from the 3D 
reality needed investigation. We were especially interested in the possibility that some butterflies 
might have crossed the FOV at a significant height (10-40 m), which would result in vastly 
overestimated flight speeds in our ground-projected reconstructions.  

During field work, we visually monitored the fields under the UAV, and noted each time we saw 
a Pieris butterfly passing at a low height (defined as below the observer visual horizon, i.e. less 
than ~2 m above the ground). By comparing our field notes with the timestamps of the 
reconstructed tracks, N = 45 out of 166 tracks (i.e. 27 %) corresponded to visually-detected 
butterflies flying at low height (LH group). The remaining tracks were qualified as “unknown height” 
(UH group, N = 121), and may correspond either to high-flying butterflies (visually undetected 
because of low contrast against the sky), or to low-flying butterflies that remained undetected 
(because the observer’s attention was regularly directed at the UAV rather than at the ground). 

We compared the beeline speeds of the low-height (LH) and unknown-height (UH) groups. 
Both groups had very similar speed distributions (Figure 6A), as confirmed by statistical tests : LH 
(2.9 ± 1.0 m.s-1, mean ± SD) and UH tracks (3.1 ± 1.3 m.s-1) did not significantly differ for mean 
speed in a t-test (t(164) = 0.84, p = 0.40), and were not drawn from different distributions according 
to a KS test (D(45,121) = 0.11, p = 0.79). 
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Figure 6 – Speed distribution and flight height. (A) Ground beeline speed 
distribution observed for low height (LH) and unknown height (UH) butterfly tracks. 
(B) Kernel probability density estimation for LH and UH tracks, and for simulated 
tracks with uniform height distribution (see text). 

In order to visualize what speed distribution would be obtained for butterflies flying far from the 
ground, we simulated 105 straight horizontal tracks, with flight speeds sampled from a normal 
distribution copied form the LH group (2.9 ± 1.0 m.s-1), but crossing the FOV at heights uniformly 
distributed between 0 and 45 m. Simulated tracks crossing the FOV, and with a track duration of 
at least 5 s (to simulate comparable track selection), had a ground-projected speed distribution 
that was flatter and shifted towards high (i.e. overestimated) speeds when compared to both LH 
and UH tracks (see Figure 6B). This further suggests that the UH group in our track sample mainly 
comprises low-flying butterflies that went visually undetected in the field. Still, we cannot exclude 
that a small number of tracks in the UH group (on the right tail of speed distribution, e.g. with 
reconstructed speed > 6 m/s) might correspond to high-flying butterflies. Using the pixel blob area 
as a proxy to measure flight height was not considered a valid option, as the blob area can vary 
considerably even for a single individual flying at low height (see next section). 

Exploring blob area as a specific signature 

We explored the possibility to discriminate P. brassicae from P. rapae tracks, based on pixel 
blob area in the videos. During field work we captured a small number (N = 8) of Pieris  individuals 
that had just passed through the UAV’s FOV. Each individual, captured with a butterfly net, was 
briefly placed in a thin transparent box with a grid-patterned back, photographed with its wings 
stretched for later identification and size measurement, and then immediately released. Back in 
the lab, we measured each individual’s forewing length (from wing base to wing tip, Van Hook et 
al., 2012) using ImageJ. The UAV video recordings corresponding to these individuals were filtered 
and digitized with the same methods as previously described, but were later re-analysed to 
measure the blob size in each filtered video frame. As a simple approach, the blob was defined as 
connected pixels with grey level b > 138, i.e. departing by more than 10 grey level from the mean 
background grey of 128. Sometimes the simple thresholding approach detected no blob, but this 
method still allowed to obtain many (269 to 654) blob area values per individual, that could be 
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compared to the animal’s real size. Note that 4 out of the 8 tracks used for the present blob area 
analysis were not part of the final flight track sample (N = 166), because these captured individuals 
had flown near the road, or performed stops along their flight (see Track selection section). 

Five captured individuals were identified as P. rapae (2 females + 3 males), with forewing length 
ranging from 22.8 to 28.0 mm. The 3 other captured individuals were P. brassicae (2 females + 1 
male), with longer forewing, ranging from 31.2 to 36.7 mm. These values were in line with the 
literature, with the largest P. rapae individuals being close in size to the smallest P. brassicae 
specimens (Cook et al., 2022). 

Figure 7 shows the blob area distributions observed for all 8 captured individuals. When 
considering only the median blob area for each individual, it was positively correlated to the 
forewing length of the animal (Spearman rank correlation, r(6) = 0.73, p = 0.047). However, the 
relationship was not monotonically increasing (r < 1), and there was extensive overlap between 
blob area distributions. In other words, a smaller butterfly could often project as a larger pixel blob 
than a larger butterfly, depending on the compared video frames. As a result, we considered 
unreliable to use recorded pixel blob areas as a direct mean to discriminate P. rapae and P. 
brassicae flight tracks in the present work. 

 

Figure 7 - Forewing length vs. pixel blob area distribution for 8 tracked and captured 
Pieris butterflies. Blue: P. brassicae (N = 3); Green: P. rapae (N = 5). Distributions 
are displayed as Kernel probability density estimates. Circles indicate the median 
blob area value for each butterfly. 

Effect of advancing season on flight azimuth. 

By observing the tracks at different times in the flight period, it appeared visually that the flight 
azimuths have varied over the season (Figure 8). 

To further quantify seasonal variations in azimuth distributions, we computed the beeline 
azimuth of tracks crossing a 30 m diameter disc located at the centre of the camera’s FOV (Figure 
8). Indeed, the rectangular shape of the camera FOV is less likely to record trajectories parallel to 
the longer side of the FOV (see Figure S1), and this bias can be corrected by considering only an 
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area enclosed by a circle inside the FOV. When a track did not cross this central disc, it was 
therefore removed from the sample for circular statistics. When a tortuous track crossed this disc 
more than once, only the longest segment inside the disc was considered. This restriction of the 
FOV to a central disc had the effect of reducing our sample from N = 166 to N = 119 (for this 
section only). 

 

Figure 8 – Pieris flight tracks broken down by flight period (vertically) and field 
(horizontally). Black dots indicate last position of each track (N = 166). 30 m 
diameter circles represent the area considered for azimuth statistical comparisons 
(N = 119). 
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We tested the effects of period (June to September) and field (WF vs. EF) on beeline azimuth, 
using a two-factor ANOVA for circular data (Harrison & Kanji 1988, in Berens 2009). As we 
observed many more trajectories in July, we subdivided the month of July: early July (field sessions 
on July 1st and 8th) and late July (July 15th and 21st ). We then tested the uniformity of the azimuth 
distributions for each period, using Rayleigh tests (Fisher 1995, in Berens 2009). 

 

Figure 9 – Circular distributions of Pieris beeline azimuth, broken down by period 
(vertically), and field (horizontally). Arrows represent mean resultant vectors. The 
right column shows azimuth distributions for both fields pooled (WF + EF), with red 
arrows representing significant directional preference according to a Rayleigh test. 
The Rayleigh test asks how large the mean resultant vector length R must be to 
indicate a non-uniform distribution (Fisher 1995, in Berens 2009). 

The ANOVA for circular data detected a significant effect of period on azimuth (X2(6) = 43, p = 
1.2 × 10-7), but no effect of field side (X2(2) = 0.51, p = 0.77), and no interaction between the two 
factors (X2(3) = 5.5, p = 0.14). The distribution of azimuths during the 4 periods is shown in Figure 
9. In June, the butterflies flew most often to the north-east (Rayleigh test, N = 7, R = 0.65, p = 0.04; 
mean azimuth 24°). In early July, they flew most often to the north-west (N = 51, R = 0.56, p = 4 × 
10-8; mean azimuth 317°). In late July, tracks in all directions were observed, without any dominant 
azimuth, so that the azimuth distribution was not significantly different from a homogeneous 
distribution (N = 42, R = 0.15, p = 0.41). Finally, in September, tracks were most often oriented to 
the south (N = 19, R = 0.59, p = 0.001; mean azimuth 173°). 
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Although our data was collected in low wind conditions (median wind speed 1.9 m.s-1), wind 
could still influence the butterflies’ trajectory. To verify if the above results were influenced by wind, 
we first tested whether butterfly beeline azimuth was correlated with wind direction, using a 
circular-circular correlation test (Jammalamadaka & Sengupta 2001; in Berens 2009). The test 
returned no significant correlation (c = - 0.01, p = 0.95; Figure 10A). We also assessed whether 
butterfly preferentially flew downwind, crosswind or upwind, by computing the angular difference 
between beeline azimuth and wind direction, and testing whether this “angle to wind” variable 
departed from a uniform distribution. Results suggested that butterflies did not preferentially fly at 
a specific angle to wind (Rayleigh test, N = 119, R = 0.15, p = 0.06; Figure 10B), but the test was 
close to statistical significance, despite a small resultant vector (i.e. small effect size). Therefore, 
as a supplementary verification, we focused on tracks recorded during stronger winds (> 2 m.s-1, 
N = 64), as these butterflies were expected to be the most affected by a possible wind influence. 
Both circular-circular correlation (c = - 0.04, p = 0.75) and Rayleigh test on angle to wind (N = 64, 
R = 0.08, p = 0.67) returned non-significant results (Figure 10C, D). This comforted the conclusion 
that wind direction did not significantly bias butterfly flight azimuth in our data.  

 

Figure 10 – Wind and Pieris flight azimuth. (A) Beeline azimuth vs. wind direction 
for N = 119 tracks. (B) Angle to wind for N = 119 tracks. 0° corresponds to upwind 
flight, 180° to downwind flight. (C-D) Same graphics for the N = 64 tracks where 
wind speed exceeded 2 m.s-1.  

Discussion 

Butterfly tracking method validation, strengths and limits 

Spatial scale 
We show that UAV-image-based tracking can be used to reconstruct free-flying butterfly paths. 

With light, affordable and easily-deployed gear in the field, we were able to track numerous wild, 
untagged Pieris butterflies, over an area of 2100 m2, with track lengths averaging 40 m. Given an 
average flight speed of about 3 m.s-1, this translates to tracking durations most often near 10-20 s 
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(Figure 3B-D), depending on each butterfly’s flight speed and straightness. This scale of recorded 
movement is larger than what can be achieved in most insectaries (e.g. Kleckova et al., 2024: 15 
m2; Le Roy et al., 2021: 36 m2; Kitamura & Imafuku 2015: 182 m2; Lihoreau et al., 2016b: 880 m2), 
but remains modest compared to other open field methods such as SHR (Ovaskainen et al., 2008: 
2.5 km2; Lihoreau et al., 2012: 1.5 km2; Maggiora et al., 2019: 0.7 km2) or human-held GPS tracking 
(e.g. Fernández et al., 2016: 100 m average track length).  

The spatial scale of the present method is directly constrained by the UAV camera FOV, which 
was voluntarily limited to 61 × 34 m (from a 45 m UAV height). This was needed to maintain a 
butterfly blob area around 10 pixels, for reliable blob tracking throughout video frame series (see 
Methods section). A first possible way to enlarge FOV would be to use an UAV with higher camera 
resolution (e.g. 6K or 8K sensor, with matching optics quality), which could potentially fly higher 
and record a wider ground area, while maintaining a centimetric pixel pitch on the ground. 
Moreover, a higher signal-to-noise ratio in video frames (e.g. from larger sensors and/or less 
compressed video file formats) might allow to reliably detect smaller blobs throughout frame series, 
which in turn would allow larger pixel pitch values, and even higher UAV flight height. A FOV 
exceeding 100 m in side length (i.e. ~5000 m2) is probably already possible with current high-end 
commercial UAVs, which might be a large enough area to record routine flight movements in some 
species with limited home ranges (e.g. Fernández et al., 2016). 

An alternative way to greatly increase recorded movement length would be to try and follow 
butterflies with the UAV. This would necessitate (1) that the video feedback to the UAV pilot is of 
sufficient magnification for a live view of individual butterfly blobs and (2) a different approach to 
video frame filtering (accounting for quickly moving image background), but these are interesting 
perspectives for future methodological developments, that might allow recording butterfly 
movements at a much larger spatial scale, closer to the real scale of dispersal or migration 
movements.  

30 Hz tracking 
On the other hand, a strength of the movement data we collected is the 30 Hz temporal 

resolution, which is orders of magnitude higher than non-image-based field tracking methods 
applicable to flying insects: 1 Hz for human-held GPS tracking (Fernández et al., 2016), 0.33 Hz 
for SHR (Ovaskainen et al., 2008), and lower (usually < 0.01 Hz) for automated radio-tracking 
(Kays et al., 2011). Here, with one location every ~10 cm along the flight path, the reconstructed 
tracks reveal fine-scale movement patterns (see Figures 2, 4, 8), and offer access to flight speed 
and tortuosity in the wild, with improved accuracy. Such refined movement data may provide 
interesting insights on biomechanical and/or orientation processes at work during butterfly flight. 
More detailed analyses focused on the effect of wind on flight speeds, and the oscillation patterns 
along Pieris flight paths are envisaged, but as they imply many additional analyses (e.g. Srygley 
& Oliveira 2001), they were beyond the scope of the present UAV methodology presentation. Note 
that in environments richer in ecological resources (e.g. patches of host plant or nectariferous 
flowers) and conspecifics, having fine access to flight speed and tortuosity will be useful to study 
less directed, routine flight behaviours, such as foraging or mate searching (Schtickzelle et al., 
2007; Fernández et al., 2016). 

2D vs 3D 
Another limitation of the present method is the projection of the FOV, a pyramidal 3D air volume 

that butterflies can cross at various height, onto a virtual 2D surface at ground level. For a UAV at 
height H and a butterfly flying at height h, this 2D projection at ground level causes an 
overestimation of flight speed by a factor of H / (H-h). For example, the speed of a butterfly flying 
at h = 15 m under our UAV at H = 45 m would be overestimated by a factor of 1.5. In our dataset, 
we were able to verify by direct observation that at least 27 % of tracked butterflies flew at less 
than 2 m above ground level. For these tracks, the 2D ground projection implies only a small error 
on flight speed (overestimation factor £ 1.05). For other butterflies, for which we were unable to 
confirm flight height, we showed that their projected flight speeds are no higher than confirmed 
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“low flyers”, and thus conclude that they probably also crossed the FOV at low height (Figure 6). 
This remains indirect evidence, and we cannot exclude that for a small minority of tracks, we might 
have significantly overestimated flight speed because the butterfly crossed the FOV at a higher 
height.  

Note that, in the hypothetical situation where butterflies move mainly in horizontal planes, but 
at various heights, the reconstruction of flight speeds will be heterogeneously overestimated, but 
the angular and temporal variables (e.g. variation of azimuth through time) remain unaffected by 
flight height.  

Beyond the average flight height, all the vertical (z) movements of the butterflies are lost when 
projected onto a (x, y) horizontal plane. For following studies, it is therefore important to observe 
the 3D flight behaviour of butterflies beforehand, depending on the species, the type of investigated 
movement (e.g. foraging, patroling, dispersal or migration), the relief of the terrain and vegetation, 
and to assess from these necessary preliminary behavioural observations whether a 2D projection 
might overlook relevant information about the animals’ movements. If the investigated movement 
is mainly in the horizontal plane and at low height, then the present method can be appropriate. In 
the case where the 3D flight trajectory or elevation relative to the ground are necessary data for a 
study, one should either find a zone where the butterfly’s shadow is also visible in the image (Figure 
2H) and derive 3D track data, or opt for other natively 3D optical methods, based on multiple views 
of the flight volume (Theriault et al., 2014; de Margerie et al., 2015). 

UAV stability 
When the UAV receives no command from the pilot, its flight control algorithm seeks to maintain 

its horizontal position, height and azimuth, using sensory-motor regulation loops based on many 
on-board sensors (GPS, barometric altimeter, magnetic compass, accelerometers, gyroscopes, 
downward vision system). Commercial UAVs have made spectacular progress on stability in the 
last decade, and we were able to verify that, at least over the tracking durations used here (< 1 
min), the movements of our UAV were indeed very limited (Figure 5). This allowed us to assume 
that the drone was static in the sky, at the cost of a drift under 30 cm in the reconstructed position 
of the butterfly, which we found acceptable for the question posed here (i.e. the measurement of 
the beeline azimuth over several tens of meters). Still, note that most UAVs use barometric sensors 
for regulating flight height, and that atmospheric pressure might vary significantly across flight 
times longer than a few minutes.  

For studies requiring lower error caused by the drone’s position, it is possible to perform a 
continuous measurement of the reference segment on every video frame (by auto-tracking the 2 
reference points), or even to perform a more refined calibration of the projected image by 
continuously tracking multiple points on a grid to fully monitor any complex image transformation 
or distortion. If the drone’s movements really need to be more closely controlled, more advanced 
commercial drones are available, using positioning technologies such as Differential GPS (DGPS) 
or Real Time Kinematic (RTK), which can monitor the UAV position with centimeter accuracy. 

Species identification 
Our video tests suggest that other butterfly species are potentially detectable using the present 

method, whether they appear light against a dark background (resulting in white blobs in filtered 
video frames) or dark against a light background (black blobs, Figure 2F). The blink filter proved 
efficient for erasing background textures, while also tolerating a fair amount of background 
movement, caused either by the slow drift of the UAV, or vegetation being blown over by the wind. 
Hence, we hope to see following studies tracking other butterfly species in various open 
landscapes. In more cluttered landscapes, where the butterflies can fly through or below 
vegetation, the present optical method will not be appropriate.  

Unfortunately, depending on the location and the flight season, it is possible to run into the 
issue that two (or more) species with similar sizes and colors get filmed simultaneously, and this 
is the problem we encountered here with two Pieris species. This problem of distinguishing species 
and individuals is often encountered with tagless, image-based or radar-based tracking (Schlägel 
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et al., 2020). We were not able to discriminate P. brassicae from P. rapae based on pixel blob area 
(Figure 7). The wide, overlapping distributions of blob areas for each individual butterfly is not 
surprising: Flying butterflies can have any posture, from fully stretched to fully closed wings on 
different video frames, as a result of (1) flapping wing movement and (2) variable roll and pitch 
angles of the body along the flight path. Moreover, pixel blob area can also be affected by other 
factors such as (3) contrast with the local background, (4) “blob-clipping” (i.e. when the distance 
covered between two consecutive frames is less than the body length, which interferes with the 
filtering method), and (5) flight height. Note also that the relationship between butterfly size and 
blob area is expected to follow discrete steps (pixels), especially when the pixel pitch is close to 
animal body size (Figure 2C). 

Provided that some of these sources of blob area variation can be better controlled, we do not 
rule out that pixel blob area could help discriminate butterfly species in future studies (and/or 
monitor flight height), but this would need more refined blob classification processes than what we 
implemented here. 

Another option could be to discriminate species based on flight speed or flight behaviour (e.g. 
tortuosity). A first issue with this approach is that in studies aiming at describing the flight 
behaviour, it could lead to circular inference. Moreover, Kleckova et al. (2024) reported that 
different species (P. rapae and P. napi) can have smaller differences in their flight parameters 
(measured in an insectary) than spring and summer generations of the same species. 

Another route for reducing possible confusion between species could be a greater effort to 
identify each individual’s species (and sex) in the field, either by remote visual/photographic 
identification, or by systematically capturing butterflies after they crossed the UAV’s FOV. This 
would be limited to low-flying butterflies, and also implies greater human presence and movements 
in the field, which might affect the butterflies’ movement patterns. As well, capturing the butterflies 
before they cross the FOV, and tracking their movements once released was not retained as a 
valid option, as released butterflies do not immediately display their normal flight behaviour 
(Nikolaev 1974; Dudley & Srygley 1994). 

Observed flight speed and straightness distributions 

Ground-based multi-camera settings can be used to measure butterfly flight speed in 3D, most 
often inside  insectaries (e.g. Kitamura & Imafuku 2015; Le Roy et al., 2021; Kleckova et al., 2024). 
Unfortunately, many butterflies species tend to fly slower in insectaries than in the wild (Dudley & 
Srygley 1994), and captivity can also affect other flight parameters (e.g. glide duration: Le Roy et 
al., 2021). The present data offers a nice opportunity to measure Pieris flight speed in undisturbed, 
natural conditions, although in 2D only. The median average ground speed we report, at 3.3 m.s-

1, comes out lower than some earlier measurements on smaller samples of Pieris performing 
directed flight in the field (e.g. 3.6 m.s-1 in P. brassicae, Nikolaev 1974; 4.4 m.s-1 in P. rapae, Dunn 
2024). More interestingly, across our relatively large sample from multiple field sessions, we 
observed a wide speed range (from 1.9 to 9.2 m.s-1 for track average ground speed, Figure 3D), 
not even accounting for flight speed variations within each track. This again calls for a detailled 
(upcoming) analysis of instantaneaous ground and air speeds, taking wind into account, that might 
provide novel insights on the flight behaviour of Pieris (e.g. wind drift compensation; Gilbert & 
Singer 1975; Srygley & Oliveira 2001).  

Flight speeds over WF (mixed crop) and EF (grass) did not differ, and most tracks had a very 
high straightness value, compatible with a “directional, undistracted” flight behaviour that is often 
understood as migratory in butterflies (Chowdhury et al., 2021). Still, we measured that tracks over 
WF were not quite as straight as over EF (Figure 3E), suggesting that the richer vegetation in WF 
might have attracted butterflies to some extent, favouring slightly less directed movement. Also, 
we note that some butterflies in our sample exhibited clearly tortuous rather than directional flight 
(see Figure S2 for 14 tracks with straightness < 0.6, which were observed in equal numbers above 
WF and EF). Moreover, note that the speed and straightness distributions we report would be 
different if we had included butterflies marking stops along their flights. Thus, although most Pieris 
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butterflies we observed in the field exhibited a directed, possibly migratory behaviour, a minority 
appeared to be rather engaged in undirected flight movements. 

The higher number of butterflies passing over EF (N = 100 vs. N = 66 for WF) was intriguing. 
After a close examination of sample sizes for each field session (see table S1), it appears that EF 
and WF butterfly numbers only differed significantly for 1 out of 11 field sessions, thus we do not 
conclude that EF consistently attracted more butterflies than WF. 

P. brassicae and P. rapae migratory behaviours 

In butterflies, migration often occurs over several generations, with successive generations 
following different flight azimuths to achieve a round-trip annual travel (Chowdhury et al., 2021). 
Within Pieridae, P. brassicae and P. rapae migratory behaviours have long been documented from 
the observation of mass migrations (Williams et al., 1942; Vepsäläinen 1968). These mass 
migrations are now rarer due to the use of pesticides (Spieth & Cordes 2012), but see John et al. 
(2008) and Dunn (2024) for recent reports of group migrations in P. rapae (and see Bauer et al., 
2024 for radar-based studies on mass migrations in other insect species). Early attempts at 
quantifying Pieris migratory flights used methods such as visually estimating the flight azimuth in 
the field (e.g. Baker 1968), or difficult mark-recapture experiments (Roer 1959, 1961). More 
recently, Jones et al. (1980) used an egg marking method to study the movements of individual 
australian P. rapae females, reporting directed flight with some northward bias. Gilbert & Raworth 
(2005) observed  in the Pyrenees mountains that a portion of the P. rapae population migrated 
northward in spring and southward in autumn, in line with earlier observations in England (Baker, 
1968). For P. brassicae, Spieth & Cordes (2012) collected eggs from several Western Europe 
regions, and later measured the spontaneous flight azimuth of adult female individuals, in a 2 m 
octogonal flight cage. They showed that the preferred flight azimuth depended on the season and 
the geographic origin: The first generation usually followed a northward azimuth (modulated by the 
precise geographic origin), whereas the last generation (2nd or 3rd depending on the region) flew 
southward. Using a similar flight cage, Larranaga et al. (2013) confirmed a mean northward 
azimuth in both females and males P. brassicae of the first generation. 

Here, for a mixed sample of P. brassicae and P. rapae individuals, we observed flights that 
were mainly directed northwards in the early season (June, early July), and a southward azimuth 
in the late season (September). This appears congruent with the existing literature on migration in 
P. brassicae (Spieth & Cordes 2012) and P. rapae (Gilbert & Raworth 2005). Hence, despite the 
limited spatial scale of our movement data, it is probable that the highly directed movements we 
recorded were segments of migratory flights. Note that the absence of a dominant azimuth for late 
July might be the result of P. brassicae already shifting to southward flight, with P. rapae still flying 
predominantly northward at this period (R. Baker, personal communication). 

Tracks recorded from a UAV allow an accurate measurement of flight azimuth, without the need 
to capture or mark the butterflies (which can affect spontaneous flight behaviour: Nikolaev 1974; 
Dudley & Srygley 1994), at an intermediate scale between a flight cage (or insectary) and mark-
recapture experiments. As a plus, high sampling frequency trajectories contain previously 
unavailable fine-scale information on flight speeds, tortuosity of the flight path, and patterns of 
rapid azimuth variation (transverse oscillations). This refined data may be studied in greater detail 
and has the potential to reveal information on locomotor behaviour and the perceptual mechanisms 
underlying spatial behaviour. Two major limitations of our approach at this stage are (1) the limited 
spatial scale and (2) the confusion between P. rapae and P. brassicae, because of their similar 
sizes and colors, and their concurrent flight in our geographical area.  

Conclusion 

Our results reveal that video tracking of butterflies from a UAV is possible, and capable of 
providing movement data in fully natural conditions, at an unprecedented spatio-temporal 
resolution, and at a modest cost. This fine-scale data could prove precious for understanding the 
spatial behaviour of many butterfly species in open landscapes, and study their movement ecology 
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in various contexts, from routine ressource-searching flights in the local habitat, to dispersal or 
even migratory flights. We hope that the present methodology exploration can serve as a starting 
point and motivate other works using UAVs to study spatial behaviour and movement ecology in 
flying insects. 
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