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Abstract
Transposable elements (TEs) have an important role in genome evolution but are chal-
lenging for bioinformatics detection due to their repetitive nature and ability tomove and
replicatewithin genomes. New sequencing technologies now enable the characterization
of nucleotide and structural variations within species. Among them, TE polymorphism is
critical to identify as it may influence species adaptation or trigger diseases. Despite the
development of numerous bioinformatic programs, identifying the most effective tool is
challenging due to non-overlapping results and varying efficiency across studies. Bench-
marking efforts have highlighted some of the limitations of these tools, often evaluated
on either real or simulated data. However, real data may be incomplete or contain unan-
notated TEs, while simulated data may not accurately reflect real genomes. This study
introduces a simulation method generating data based on real genomes to control all ge-
nomic parameters. Evaluating several TE polymorphic detection tools using data from
Drosophila melanogaster and Arabidopsis thaliana, our study investigates factors like copy
size, sequence divergence, and GC content that influence detection efficiency. Our re-
sults indicate that only a few programs perform satisfactorily and that all are sensitive to
TE and genomic characteristics thatmay differ according to the species considered. Using
Bos taurus population data as a case study to identify polymorphic LTR-retrotransposon
insertions, we found low-frequency insertions particularly challenging to detect due to a
high number of false positives. Increased sequencing coverage improved sensitivity but
reduced precision. Our work underscores the importance of selecting appropriate tools
and thresholds according to the specific research questions.
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Introduction 

Recognized as being among the most important players in the evolution of genomes, 
transposable elements (TEs) represent a real challenge for bioinformatics approaches to detect 
them. TEs are repeated sequences present in almost all eukaryotic genomes. They have the ability 
to move and replicate, forming different families of similar but not always identical sequences. 
Several types have been described, depending on their structure and their mode of transposition, 
varying both in genomic distribution and in sequence length (Wicker et al., 2007). For example, 
LTR-retrotransposons represent sequences of approximately 10 kb but DNA transposons such as 
MITEs (Miniature Inverted Repeats Transposable Elements) span only a few hundred base pairs. 
Moreover, TEs are not randomly distributed in the genome since their insertion patterns reflect a 
balance between selection pressure against their deleterious effects and genetic drift (Bourque et 
al., 2018). As a consequence, TEs are likely to be found inserted into each other constituting 
nested insertions, which are particularly difficult to automatically identify (Bergman & Quesneville 
2007). In addition, their proportion in genomes can vary greatly, ranging from a few percent as for 
example in the honeybee (Weinstock et al., 2006) to the major part of the genome as in maize 
(Schnable et al., 2009). Over the past twenty years, different bioinformatic tools have been 
developed allowing their annotation in assembled genomes (Lerat, 2019). However, the rapid 
development of new sequencing technologies has made it possible to access numerous data from 
different individuals or populations in order to characterize the nucleotide and structural variations 
within a given species. Indeed, a reference genome for a given species is not sufficient to reflect 
the overall diversity of individuals. In particular, although TEs are generally regulated in a genome 
to prevent their activity, certain TE families can nevertheless continue to transpose throughout the 
life of an individual or may be reactivated due to some stress (Di Stefano, 2022). It has been 
proposed that in Drosophila, the transposition rate is comparable to that of the nucleotide mutation 
rate (Adrion et al., 2017). More recently, according to the TE family, the transposition rate has been 
shown to be higher with an average of 4.93 × 10-9 insertions per site per generation corresponding 
to a new insertion in each new embryo (Wang et al., 2023). In humans, the most active TEs have 
a transposition rate of one insertion every 20 births (Cordaux & Batzer, 2009). We can thus expect 
to find variations in the TE insertion pattern between individuals, which constitutes the TE 
polymorphism. Polymorphic TEs are particularly important to identify since they represent 
insertions that may be at the basis of species/population adaptation or triggering diseases. For 
example, numerous polymorphic TEs have been detected in sub-populations of the Chinese white 
poplar (Populus tomentosa) some of them being under positive selection while inserted in genes 
involved in stress, defense and immune responses (Zhao et al., 2022). In humans, a specific 
polymorphic TE insertion is associated with the development of the Fukuyama type congenital 
muscular distrophy (Kobayashi et al., 1998). 

In order to search for polymorphic insertions, bioinformatics tools have been developed to 
answer specific questions and on particular organisms such as Drosophila, human or some plants 
(Lerat, 2019). All these methods follow similar principles in their functioning which consist first in 
mapping sequenced reads to a reference genome and a set of reference TE sequences. Then two 
approaches, that can be combined, have been proposed to detect the presence/absence of TEs. 
The first is to consider discordant read pairs with one read mapping uniquely on a genomic location 
and the other mapping on different sequences of the same TE family. The second approach 
considers split reads, i.e., reads overlapping a junction between the genome and a TE insertion, 
with a part of the read mapping uniquely on the genome while the other part maps on several TE 
sequences. More than twenty programs have been developed during the past ten years (for an 
exhaustive list, see https://tehub.org/), which makes it difficult for users to determine which 
program is the most appropriate or the most efficient. In particular, the results of these programs 
are often not entirely overlapping (Ewing, 2015; Lerat et al., 2019). This makes it more difficult to 
identify true positives, especially in the case of non-reference insertions, which correspond to 
insertions not present in the reference genome but present in the analyzed read samples. Several 
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attempts have been previously made to benchmark all these programs (Nelson et al., 2017; 
Rishishwar et al., 2017; Vendrell-Mir et al., 2019; Chen et al., 2023). These works showed that all 
these programs often are not as efficient as indicated in their original publication. However, these 
evaluations were made either on partial real data or on simulated data without controlling all 
parameters, or were targeting only particular TE types (like for example in Vendrell-Mir et al., 2019). 
A problem with real data is that they may be only partial or may contain unannotated TE insertions 
that can blur the results. However, using partially simulated data is also problematic since it usually 
does not reflect in a realistic manner a real genome and does not allow to control all parameters. 
For example, the approach used by Rishishwar et al. (2017) consisted in the random insertions of 
consensus sequences from three human TE families into human reference chromosomes. In the 
work by Nelson et al. (2017) and Chen et al. (2023), they inserted one single TE from one of the 
four active families of yeast at positions that are supposed to be biologically sound. These 
approaches are thus very biased toward the particularities of a single species. Hence, there are 
still several unanswered questions regarding the underperformance of certain tools, particularly in 
relation to specific characteristics of the studied genome and the TE sequences themselves that 
cannot be achieved using real data or simulated approaches used until now. 

In this study, we have developed a simulation approach to produce data based on real 
genomes to allow the complete control of all genomic parameters. Using data generated for 
Drosophila melanogaster and Arabidopsis thaliana, we evaluated several TE polymorphic 
detection tools and investigated different characteristics like the copy size, the sequence 
divergence, the distance between copies, the GC content of the surrounding genomic regions, the 
Target Site Duplication (TSD) size or the TE family that could explain why some insertions are 
better detected than others. Our results show that only very few of the different tested programs 
give satisfactory results and that all programs are sensitive to TE and genomic sequence 
characteristics that slightly differ according to the species considered. As an application case, we 
used Bos taurus real population data to identify polymorphic LTR-retrotransposon insertions. Low-
frequency insertions appeared to be more challenging to detect due to a high proportion of false 
positives. Increasing sequencing coverage improved the sensitivity but at the expense of precision. 
Our study emphasizes the importance of selecting appropriate tools and thresholds depending on 
the scientific questions asked. 

Material and methods 

Genomic data used for simulation 

The sequence of the Drosophila melanogaster 2L chromosome version 6.18 in GenBank 
format was obtained from the NCBI GenBank database (accession number: NT_033779). The 
chromosome sequence is 23,513,712 bp long in which 3,519 genes and 919 TEs are annotated. 
For Arabidopsis thaliana, a GenBank file of the chromosome 1 was generated using the TAIR10 
version of the gene and transposable element (TE) annotation in gff format available from the 
Arabidopsis Information Resource website (https://www.arabidopsis.org/). The chromosome 
sequence is 30,427,671 bp long in which 7,509 genes and 7,135 TEs are annotated. The sequence 
of the chromosome 25 from Bos taurus was obtained from the GenBank database (version ARS-
UCD1.3, accession number: GCF_002263795.2). The chromosome, that is 42,350,435 bp long, 
contains 1,006 genes but no TEs have been previously annotated. We thus determined the 
position of endogenous retroviruses (ERV) using RepeatMasker version 2.0.3 with cattle ERV 
consensus sequences from Repbase version 29.03 (https://www.girinst.org/). ERV insertions from 
four ERV families were used for the simulations: two class I ERV families (ERV1-1_BT and 
BtERVF2) and two class II ERV families (ERV2-2_BT and ERV2-3_BT). 

Simulation tool replicaTE 

We have developed a simulation tool based on real data. This tool is implemented as several 
python3 scripts that need to be run successively, using as a starting point a GenBank file (Figure 
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1). In summary, we consider three types of sequences (genes, TEs and intergenic regions). The 
genes are cleaned up from any TE insertions meaning that any TE inserted inside the genes, given 
the annotation, are removed from the gene sequences. Intergenic regions are simulated to remove 
any misannotated TEs and based on the real intergenic regions with respect to their GC content 
and length. The real characteristics of TE insertions in the genome (number of copies, size of 
copies, %divergence, etc.) are used to simulate new TE sequences. These TE sequences are 
randomly assigned to the intergenic regions. Finally, all three parts are reassembled to create a 
complete simulated genome and a deleted simulated genome in which half of the TE insertions 
are removed. The tool is available as a github repository (https://github.com/e-lerat/replicaTE) and 
on Zenodo (https://doi.org/10.5281/zenodo.15519957). For the simulation of the three species, 
default parameters for each module were used. 

 

Figure 1 - Workflow of the simulation tool ReplicaTE. Each step corresponds to the 
different scripts. In gray are indicated the genes, in blue and red are indicated the 
TE insertions, a given color corresponding to a given TE family. The simulated TE 
copies are represented in orange and light blue. 

deleTE.py 
This script allows us to get the characteristics of each element (genes, intergenic regions, and 

TEs) for the next steps and to generate a simulated genome without TEs. It takes as an input a 
GenBank file from which it will extract the annotations. It outputs multiple files which can then be 
used as input by the other codes (see results for the description of these files). The size of the 
simulated intergenic regions are drawn from an exponentiated Weibull distribution constructed 
from the computed gene density (number of genes per Mb) with a minimal size of 200 pb. The GC 
content of the simulated intergenic regions are drawn from a truncated normal law fitted on the 
observed %GC of the chromosome sequence, with values between 0 and 100%. 

generaTE.py 
This script generates TE copies based on different characteristics (copy number, length, TSD 

length, strand). It attributes an intergenic region to each copy to be inserted into with the possibility 
to have nested insertions. For each family, a pool of copy sizes is drawn in a truncated exponential 
law, with values between 80 bp and 102.5% of the largest sequence of the family to take into 
account potential small insertions, called the “ancestral” sequence. The sequence divergences of 
the copies compared to the “ancestral” sequence are drawn from a truncated normal law 
distribution, with values between 0 and 20% (mean = 10 and standard deviation = 4). By default, 
the copy number corresponds to the observed copy number in the real chromosome. It is also 
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possible to simulate the copy number. In that case, it is randomly drawn from an exponentiated 
Weilbull distribution fitted on the data. The TSDs have a length between 0 and 8 bp and are 
attributed for a given family when the option is specified. 

inseraTE.py 
This script associates the cleaned genes, the simulated TEs and the simulated intergenic 

regions to produce a genomic sequence. The TE copies are randomly inserted into their attributed 
intergenic region. The insertion can be ‘normal’ or ‘nested’ (inserted into a previous TE) and 
multiple nested events can arise. The complete simulated chromosome is provided in fasta format. 
A “deleted” version is also generated, in which half of the TE copies are not present. 

Short-read simulation 

The different tested tools all use short-read sequences as an input. We thus have generated 
short reads based on either the “complete” or the “deleted” simulated chromosomes using the 
program ART Version 2.1.8 (Huang et al., 2012). This program produces theoretical reads 
expected by an NGS technique on a given genome. For this analysis, we generated paired-end 
Illumina reads of 150 bp (with a fragment size of 300 bp) using three different coverages (10X, 50X 
and 100X). Only 15X short reads were produced for B. taurus to reflect the landscape of the real 
cattle data coverage in the public databases. 

Polymorphic TE detection tools 

Reference and non-reference insertions were detected in the simulated short reads using the 
either the “complete” or the “deleted” simulated genomes as a reference with the 12 programs 
included in McClintock2 (Nelson et al., 2017; Chen et al., 2023) in addition to TEPID (Stuart et al., 
2016) and Jitterbug (Hénaff et al., 2015) programs. All the programs were run with default 
parameters. The read alignments on the reference genomes were made using either bwa (Li & 
Durbin, 2009) and bowtie2 (Langmead & Salzberg, 2012) as implemented in McClintock2 with 
regard to the internal specificity of each tool. TEPID internally uses bowtie2 and yaha (Faust & 
Hall, 2012). In the case of Jitterbug, the read alignments were performed using bowtie2. 

Statistical analyses 

All statistical tests were performed using the R software version 3.6.3 (2020-02-29) (R Core 
Team, 2017). The programs were evaluated according to different metrics described below.  

Recall (sensitivity): it corresponds to the proportion of True Positives (TP) among all the TE 
insertions present in the reference genome. It is computed as: !"

!"#$%
 

Precision: it corresponds to the proportion of good answers among the predicted TE insertions. 
It is computed as: !"

!"#$"
 

F-score: it corresponds to the harmonic mean of the recall and the precision. It is computed as: 
2 &'()**.,&'(-.-/0
&'()**#,&'(-.-/0

 
To compute these different metrics, it is necessary to assess the number of TPs among the 

identified TE insertions proposed by each program, using two homemade perl scripts 
“test_position_ref.pl” and “test_position_nonref.pl” (available in the github repository). We 
considered an insertion to be a TP when the program associates the same TE family name and a 
position that is close to the real position, with a certain margin of error, disregarding the strand of 
the prediction. More specifically, we considered four different margins of error to determine whether 
the position was correct or not which are 5 bp, 20 bp, 100 bp and 150 bp. The False Negatives 
(FN) correspond to insertions present in the reference dataset that were not detected by the 
program and the False Positives (FP) correspond to predicted insertions that do not correspond to 
insertions present in the reference dataset. 
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False positive rate estimation in real data of Bos taurus 

Endogenous retroviruses (ERV) insertion detection was performed using TEFLoN (Adrion et 
al., 2017) with default parameters on 10 WGS short-read data samples from various individuals of 
Bos taurus (accession numbers from SRA database are provided in Supplementary Table S1). A 
homemade python script (FP_TP_teflon_insertion.py) available in the github repository, was 
applied to compute the proportion of TPs, FPs and FNs among the identified insertions. Insertions 
found in common with the reference were considered as TPs or FPs compared to the ERV 
annotation of the B. taurus ARS-UCD1.3 assembly. Insertions found in the samples but not in the 
reference genome were considered as TPs if they were also present in the variant output file obtain 
from a variant calling analysis on long-read data from the same samples (accession numbers from 
SRA database are provided in Supplementary Table S1) using the call function of pbsv version 
2.6.2 with default parameters (https://github.com/PacificBiosciences/pbsv). In both cases, we 
considered insertions as TPs if the program also associated the correct ERV family name and with 
a correct position within 20 bp of error margin. 

Results 

Chromosome simulation and evaluation approach 

The simulation tool replicaTE was used on the chromosome 2L of D. melanogaster and on the 
chromosome 1 of A. thaliana (all generated files are available as supplementary data). The first 
script, deleTE.py, produces different output files. Among them, the “gene_clean_tab.csv” file 
contains the real genes without any annotated internal TE insertions. The “intergenic_sim_tab.csv” 
file contains the simulated intergenic regions with their length and %GC. The “stat_TEs_tab.csv” 
contains a sequence corresponding to the longest real TE sequence (that will be considered as 
the “ancestral” TE sequence) of a given family that will be used to generate all simulated TE copies 
and the number of copies for each family, that corresponds to the real number of annotated copies 
in the considered chromosome. These two last files are used in the second script, generaTE.py, 
to simulate the TE copies. It produces a fasta file containing the simulated sequences 
(“simulated_TEs.fas”) and a text file (“param_TEs_tab.csv”) containing all the information 
regarding each TE family (length of each copy, sequence divergence of each copy compared to 
the “ancestral” TE sequence, the associated intergenic region, the strand and the TSD size). These 
two files, in addition to the “gene_clean_tab.csv” and the “stat_TEs_tab.csv” files, are used in the 
third script inseraTE.py. It produces, among other files, the two simulated genomes in fasta format 
and the files “annot_TEs.tsv” and “annot_TEs_del_1” containing all information regarding each TE 
copy (positions, length, divergence, insertion type (nested or not), strand, TSD size, distances to 
the closest TE insertions, and the GC content of the flanking genomic regions). 

For each chromosome, we thus have all information about the inserted copies in addition to 
their precise positions. These different parameters will be used to evaluate the tested programs. 
In particular, we will be able to determine if particular factors relative to the TE sequences (size, 
distance to other copies, divergence, TSD size) or to their genomic region of insertion (%GC) may 
have an influence on whether they are correctly detected or not by the tested programs. 

In our evaluation approach, the “complete” simulated chromosome and the “deleted” simulated 
chromosome can be used alternatively as reference genome or as sample genome in order to 
evaluate the possibility to identify reference / absent insertions or non-reference insertions. Indeed, 
as described on Figure 2, when using the “complete” simulated genome as a reference, the short 
reads will be generated using the “deleted” simulated genome, in which half of the TE insertions 
are missing. This will allow us to evaluate the capacity of the programs to detect both reference 
and absent insertions. Alternatively, if the “deleted” simulated genome is used as a reference and 
the “complete” simulated genome is used to generate short reads, then it will allow us to evaluate 
the capacity of the programs to detect TE insertions not present in the reference. 
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Figure 2 - Evaluation approach. The black rectangles correspond to genes. The 
orange and light blue circles correspond to TE copies from two different families. 
The reads simulated on the “deleted” simulated genome will be mapped to the 
“complete” simulated genome, which will allow to identify reference and/or absent 
TE insertions. The reads simulated on the “complete” simulated genome will be 
mapped to the “deleted” simulated genome, which will allow us to identify non-
reference TE insertions. 

Using the D. melanogaster and A. thaliana data, we have generated two simulated 
chromosomes for each species. For Drosophila, the “complete” simulated chromosome, which is 
23,298,325 bp long, contains 790 TEs whereas the “deleted” simulated chromosome contains 400 
TEs. In the case of A. thaliana, the “complete” simulated chromosome, which is 37,444,832 bp 
long, contains 6,324 TEs whereas the “deleted” simulated chromosome contains 3,132 TEs. 
Knowing exactly the positions and name of each insertion, it is thus possible to compute the 
number of True Positives (TP), False Positives (FP) and False Negatives (FN) for each program 
allowing to determine their efficiency. Additionally, since we have all information about the different 
insertions for which we can control all associated parameters (size, distance, %GC etc.), it will be 
possible to compare the characteristics of the TP to those of the FN that could indicate any 
detection bias in the tested programs. 

Tests of the polymorphic TE detection programs 

More than 20 programs have been proposed during the last 10 years to identify polymorphic 
TE insertions. However, many of them were not possible to evaluate in this analysis. Some 
programs were no longer available to be retrieved. Other programs were not flexible about the 
reference genome that can be used, unless modifying significantly the source code. We also did 
not test T-lex3 (Bogaerts-Márquez et al., 2020) since it cannot detect TE insertions present in the 
sample but not the reference, but only presence/absence of annotated TE insertions in a reference 
genome. 

We have finally tested 14 programs for which it was possible to use customized reference 
genomes (TEMP (Zhuang et al., 2014), TEMP2 (Yu et al., 2021), ngs_te_mapper (Linheiro & 
Bergman 2012), ngs_te_mapper2 (Han et al., 2021), PoPoolationTE (Kofler et al. 2012), 
PoPoolationTE2 (Kofler et al. 2016), RetroSeq (Keane et al. 2013), RelocaTE (Robb et al., 2013), 
RelocaTE2 (Chen et al., 2017), TEBreak (Schauer et al., 2018), TEFLoN (Adrion et al., 2017), TE-
locate (Platzer et al., 2012), TEPID (Stuart et al., 2016), and Jitterbug (Hénaff et al., 2015)). The 
programs are designed to find non-reference insertions (when compared to a reference genome) 
and, except Jitterbug, TEBreak and RetroSeq, to find also shared insertions (between a reference 
genome and a genome under investigation). The programs have been developed on particular 
organisms but sometimes tested on several of them (human, Drosophila, Arabidopsis, rice, mouse 
and Daphnia). 

Detection of reference insertions 
We have first evaluated the capacities of the programs to identify reference insertions, that is 

to say, insertions present in the reference genome and in the genome from which the reads are 
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produced. For the D. melanogaster simulated chromosome, it represents 400 insertions and in A. 
thaliana, it represents 3,133 insertions. In Figure 3, the total number of reference insertions found 
by each program is represented for each species, independently of the identification of true 
positives (TP). For TEPID, this number has been estimated by subtraction since the program 
provides information about the absence of reference insertions. As we can see, globally, the 
increase of coverage has little influence on the total number of reference insertions detected, 
except for PopoolationTE and PopoolationTE2, which do not find many insertions at 10X. For both 
species, the TEMP and TEMP2 programs, which have the same results, find far more reference 
insertions than expected. This may be explained by the way McClintock2 reports reference 
insertions for these methods since TEMP/TEMP2 find evidence for the absence of reference 
insertions then McClintock2 computes the complement of the set of “non-absent” reference 
annotation, which leads to increase the number of reference TE insertions. Other programs find 
less reference insertions but to a lesser extent in A. thaliana (TEPID) and in D. melanogaster 
(TEFLoN for all coverage and PoPoolationTE2 for coverage 50X and 100X). PopoolationTE2, 
TEFLoN and ngs_te_mapper2 (for A. thaliana) and PopoolationTE, ngs_te_mapper2 and TEPID 
(for D. melanogaster) find a number of reference insertions close to what is expected. All the other 
programs find no or few reference insertions.  

 

Figure 3 - Number of reference insertions detected by each program. On the left 
panel is represented the number of reference insertions found for D. melanogaster 
and on the right panel for A. thaliana, for the three different read coverages. The 
dashed lines correspond to the expected number of reference insertions in each 
species; * indicate programs that are not designed to identify reference insertions. 
Some lines are overlapping and thus are not visible on the figures. 

We have then determined among all these insertions the number of False Positives (FP), False 
Negatives (FN) and True Positives (TP) in order to compute various metrics to evaluate the 
programs. TPs have been identified according to both the capacity of the program to identify the 
right TE family and according to the localization prediction with several margin of errors (see 
Material and Methods). Figure 4 represents the different metrics for both species using a 
localization prediction with a margin of error of 20 bp (see Supplementary figures S1, S2 and S3 
for all cutoffs). 
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Figure 4 - Evaluation metrics for the two species for the three read coverages for 
the reference insertions with a precision localization of 20 bp; * indicate programs 
that are not designed to identify reference insertions. Some lines are overlapping 
and thus are not visible on the figures. 
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We have retained this particular margin of error since at 5 bp all programs do not perform well 
whereas at 100 bp and 150 bp the efficiency of the programs is not improved. The recall metrics 
indicate the number of good answers among all the possible predictions. In our case, it indicates 
for each program the number of TPs among all the reference TE insertions that should be detected. 
For both species, five programs give the best results for these metrics: TEMP, TEMP2, 
PoPoolationTE2 (starting at 50X), ngs_te_mapper2 and TEFLoN, with recall values of more than 
0.5. The other programs find few or no TP among all the TE insertions that can be found given a 
localization window of 20 bp. The precision gives the number of good answers among all the results 
proposed by the programs. According to the species, the tools do not have the same results. For 
D. melanogaster, ngs_te_mapper2 has the best results for these metrics, whereas it is 
ngs_te_mapper for A. thaliana. In order to take into account both metrics, we have computed the 
Fscore. For both species, five programs give the best results: ngs_te_mapper2, PoPoolationTE2, 
TEMP, TEMP2, and TEFLoN. However, according to the species, the best program is not the 
same: ngs_te_mapper2 performs better for D. melanogaster when it is PoPoolationTE2 for A. 
thaliana. 

We have observed the overlap of TPs between the top four programs for each species (Figure 
5). The results show that 66.8% for D. melanogaster and 61.9% for A. thaliana of the TPs are 
found by the four programs. Among the remaining TPs, a majority is found in common by at least 
three programs. Only TEMP/TEMP2 find a significant proportion of unique TPs (3.5% for D. 
melanogaster and 6.1% for A. thaliana). 

 

Figure 5 - Percentage overlap of TP reference insertions found by the programs 
having the best Fscores. 

Detection of non-reference insertions 
We then evaluated the capacity of the programs to find insertions not present in the reference 

genome. They correspond to 390 insertions in the simulated D. melanogaster chromosome and 
3,192 insertions in the simulated A. thaliana chromosome. All programs find a total number of non-
reference insertions less than what is expected (Figure 6). The sequence coverage has an impact 
on the total number of non-reference insertions found for the majority of the programs. In particular, 
a coverage of 10X seems to be insufficient for most programs. Only ngs_te_mapper2 and TEBreak 
are not very impacted. 
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Figure 6 - Number of non-reference insertions detected by each program. On the 
left panel is represented the number of non-reference insertions found for D. 
melanogaster and on the right panel for A. thaliana, for the three different read 
coverages. The dashed lines correspond to the expected number of non-reference 
insertions in each species. Some lines are overlapping and thus are not visible on 
the figures. 

We have then determined among all the non-reference insertions that are detected which ones 
are TP according to the same rationale presented above and in the material and methods section. 
Figure 7 represents the different metrics for both species using a correct localization prediction at 
20 bp (see supplementary figures S4, S5, and S6 for all cutoffs). Globally, the recall for each 
program, and for both species, is not very high, meaning that many TPs are missed by the 
programs. Three of the programs give the best results considering 50X of coverage (TEBreak, 
PoPoolationTE2 and ngs_te_mapper2). The precision metric on the contrary shows that for most 
programs, TPs are numerous among all the results produced, especially for D. melanogaster. The 
Fscore shows similar results between the two species with four programs having the best results: 
TEBreak, ngs_te_mapper2, PopoolationTE2 (starting at 50X) and RetroSeq (starting at 50X). 

The overlapping of the TP detected by the six best programs accounts for only 10.9% of the 
TPs for D. melanogaster and 10.5% of the TP for A. thaliana (Figure 8). PopoolationTE2 and 
ngs_te_mapper2 each identify 6.5% and 4.4% unique TPs in D. melanogaster, and 2.1% and 2.9% 
respectively in A. thaliana. It should be noted that 11.4% of TPs are found by all the programs 
except TEFLoN in A. thaliana. For D. melanogaster, 10.6% of TPs are found in common for all 
programs except TEMP/TEMP2. 
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Figure 7 - Evaluation metrics for the two species for the three read coverages for 
the non-reference insertions with a precision localization of 20 bp. Some lines are 
overlapping and thus are not visible on the figures. 
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Figure 8 - Percentage overlap of TP non-reference insertions found by the 
programs having the best Fscores. 

Comparison of the characteristics between True Positives and False Negatives 

Since we know with accuracy the characteristics of all insertions present in the two 
reconstructed chromosomes for both species, it is possible to determine whether some of them 
may have an impact on the fact that an insertion is detected or not by the programs. We have 
considered the results of the programs having the best Fscores for a coverage of 50X and with 
enough identified TPs considering a localization precision of 20bp to allow statistical analyses 
without bias. 

First, we have considered the reference insertions in both species (Table 1 and Table 2, 
Wilcoxon tests). The results show that the TPs have significantly smaller sizes than FNs for all 
programs (expected for ngs_te_mapper2 with D. melanogaster). Moreover, the distance to the 
closest TE insertions is also important since it is significantly larger for TPs when compared to 
FNs, for all programs and for the two species. Additionally, in A. thaliana, the %GC of the flanking 
regions of TPs are significantly more GC rich than those around FNs. To summarize, the programs 
better detect reference insertions that are small and largely distant from other TE insertions. 

In the case of the non-reference insertions (Table 3 and Table 4, Wilcoxon tests), the results 
show slightly different characteristics. For both species and almost all programs, the percentage 
of divergence of TPs compared to its ancestral sequence is significantly lower than for the FNs. 
Again, the distance of TPs to the closest TEs is larger than for the FNs, especially for A. thaliana 
but also for D. melanogaster for three programs (TEFLoN, RetroSeq, and TEBreak). Also, the size 
of TSD is significantly larger for TPs than for FNs for both species and for most of the programs. 
Finally, in A. thaliana, the %GC of the flanking regions of TPs are significantly more GC rich than 
those around FNs. To summarize, the programs better detect non-reference insertions that are not 
too divergent from the consensus TE used to identify them (so likely to be recent insertions), largely 
distant from other TE insertions and with specific TSD size.
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Application case: detection of endogenous retroviruses polymorphic insertions in real 
cattle population data 

Although a comprehensive understanding of TEs could have an agricultural interest in 
improving animal breeding, few TE studies have been conducted on livestock species and more 
particularly on cattle. We have decided to use cattle as a mammalian genome example to study a 
subpart of the TEs, the endogenous retroviruses (ERV) insertions. We propose hereafter a 
workflow to perform such an analysis. 

Find the best configuration using simulated data 
The study of simulated D. melanogaster and A. thaliana chromosomes has shown that the 

performance of the programs to detect polymorphic TE insertions are different depending on the 
studied species. In order to choose the best tool to use, the same pipeline as before has been 
applied to Bos taurus to further detect polymorphic insertions in short-read data. Two simulated 
chromosomes were generated using ReplicaTE from chromosome 25. In this chromosome, 899 
random CDS sequences were extracted and 900 intergenic regions were generated. The obtained 
“complete” simulated chromosome is 25,638,271 bp long including 936 ERVs whereas the 
“deleted” simulated chromosome contains 474 ERVs. The “deleted” simulated chromosome has 
been used as a reference and the “complete” simulated chromosome has been used to generate 
simulated short reads in order to evaluate the capacity of the programs to detect the 462 reference 
insertions and 474 non-reference insertions. We have determined among the detected insertions 
the number of False Positives (FPs), False Negatives (FNs) and True positives (TPs) to compute 
the same metrics as for D. melanogaster and A. thaliana (see material and methods section). 

Figure 9 represents the Fscore metric for the detection of ERV reference and non-reference 
insertions using each of the tested programs (see supplementary figure S7 for recall and precision 
metrics). Similar results are found in cattle compared to the other species but the best programs 
slightly differ. For the reference insertions, TEMP2 and TEFLoN give the best results with a Fscore 
higher than 0.80. For the non-reference insertions, TEFLoN and TEBreak are the two programs 
giving the best results with respectively a Fscore of 0.82 and 0.66. In conclusion TEFLoN appears 
to be the best performing tool to use on B. taurus data. 

 

Figure 9 - Performance evaluation of McClintock programs on Bos taurus simulated 
data. The detection of the reference and non-reference insertions is represented in 
the upper and lower panels respectively. INT and LTR consensus were provided 
separately. The performance of the programs has been evaluated with the Fscore 
metric. * Indicate programs that are not designed to identify reference insertions. 
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Repbase consensus sequences are largely used for TE annotation using RepeatMasker. For 
LTR-retrotransposons, the LTR sequences and the internal part are often split into two separate 
sequences. Different types of input sequences have been evaluated to detect ERV insertions in B. 
taurus simulated data using TEFLoN (Figure 10A): i) only the LTR sequences, ii) only the internal 
sequences, iii) the LTR and internal sequences separately, iv) the LTR and internal sequences 
concatenated for each ERV family sequence, and v) the LTR, the internal and the concatenated 
family sequences together to test redundancy. Figure 10B represents the Fscore metric for each 
input sequence (see supplementary figure S8 for recall and precision metrics). The use of the 
internal part alone is not working well contrary to other configurations involving both LTR and 
internal parts. The use of internal and LTR parts separately gives satisfying results for reference 
insertions but is less efficient for non-reference insertions detection. The input giving the best 
results is the one with the concatenated family sequences. 

We have used four ERV families to generate the simulated chromosomes from ERV class I 
and II clades. The figure 10C shows how the different ERV families have been detected by 
TEFLoN. Each family seems to have its own detection characteristics that might correspond to 
sequence characteristics identified for D. melanogaster and A. thaliana.  

 

Figure 10 - Impact of ERV input consensus sequences and ERV families on 
insertion detection with TEFLoN on Bos taurus simulated data. A) ERV copy 
genomic structure and the different input consensus sequences tested on cattle 
simulated data to detect ERV copies, B) Fscores (Performance) of TEFLoN with the 
different input consensus sequences, C) Fscores (Performance) of TEFLoN using 
the detail of each ERV family when using the consensus sequences labeled “INT 
LTR fam”. The detection of reference insertions is represented with circles and the 
detection of non-reference insertions with triangles. 

Detection of insertion polymorphism in real population data 
We have used the previously selected tool TEFLoN to analyze 10 cattle WGS short-read 

datasets. The detected insertions have been compared to the ERV annotation of the reference 
assembly and to the output of a variant calling analysis performed on long-read data from the same 
samples. Figure 11 represents the Fscores obtained for these samples and the correlation 
between the tool performance and the sample short-read depth sequencing. More than 80% of the 
expected insertions are detected, on average, in the 10 samples. ERV insertions also present in 
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the reference genome are significantly better recognized than the non-reference insertions 
(Wilcoxon test, p = 1.1e-05). Among the insertions common with the reference, almost no FPs are 
identified. For insertions not present in the reference, almost a hundred of FPs are detected 
representing from 30 to 40% of the non-reference insertions detected in each sample. The tool 
performances are also more homogeneous between the samples for the detection of reference 
insertions than for the non-reference ones mainly due the short-read coverage differences across 
samples. A higher coverage improves the detection of insertions but also increases the detection 
of FPs (see supplementary figure S9). Furthermore, samples with coverage lower than 10X have 
a drop in detection rates compared to the others. It appears that 10X is the minimum coverage to 
reliably detect a sufficient number of ERV insertions. Finally, the comparison between the analysis 
on simulated and real data shows better results in detecting reference insertions in real data 
compared to simulated data, with median Fscores of 0.97 and 0.81 respectively. On the contrary, 
TEFLoN is less effective in identifying non-reference insertions in real data compared to simulated 
data with median Fscores of 0.75 and 0.82 respectively (Figure 11). 

 

Figure 11 - Detection of ERV insertions in 10 Bos taurus samples with TEFLoN. A) 
Fscores for the detection of ERV insertions in the 10 samples. The red dots indicate 
the Fscores obtained with TEFLoN on cattle simulated data, B) Impact of the short-
read depth sequencing on the number of detected insertions. Depth is computed on 
trimmed reads mapped on the cattle reference genome. 

Discussion 

In this work, we have developed an approach to simulate TE insertions from a known biological 
context. The data obtained made it possible to test in a reliable and controlled manner 14 programs 
for the detection of polymorphic TEs. For the first time in the benchmarking of these approaches, 
it is possible to show why certain insertions are better detected than others by the different 
programs. Especially, reference and non-reference insertions show different biases. Reference 
insertions are more correctly detected if they are small and largely distant from other TE insertions. 
In the case of non-reference insertions, they need to be similar from the consensus or reference 
TE used to identify them, very distant from other TE insertions and with specific TSD size. 

Generally, full data simulation approaches are often used to test polymorphic TE detection 
programs. They make it possible to perfectly control all the information. The major problem is that 
often these simulated data do not completely reflect the biological reality. In order to overcome this 
problem, we have proposed here an approach that uses real data as a starting point and simulates 
sequences using the biological information of the organism of interest. We thus made the choice 
to completely simulate the intergenic regions in order to free ourselves from possible bad TE 
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annotations. However, these intergenic regions are not completely randomly generated 
sequences. In particular, the %GC of these sequences must correspond to what is observed in the 
analyzed genome. The GC content may be an important factor influencing the detection since it 
may be a caveat in steps of mapping (Donato et al., 2021). Similarly, the reinserted sequences of 
the TEs are not the true sequences but come from a real insertion representative of each family 
contained in the analyzed genome. This allows us to control not only the position of the insertions 
but also to know with accuracy other information that may play a role on whether an insertion is 
detected or not. Thus, among the parameters which are controlled, the size of the insertions, the 
sequence divergence with respect to the reference element, the distance to the closest TEs and 
the size of TSD are perfectly known for each insertion. It thus allows us to shed light on precise 
sequence characteristics rather than limiting tests on specific types of TEs, which is sometimes an 
approach used to benchmark TE polymorphic tools (Nelson et al., 2017; Vendrell-Mir et al., 2019; 
Chen et al., 2023). Our approach seems to be a good compromise between the use of complete 
simulation and real but partial biological data with either consensus TE sequences or using only a 
small set of TE families. However, a number of improvements can be considered with our 
approach. Currently, only one chromosome is simulated. It could be interesting to simulate several 
chromosomes and in particular, to generate populations of chromosomes in order to mimic what 
can be observed in a natural population. Additionally, the tool is currently limited regarding the 
number of TE insertions that can be inserted. Thus, for a human chromosome for example, the 
tool works only with a limited number of TE families. The input format of the reference chromosome 
could be modified to support bed annotation files along with a fasta file containing the chromosome 
sequence, rather than one genbank file. However, in any case, TE annotations for the reference 
species are mandatory to allow the different programs to be used to identify reference insertions. 

Our results show that all the programs tested here are far from obtaining results as good as 
announced in their original publication. For some of them, read coverage strongly impacts the 
ability to find non-reference insertions, as has already been shown (Rishishwar et al., 2017; Chen 
et al., 2017; Vendrell-Mir et al., 2019) but this is only true up to 50X coverage from which a plateau 
is reached. Moreover, the results are not as good whether we are interested in the reference 
insertions (present in the reference genome) or the non-reference insertions (present only in the 
read samples). Indeed, non-reference insertions are less correctly detected than the reference 
insertions, an observation that was also made by the only other benchmark evaluating non-
reference insertion detection (Vendrell-Mir et al., 2019). Globally, the Fscores are better in the first 
case. However, the values obtained for the best programs do not indicate exceptional 
performance. Indeed, for reference insertions, the best programs ngs_te_mapper2 and 
popoolationTE2 have Fscores below 0.8. The other programs (PopoolationTE2, TEFLoN, TEMP, 
and TEMP2) show values around 0.6. For non-reference insertions, the best programs (TEBreak, 
ngs_te_mapper2, popoolationTE2 and RetroSeq) have values hovering around 0.6. It is important 
to note that some programs are more successful in finding reference insertions than non-reference 
insertions, and vice versa. TEFLoN, TEMP and TEMP2 show poorer performance in finding non-
reference insertions compared to reference insertions. Overall ngs_te_mapper2 and 
PoPoolationTE2 give consistent results for the two types of insertions. If we compare the results 
for the two species, there are some notable differences for the detection of reference insertions. 
Ngs_te_mapper2 gives better results with D. melanogaster while the best program is 
PoPoolationTE2 (at 50X and 100X) for A. thaliana. In the case of non-reference insertions, all 
programs give comparable results for the two species, although working a little less well in the 
case of A. thaliana. It is to note that RelocaTE2 was proposed as the best performing tool to identify 
non-reference insertions in yeast genomes (Chen et al., 2023), which indicates that the choice of 
the best performing tool needs to be assessed according to the species under study. 

Given that the programs produce many false positives (FPs), an approach allowing to optimize 
the identification of the true positives (TPs), in the absence of comparison, is to use several tools 
at the same time to retain only the insertions detected in common. This approach has been used 
for the analysis of many natural populations of D. melanogaster (Lerat et al., 2019). However, the 
two tools used, popoolationTE2 and TIDAL, showed little overlap in their results. We observed the 
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overlap between the TPs for the best programs identified in this work for reference insertions and 
non-reference insertions. The proportion of common insertions correctly found by all the programs 
is quite high in the case of reference insertions since it is almost 70% considering four programs. 
This proportion is much lower in the case of non-reference insertions with less than 11% for six 
programs. However, the proportion reach 48.1% for D. melanogaster and 58,5% for A. thaliana 
when considering only the results common to TEBreak, ngs_te_mapper2 and PoPoolationTE2, 
the three programs giving the best results in our benchmark. This remains lower than for the 
reference insertions. This lack of overlap among the tools has already been observed in other 
benchmarks (Nelson et al., 2017; Vendrell-Mir et al., 2019). Thus, as proposed by Vendrell-Mir et 
al. (2019), an approach consisting of using several tools at the same time to optimize the number 
of TPs must be limited to a few tools at a time. Even with this method, it is important to take into 
account that some information will be inevitably lost and that the number of polymorphic TE 
insertions will be underestimated. Another possibility would be to consider evolutionary and 
biological contexts as it was used before (Manee et al., 2018). 

With our approach, it was possible to compare the characteristics of the True Positives (TPs) 
compared to those of the False Negatives (FNs), ie the insertions which are missed by the 
programs, a point that has never been assessed previously by the other benchmark analyses. The 
goal was to determine if there are biases inherent in the sequences preventing their detection. 
Between reference and non-reference insertions, some differences appeared. In particular, 
reference insertions correctly detected tend to be smaller than those not detected by the programs. 
That would indicate that degraded or small size types of TEs will be better detected as reference 
insertions. This observation is consistent with the fact that MITE reference elements were better 
identified than LTR-retrotransposon reference elements (Vendrell-Mir et al., 2019) since MITE 
elements are shorter than LTR-retrotransposons. On the contrary, the non-reference insertions are 
better detected when their divergence compared to a reference element is low. Then, recent 
insertions will be better detected. Although this could be enough to identify recent events, it 
remains that some of the non-reference insertions may be ancient. These particular insertions 
would be missed by the different programs. In their original manuscript, almost all programs 
acknowledge the fact that they cannot detect nested insertions. This is confirmed by our analysis 
for both types of insertions since TPs present significantly larger distances to the nearest TEs than 
FNs. Globally, the same bias appears between the two explored species. However, for A. thaliana, 
we observed that the GC content of genomic regions surrounding the insertions also play a role in 
whether they are detected or not by the program. This species has globally AT rich intergenic 
regions (DeRose-Wilson & Gaut 2007). We observed that the insertions are better detected when 
the genomic regions are less AT rich. Since TEs are known to be also AT rich (Lerat et al., 2002; 
Boissinot, 2022), they may be better identified when their base composition is more different from 
the surrounding genomic regions. We also observed for the detection of non-reference insertions 
that the size of the TSD is important. Since these sequences may not be well conserved, it may 
prevent the detection of many insertions. 

The case study provided here, focusing on B. taurus, allowed us to identify important criteria 
that should be considered before performing studies on polymorphic TEs in real population data. 
The choice of the program is crucial and depends on the analyzed species. Indeed, the best 
identified tool to use on this species is not the same as for D. melanogaster and A. thaliana. 
Therefore, it is essential to first perform tests on simulated data built with specific elements from 
the species of interest to identify the most suitable tool(s) to use. The different programs were all 
used through the McClintock pipeline (Nelson et al., 2017; Chen et al., 2023) which has a 
significant advantage to allow the use of multiple tools simultaneously, prevents difficulties in 
program installation and ensures standardized results. It is also important to carefully select the 
type of consensus sequences, especially for LTR-retrotransposons. For these elements, usually 
the LTR and the internal parts are separated in distinct consensus sequences. The re-association 
of the LTR sequences and the internal parts of a given family is thus necessary and require an in-
depth annotation of the reference genome. 
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Here, we demonstrated the importance of testing a tool also on real data before launching a 
large-scale population analysis. Even though our study was limited to 10 samples, the genomic 
characteristics and TE content reflected the reality. The results obtained on real data were different 
compared to the simulated data, with a better detection of the reference insertions but a less 
effective identification of the non-reference insertions. This difference is mainly due to the total 
number of ERV insertions. In the simulated data, half of the total insertions were insertions not 
present in the reference, whereas they constituted approximately 2% of the insertions in the real 
data. It appears that detecting non-reference insertions is easier when they represent a larger 
fraction of the genome of interest. 

We showed that non-reference insertions were overall more challenging to detect than the 
reference ones. Moreover, assessing insertions absent from the reference genome in real samples 
is challenging because we do not know what to expect, making it difficult to determine whether an 
insertion is a true or false positive. In our analysis, we used variant calling results obtained from 
long-reads sequencing data. However, this approach might also miss some insertions, raising 
questions about its reliability as a reference. Nevertheless, it provides results from two distinct 
methodologies, ensuring the identification of TPs, even if some are missed. 

In conclusion, most of the tested tools do not achieve extraordinary results. There are several 
biases that prevent them from detecting certain insertions. In addition, the FP rate is particularly 
high for some tools. Therefore, it is advisable to use a small number of programs simultaneously 
to optimize the detection of real insertions while keeping a critical perspective on the results. 
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