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Abstract
Spatially explicit capture–recapture models are used widely to estimate the density ofanimal populations. The population is represented by an inhomogeneous Poisson pointprocess, where each point is the activity centre of an individual and density correspondsto the intensity surface. Estimates of density that assume a homogeneous model (‘aver-age density’) are robust to unmodelled inhomogeneity, and the coverage of confidenceintervals is good when the intensity surface does not change, even if it is quite uneven.However, coverage is poor when the intensity surface differs among realisations. Practi-cal examples include populations with dynamic social aggregation, and the population ina region sampled using small detector arrays. Poor coverage results from overdispersionof the number of detected individuals; the number is Poisson when the intensity sur-face is static, but stochasticity leads to extra-Poisson variation.We investigated overdis-persion from three point processes with a stochastic intensity surface (Thomas clusterprocess, random habitat mosaic and log-Gaussian Cox process). A previously proposedcorrection for overdispersion performed poorly. The problem is lessened by assumingpopulation size to be fixed, but this assumption cannot be justified for common study de-signs. Rigorous correction for spatial overdispersion requires either prior knowledge ofthe generating process or replicated and representative sampling. When the generatingprocess is known, variation in a new scalar measure of local density predicts overdis-persion. Otherwise, overdispersion may be estimated empirically from the numbers de-tected on independent detector arrays.
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Introduction
Spatially explicit capture–recapture (SECR) is a method for estimating the density of an ani-

mal population by modelling observations of marked individuals at detectors in known locations.
Detectors may be traps, automatic cameras, DNA hair snares or other devices. Individual marks
may be natural (e.g., microsatellite DNA or pelage patterns) or applied on first capture (e.g., num-
bered tags or bands). The state model is the spatial distribution of animal activity centres (AC).
Activity centres are not observed directly, but are modelled as a realisation of a spatial point pro-
cess. Capture–recapture sampling (the observation process) provides spatial data on a sample of
animals. Parameters of the state model (specifically, the intensity surface of the point process)
are estimated jointly with parameters of the spatial observation process by maximizing the mar-
ginal likelihood (Borchers and Efford, 2008) or in a Bayesian framework by data augmentation
(Royle et al., 2014) or using the semi-complete data likelihood (Zhang et al., 2022).

The inhomogeneous Poisson process (IHPP) serves as a general model for the distribution of
AC in SECR (Borchers and Efford, 2008). Animal population density is represented by the inten-
sity surface. Spatial variation in density may be explained in part by covariates such as habitat
type or proximity to roads or other hazards. However, the cause of much variation is unknown
and possibly unknowable: the distribution of ACmay bear the imprint of stochastic demography,
social aggregation, transient resources, harvesting, local catastrophes or colonisation processes.
It is natural then to report the ‘average’ density D̂ estimated by fitting a uniform-density (homo-
geneous) model, even if the true density is likely to be inhomogeneous.

We consider the consequences of misspecifying the density model as homogeneous when
the true intensity is inhomogeneous and possibly dynamic. The primary concern, that average
density estimates will be biased by inhomogeneity, turns out to be unwarranted when detection
does not vary over space. A secondary concern is that unmodelled inhomogeneity of density
could cause underestimation of sampling variance due to overdispersion in the number of de-
tected individuals n. Confidence intervals (CI) for density would then bemisleadingly narrow and
inference unreliable. Whether overdispersion does arise and cause these effects depends on the
scope of inference and the underlying biology, as we hope to make clear.

Our starting point is a static IHPP in which both the intensity surface and the locations of
detectors are fixed. Static inhomogeneity does not result in overdispersion in n regardless of the
unevenness of the surface, and CI that assume Poisson n are reliable. We justify this assertion
in a later section.

Bischof et al. (2020) drew attention to poor coverage of confidence intervals for SECR esti-
mates of average density when animals are socially aggregated in family groups or packs. Cover-
age improved when they applied a variance inflation factor based on the number of individuals
per detector. Social aggregation implies spatial clustering of AC, and a snapshot of a clustered
distribution is not distinguishable from one that is a realisation of a static IHPP with local ‘peaks’
of intensity (e.g., Diggle et al., 2013). Why then should this scenario result in overdispersion and
poor CI coverage? The key is that Bischof et al. (2020) related their simulated estimates not to
the local intensity surface of a particular static IHPP near their detectors, but to a global den-
sity of which that was one realisation. Clustering due to animal behaviour is intuitively dynamic:
given time, the same individuals may form different groupings in different locations. A plausi-
ble reference distribution thus includes redistribution across the landscape rather than just a
snapshot.
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This leads us to the concept of a stochastic-intensity IHPP, otherwise known as a Cox process
(e.g., Chiu et al., 2013; Møller andWaagepetersen, 2004). The intensity surface of a Cox process
varies among realisations. In a widely used clustering model, the Thomas process, clusters are
seeded by randomly locating ‘parent’ points in the plane and each parent gives rise to a Poisson
number of ‘offspring’ scattered about the parent according to a circular bivariate normal distribu-
tion (Fig. 1 and Appendix S1). Each realised distribution of parents corresponds to a static IHPP
intensity surface (Møller and Waagepetersen, 2004, p. 61), but clusters are spatially unmoored
and not tied to persistent landscape features. Cox processes arise mathematically in many other
ways. AC may be restricted to one phase of a binary habitat mosaic whose configuration differs
between realisations; we refer to this as a ‘random habitat’ (RH) process. The log-Gaussian Cox
process (LGCP) is a popular point process model (Diggle et al., 2013; Møller et al., 1998) that
was used by Dupont et al. (2021) to simulate AC for SECR.

Reliable estimates of the sampling variance, and therefore of confidence intervals for D̂ rel-
ative to the global density, might in principle be obtained by expanding the fitted model to in-
clude the generating Cox process for AC. That approach was applied in the context of distance
sampling byWaagepetersen and Schweder (2006). It is unlikely to be practical in SECR: the gen-
erating process is usually unknown, and we would stand little chance of fitting it with data from
a single realisation even if the process were known.

A model-free approach to overdispersion has entered non-spatial capture–recapture studies
(Anderson et al., 1994; Lebreton et al., 1992; White and Cooch, 2017) from generalized linear
modelling (Wedderburn, 1974) via Burnham et al. (1987, pp. 243–246). An empirical estimate of
the overdispersion ratio c , based on a goodness-of-fit statistic, may be used to adjust variances
and achieve near-nominal coverage of confidence intervals. Thus for a parameter ψ, varadj(ψ̂) =
ĉ var(ψ̂), usually before back-transformation from a ‘link’ scale such as logit or log. The focus for
non-spatial capture–recapture is on non-independence and heterogeneity among animals, for
which the observed and expected frequencies of capture histories provide the required empirical
index ĉ . For spatial overdispersion we require a specifically spatial measure.

In this paper we describe properties of the static and stochastic IHPP models for AC and use
simulation to demonstrate the effects of static and dynamic inhomogeneity on density estimates.
We also consider the practical challenge of adjusting for overdispersion in n. We simulate the
variance inflation factor of Bischof et al. (2020) for a range of Cox processes and find that it
fails to correct for overdispersion in n. Empirical estimation of overdispersion is possible with
replicated samples from the Cox process. Spatially replicated small arrays of detectors (‘subgrids’)
have been used in SECR to estimate density in a larger region (e.g., Clark, 2019; Howe et al.,
2022; Humm et al., 2017). This is akin to distance sampling, in which each line or point defines
a plot (Buckland et al., 2001). We can view the density at each subgrid as resulting from one
realisation of a Cox process whose global mean is the required regional density. Given some
design assumptions (independence and representativeness of subgrids) the overdispersion of
the combined n may be estimated empirically from variation in its subgrid-specific components,
and used to obtain confidence intervals with near-nominal coverage. We demonstrate this by
simulation for a simple scenario and reconcile our results with those of Howe et al. (2022).
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Background
For specificity we focus on closed SECR models and observations at point detectors such as

automatic cameras. We use ω for the set of n observed spatial detection histories, and ϕ and θ
for the parameter vectors of the state and observation models respectively. The likelihood has
the general form L(ϕ, θ|ω) = Pr(n|ϕ, θ) Pr(ω|n,ϕ, θ) (Borchers and Efford, 2008). The intensity
surface of the IHPP for AC is a function of location, D(x;ϕ), where x represents the Cartesian
coordinates x , y . We denote the estimate of density from a homogeneous model by D̂ (with-
out dependence on x). Density may be estimated from a homogeneous model in two stages,
first estimating θ by maximizing the second factor in the likelihood conditional on n, and then
computing the Horvitz-Thompson-like estimator D̂ = n/a(θ̂) (Borchers and Efford, 2008). The
effective sampling area a is a function of the detection parameters a(θ) =

∫
p·(x; θ) dx, where

p·(x; θ)models the overall probability of detection for an AC at x and integration is over all habitat
in the plane.

Spatial capture–recapture models use a distance-dependent detection function that takes
many possible forms. Let dk = |x − xk | be the distance between an individual’s AC (x) and the
location of detector k (xk ). We used a hazard half-normal function in which the modelled hazard
of detection in detector k is λk = λ0 exp[−d2

k/(2σ
2)]. The overall probability an individual with

AC at x is detected at least once at one of K detectors operated for S occasions is then p·(x; θ) =

1 − exp[−S
∑

K λk ]. This function defines a surface that drops to zero away from the detectors.
As in distance sampling (e.g., Buckland et al., 2001), the variance of D̂ may be approximated

by the delta method as
(1) v̂ar(D̂) = D̂2

{
v̂ar(n)

n2
+

v̂ar[a(θ̂)]

a(θ̂)2

}
.

Maximization of the conditional likelihood provides an estimate of θ and hence var[a(θ̂)]. This
term is often smaller than the first. If n is Poisson then the first term inside the braces simplifies
to 1/n. However, to assume wrongly that n is Poisson risks biasing estimates of var(D̂).

Static IHPP
For an intensity surface that is flat or a deterministic function of spatial covariates or trend,

the expected number of AC in a region A is E[N(A)] =
∫
AD(x;ϕ) dx, and from the properties of

an IHPP, N(A) is Poisson with variance E[N(A)] (e.g., Diggle, 2003, p. 67). The spatial detection
process applies location-dependent thinning to the distribution of activity centres. Thinning is in-
dependent for the detector typeswe consider, but not for single-catch traps inwhich amaximum
of one individual may be caught on any occasion. The expected number of animals detected n

is an integral over space of the product of density and a location-dependent detection function,
i.e. E(n) = ∫

AD(x;ϕ) p·(x; θ) dx.
The probability of detection is assumed to approach zero at large distances from the detec-

tors. Consider an area Aw that includes the detectors and all habitat within a buffer of width w .
Then E(n) approaches a constant as w increases, and beyond some w ′ further change in E(n) is
negligible. This is convenient for computation because numerical integration may be restricted
to any arbitrary area Aw where w > w ′, without causing bias in density estimates.

4 Murray G. Efford & David Fletcher
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If AC are distributed as an inhomogeneous Poisson process and detections are independent,
then the locations of detected AC are also inhomogeneous Poisson, by the properties of inde-
pendently thinned point processes (Chiu et al., 2013). It follows that the number of animals de-
tected is Poisson, with variance var(n) = E(n) (Borchers and Efford, 2008). Thus inhomogeneity
of density does not in itself imply overdispersion.

The population size N(A) in an area A does not appear in the likelihood for the IHPP SECR
model. However, inmany implementationsN(A) is considered fixed rather than randomand does
appear in the likelihood, which then depends on A. We doubt the general applicability of such
models, as discussed later, but provide results here that complement those for Poisson N(A).
The distribution of AC with fixed N(A) is a binomial point process (Illian et al., 2008) conditional
on N(A). The expected value of n is unchanged from its Poisson expectation, but the variance
of n is reduced. Specifically, var(n) = E(n)(1 − p) where p =

∫
A p·(x; θ)D(x;ϕ) dx/

∫
AD(x;ϕ) dx

(Illian et al., 2008, p. 107). If density is homogeneous this simplifies to var(n) = E(n)(1−a(θ)/|A|)
where |A| is the area of A.
Stochastic IHPP

The intensity of a Cox process (an IHPP with stochastic intensity) is a spatial random variable.
From here on we use D(x) to mean this variable, and omit the parameter vector to lighten the
notation. The specification ofD(x) as a Cox process is flexible and requires parameters additional
to ϕ that we consider only in passing because, while they are used in simulation, they cannot
easily be estimated from SECR data.

We considered three Cox processes:
i. the Thomas cluster process, a variety of Neyman-Scott process, for which the initial distribu-
tion of parents determines the intensity surface (see Introduction),
ii. a random habitat mosaic (RH) in which habitat pixels with fixed positive density are clustered
in quasi-realistic random configurations within a known fraction of the landscape and interven-
ing areas have zero density, and
iii. the Log-Gaussian Cox process (LGCP), in which the intensity is a continuously varying Gauss-
ian random field.

Each Cox process is realised in two stages: first a random intensity surface is generated and
then AC locations are generated from the intensity surface as an inhomogeneous Poisson point
pattern. Examples are shown in Fig. 1.
Global and local density

We next consider how to describe the intensity surface of a Cox process for AC in a way that
is relevant to SECR. The global ‘average’ density is simply the expected value of D(x). Stochastic
intensity surfaces may include a deterministic trend (e.g., Johnson et al., 2010), but for simplicity
we assume each process is stationary. In particular, we assume that the expected-density surface
is flat, so that we can use the simpler notation for global density µD ≡ E[D(x)].

SECR samples AC from a local ‘window’ of the global surface. The window is defined proba-
bilistically by the overall-detection function p·(x; θ). We therefore define the realised local den-
sity in the vicinity of detectors Da to be an integral of the density surface weighted by the prob-
ability of detection:
(2) Da ≡

∫
D(x) p·(x; θ) dx∫

p·(x; θ) dx
.

Murray G. Efford & David Fletcher 5
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1 2 3

Realisation

Thomas
process

Random
habitat

LGCP

Figure 1 – Distributions of activity centres generated by various Cox processes(stochastic-intensity IHPP) with expected number 256 in a square 30σ × 30σ (σ definedin text). Columns indicate different realisations with the same parameter values. Greyshading indicates intensity of IHPP. See Appendix S1 for more. (a) Thomas process clus-tering: each uniformly distributed ‘parent’ (not shown) gives rise to a Poisson number ofoffspring (expectation µ = 8) that follow circular bivariate normal distribution about theparent (scale 2σ). (b) Random habitat mosaic (fragmentation parameter p = 0.5, fraction
f = 0.5). (c) Log-Gaussian Cox Process with variance V = 1.0 on log scale; exponentialspatial covariance scale = 5σ.

This is a scalar random variable. Da for known θ may be computed directly from a particular
intensity surface D(x). Local density differs among realisations of the intensity surface. It can
be shown that E(Da) = µD , given that µD is independent of location. The magnitude of var(Da)depends on both the Cox process and the window function p·(x; θ), which in turn depends on
the detector array, the duration of sampling, and θ.
Spatial overdispersion

Underestimation of the global sampling variance of D̂ using Equation 1 results directly from
excess variation in n relative to the fitted model. Confidence intervals based on such estimates
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Peer Community Journal, Vol. 5 (2025), article e70 https://doi.org/10.24072/pcjournal.578

https://doi.org/10.24072/pcjournal.578


will therefore have poor coverage of the global density, as we demonstrate later by simulation.
Coverage can be restored with a variance inflation factor incorporating the overdispersion in n.
We define the amount of overdispersion in n by the ratio cn = var(n)/var0(n) using var0(n) todenote the variance of n under the fitted model. We assume a Poisson model for n and hence
var0(n) = E(n), except when addressing fixed population size N(A) for which n is binomial.

We show inAppendix S2 that var(n) for a stochastic-intensity IHPPmay bewritten as var(n) =
E(n) + a(θ)2 var(Da) where E(n) = a(θ)E(Da), and hence
(3) cn = 1 + a(θ)

var(Da)

E(Da)
.

The second term indicates the overdispersion in n that is caused by stochasticity in the intensity
of the IHPP.

Equation 3 allows us to predict cn from θ and moments of the distribution of Da. Simulation
is at present the only practical and general method for computing these moments (mean and
variance), but we need to simulate only the intensity-generating phase of a Cox process, i.e. the
distribution of parents for the Thomas process, habitat mosaics for RH, and random fields for
LGCP. Estimates of cn based on var(Da) and known θ were indistinguishable in practice from
those calculated by simulating the full sampling process to obtain var(n) (Appendix S3).
Correction for overdispersion

Johnson et al. (2010) constructed a measure of spatial overdispersion from the observed
and expected numbers of detections on distance-sampling transects, but coverage of adjusted
confidence intervals for density remained poor in some scenarios. Bischof et al. (2020) formed
a similar measure for SECR from the observed (nk ) and expected (E(nk)) numbers of individuals
detected at each detector k :
(4) ĉ =

1

1 + s̄

1

K − ν

K∑

k=1

[nk − E(nk)]
2

E(nk)
,

whereK is the number of detectors, ν is the number of estimated parameters, and s̄ = 1
K

∑K
k=1[nk−

E(nk)]/E(nk) is a correction for sparse data due to Fletcher (2012). The estimator assumes each
nk is drawn from a detector-specific Poisson distribution. Bischof et al. (2020) applied ĉ as a
variance inflation factor to simulated data from clustered AC, with mixed results.

Overdispersion may be estimated for J independent spatial samples from a stochastic IHPP
from the same formula as Equation 4, but with the per-detector counts nk replaced by per-arraycounts nj . We label this estimator ĉn. For sampling with independent equal-sized subgrids oper-
ated for the same duration and a homogeneous density model, E(nj) = n/J and s̄ = 0. Then ĉnis simply the ratio of the sample variance of the nj to their mean:
(5) ĉn =

J

n(J − 1)

J∑

j=1

(nj − n/J)2.

We have not explored possible weighting for variation among arrays (cf Fewster et al., 2009).
Methods

We used simulation to evaluate the performance of a homogeneous-density model fitted to
SECR data in which AC followed the three Cox processes, each with varying levels of stochastic-
ity. The sampling design consisted of a 12 × 12 array of binary proximity detectors (sensu Efford
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et al., 2009) operated for 5 occasions; detector spacing was 2σ where σ was the spatial scale
parameter of a hazard halfnormal detection function and λ0 = 0.5. AC (expected number 256)
were distributed as detailed belowwithin an area extending w = 4σ beyond the detectors. SECR
detection histories were generated with the function ‘sim.capthist’ of R package ‘secr’. Each sce-
nario was replicated 1000 times. We repeated each of the main simulations with a conditional
form of the Cox process i.e. using fixed N(A) for both the generating process and the fitted
model.
Cox processes for AC
Thomas cluster process. Cluster process simulations used the ‘spatstat’ function rThomas (Bad-
deley et al., 2015), parameterized by the overall density, the mean number per cluster µ ∈
{1, 2, 4, 8, 16, 32} and the scale of spatial spread within clusters (2σ where σ was the scale of the
halfnormal SECR detection model). Bischof et al. (2020) simulated a fixed number of clusters
and fixed number in each cluster, with zero within-cluster dispersion. We were able to simulate
more realistic clustering (varying number and dispersion).
Random habitat. Random habitat patches comprising a varying fraction f of Aw were gener-
ated by the modified random cluster algorithm of Saura and Martínez-Millán (2000). The patch-
fragmentation parameter (‘initial probability’) was set to 0.5. The expected density is E[D(x)] =

fDp where Dp is the density within habitat patches; Dp was therefore adjusted upwards by 1/f

to maintain constant overall density.
Log-Gaussian Cox process. For LGCP the log-intensity surface was modelled as a Gaussian ran-
dom field; the field is parameterized by its mean, variance and scale of spatial covariance. For
overall point densityD andGaussian varianceV , the requiredmean is µ = log(D)−V /2.We used
the function rLGCP in the package ‘spatstat’ (Baddeley et al., 2015). The spatial covariance func-
tion was exponential. Simulations used six levels of variance (V ∈ {0, 0.125, 0.25, 0.5, 0.75, 1.0})
and spatial scale 10σ.
Parameter estimation

A homogeneous-density SECR model was fitted to each dataset by maximizing the full likeli-
hood (Borchers and Efford, 2008). Area Aw extending 4σ beyond the detectors was discretized
as cells of width 0.5σ. E(n) ≈ 180.7 and p ≡ a/|Aw | ≈ 0.7058 for all scenarios, where |Aw | is the
area of Aw and p is the probability an AC in Aw is detected. Relative bias and confidence interval
coverage were computed with respect to both local and global definitions of true density, both
with and without adjustment for overdispersion when ĉ > 1.

Computations used R packages secr 5.2.2 (Efford, 2025b), secrdesign 2.9.3 (Efford, 2025c)
and spatstat 3.3-3 (Baddeley et al., 2015). Documented code and results are included in an ad
hoc R package ‘overdispsim’ that is available on GitHub (Efford, 2025a).
Empirical overdispersion

To evaluate ĉ as an estimate of cn we conducted further simulations of AC distributed ac-
cording to the three Cox processes, followed by spatial sampling to obtain n, but without the
time-consuming step of fitting an SECR model. These simulations were faster because model
fitting was not required and the number of replicates was therefore increased to 10000.

8 Murray G. Efford & David Fletcher
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Spatial replication
We performed limited simulations to contrast the effects of static and stochastic IHPP on

SECR estimates of regional density from replicated subgrids. Howe et al. (2022) simulated the
use of replicated arrays of DNA hair snags to sample populations of black bear (Ursus americanus).
Our simulations followed their Scenario 2 to allow results to be compared directly. Two 5 × 8
subgrids (2-km detector spacing) were notionally placed in each of three density zones (6, 12 or
18 bears per 100 km2) extending 15 km from the detectors. Following Howe et al. (2022) we
used the detection function g(dk) = g0 exp[−d2

k/(2σ
2)] where g refers to probability of detec-

tion rather than hazard; parameters were constant (g0 = 0.3, σ = 1.5 km, 6 sampling occasions).
We fitted a homogeneous model to the pooled data to estimate regional density. Overdisper-
sion was estimated from the numbers of individuals per subgrid as described in ‘Correction for
overdispersion’. We evaluated relative bias and the coverage of 95% confidence intervals for re-
gional density, with andwithout correction for overdispersion, over 1000 replicates. AC patterns
under the original scenario were realisations of a static IHPP. For comparison we also simulated
AC from a stochastic IHPP by randomly selecting the density at each subgrid from the three
possibilities (6, 12 or 18 bears per 100 km2), with replacement. Simulations were also repeated
with a larger sample of subgrids (18).

Results
Simulations confirmed the lack of bias in estimates of both local and global density from a ho-

mogeneous model even when the generating process for AC was highly clumped and stochastic
(Fig. 2, detailed results in Appendix S4).
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Figure 2 – Relative bias of density (D̂) estimated by fitting a homogeneous model whenAC followed one of three Cox processes. (a) Thomas cluster process with varying ex-pected number per cluster µ, (b) random habitat patches occupying fraction f of land-scape, and (c) log-Gaussian Cox process with varianceV . Estimates were related to eitherthe global density (◦) or the detection-weighted local density (•) (see text). 1000 simula-tions per scenario; 95% confidence intervals.
For the same scenarioswe next compared the empirical (simulation-based) estimate of overdis-

persion cn to the variance inflation factor ĉ computed by Bischof et al. (2020). Although both
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increased with the underlying variance, the overdispersion due to each Cox process greatly ex-
ceeded ĉ (Fig. 3). See Appendix S3 for results from a wider range of scenarios.

a. Thomas process

1
2

5
10

50

1 2 4 8 16 32
Expected number per cluster  µ

O
ve

rd
is

pe
rs

io
n

ĉ
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Figure 3 – Simulated overdispersion of number detected cn and the variance inflationfactor of Bischof et al. (2020) for three Cox processes. (a) Thomas cluster process withvarying expected number per cluster µ, (b) random habitat patches occupying fraction fof landscape, and (c) log-Gaussian Cox process with variance V . 10000 simulations perscenario.
Confidence intervals for D̂ achieved the nominal coverage of local density, but failed to cover

the global density of AC from Cox or cluster processes (Fig. 4 and Appendix S4). The term for
v̂ar(n) in Equation 1 contributed > 98% of v̂ar(D̂) across all simulation scenarios.

When we applied the correction of Bischof et al. (2020) the results were not encouraging.
Interval coverage invariably increased (Fig. 4), but the adjustment fell well short of providing
nominal coverage for all stochastic scenarios. Inflating the variance resulted in intervals for local
density that were unnecessarily wide, with coverage approaching 100% (Fig. 4).

Simulation results are shown in Fig. 5 for the fixed-N(A) (i.e. conditional) equivalents of Fig.
4.
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Figure 4 – Coverage of 95% confidence intervals for D̂ when AC followed one of threeCox processes. (a) Thomas cluster process with varying expected number per cluster µ,(b) random habitat patches occupying fraction f of landscape, and (c) log-Gaussian Coxprocess with variance V . Estimates were related to either the global density (◦) or thedetection-weighted local density (•). Intervals were unadjusted (solid line) or adjustedwith the variance inflation factor of Bischof et al. (2020) (dashed line). 1000 simulationsper scenario; 95% confidence intervals.
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Figure 5 – Coverage of 95% confidence intervals for D̂ as function of clumping when
N(A) was fixed and fitted n binomial. Intervals were unadjusted (solid line) or adjustedwith the variance inflation factor of Bischof et al. (2020) (dashed line). (a) Thomas clusterprocess with varying expected number per cluster µ, (b) random habitat patches occu-pying fraction f of landscape, and (c) log-Gaussian Cox process with variance V . 1000simulations per scenario; 95% confidence intervals.
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Spatial replication
Simulations of sampling with multiple subgrids showed good coverage of confidence inter-

vals for regional density when the intensity was static relative to the detectors, but coverage
was poor when the intensity was stochastic (Table 1). Adjustment in the ‘static’ case was unwar-
ranted and resulted in excessive coverage approaching 100%.When the intensity was stochastic,
inflating variances by the factor ĉn gave CI coverage that was closer to nominal, especially in the
scenario with more subgrids (Table 1).

Table 1 – Simulated SECR estimates of regional population density using J replicate sub-grids when the intensity of the inhomogeneous Poisson process is static or stochastic.Density estimates are summarised as relative bias (RB), relative standard error (RSE) andthe coverage of 95% confidence intervals (COV). The estimate of overdispersion ĉn is avariance inflation factor used to compute RSEadj, and coverage COVadj; adjustment is in-appropriate when the intensity is static (*). SE in parentheses. All SE(RSE) < 0.0005 andSE(RSEadj) < 0.002. Average of 1000 replicates.
IHPP J RB RSE COV ĉn RSEadj COVadjstatic 6 -0.003 (0.002) 0.076 0.961 7.06 (0.07) 0.202* 1.000*18 -0.001 (0.001) 0.044 0.945 6.35 (0.03) 0.111* 1.000*stochastic 6 -0.002 (0.006) 0.077 0.589 6.16 (0.10) 0.188 0.89418 0.002 (0.003) 0.044 0.566 6.11 (0.05) 0.108 0.932

Overdispersion in detection
Our focus has been on the AC point process and its effect on the overdispersion of n and the

coverage of confidence intervals for density. Overdispersion in the detection process may also
reduce the coverage of confidence intervals, and we briefly consider how this might arise. One
possibility is that stochasticity in the intensity surface may lead not only to overdispersion of
n, but also to bias in the estimated variance of the detection parameters, and hence v̂ar[a(θ̂)] in
Equation 1.We conducted simulations to test for an effect of stochastic AC generating processes
on the coverage of confidence intervals for a(θ̂), but found none (Appendix S5).

More interesting is the reverse possibility that non-independence in the detection process
generates or amplifies overdispersion in n. We found evidence for a small effect of cohesion
(synchronous detection of group members) on n (Appendix S5).

Discussion
The Poisson point process model for activity centres in SECR may be strongly inhomoge-

neous without causing significant bias in estimates of sampling variance from homogeneous
models (Fig. 2). This is expected because the number of detected individuals n remains Poisson
under repeated sampling from a static inhomogeneous intensity surface i.e. n is not overdis-
persed. However, stochastic variation in the intensity surface (vis. a Cox process) invariably re-
sults in overdispersion of n (Fig. 3) and poor coverage of confidence intervals with respect to
the global density (Fig. 4, Table 1). The effect is less extreme for models fitted assuming a fixed
population size in some areaA around the detectors (Fig. 5), but this arbitrary assumption cannot
be justified for common study designs as we discuss further below.

Whether users of SECR should be concerned about spatial overdispersion depends on their
understanding of the population and the scope of inference. It will often be satisfactory to limit
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inference to the surveyed population, implicitly conditioning on the prevailing IHPP intensity
surface, and then no overdispersion arises. Furthermore, a varying intensity surface that is fully
determined by known covariates is not stochastic when these are included in the model (e.g.,
Diggle, 2003, p. 70), and no overdispersion is expected.

Problems arise when inference is required beyond the spatial or temporal scope of the sam-
pling. We identify two such scenarios: clustering of AC in social species (Bischof et al., 2020) and
extrapolation from spatial subsamples to a larger region.
Clustered activity centres

Clustering may be treated mathematically as a Cox process, in which the intensity surface
results from one realised set of ‘parent’ locations. To condition on such a surface seems not
to make biological sense when the number, location and membership of clusters are dynamic.
The scope of inference will then usually encompass different configurations. The sampling vari-
ance of global density is underestimated for populations with dynamic clusters, as recognised
by Bischof et al. (2020). Our simulation results extend those of Bischof et al. (2020) to scenarios
with random cluster size and non-zero within-cluster dispersion.

The variance inflation factor ĉ of Bischof et al. (2020) uses internal evidence from one reali-
sation of a Cox process to predict overdispersion of n across many realisations. This has proved
to be inadequate, both empirically and from the simple logic that the generating process can-
not be inferred from a static pattern. When AC come from an IHPP with static intensity rather
than a Cox process, variance adjustment using ĉ results in greater than nominal coverage and is
therefore counterproductive.

We defined the local density Da as a scalar-valued function, an integral of the IHPP intensity
surface weighted by location-specific detection probability. For a Cox process Da is a random
variable. We see two uses for Da. The first is a general insight: when the intensity surface is
stochastic, interval coverage for D̂ remains good in simulations when each density estimate is
compared to Da for the intensity surface specific to the realisation. This is because n is not
overdispersed for the IHPP in each realisation. Secondly, the value of var(Da) can be determined
by simulation given a model for the Cox process and values for the detection parameters. Ex-
ternally acquired knowledge of the generating process is thereby transformed into a usable esti-
mate of cn. This is plausible in the case of clustering, for which cluster size µ and within-cluster
dispersion have biological interpretations, although field estimation will be difficult. Software is
described in Appendix S6. Spatial replication could also be used to estimate the overdispersion
in n due to clustering, but we have not seen examples.

We followed Bischof et al. (2020) in inflating the entire sampling variance of D̂ by ĉ . It is
more logical to multiply only the first variance component in Equation 1 by factor cn, whichreduces the effect on var(D̂). Overdispersion of AC slightly increased uncertainty regarding the
detection process (var[a(θ̂)]), but coverage of confidence intervals for a(θ̂) was not impaired. If
a suitable variance inflation factor is found for overdispersion due to non-independence and
heterogeneity in the detection process then it should logically be applied to the second factor in
Equation 1. Complete cohesion of detection within spatial clusters is a special case in which the
variance components are affected equally and inflation of var(D̂) with the empirical measure
ĉ is justified. However, complete within-group cohesion seems unlikely if group members are
dispersed in space. Cohesion causes overdispersion in detection itself (e.g., Appendix S5), which
will be quantitatively important in studies where var[a(θ̂)] is large.
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Spatial replication
It can be efficient to infer population density in a large region from a collection of small

independent detector arrays (subgrids). The sampling variance of regional density then must
allow for variation due to the placement of the subgrids relative to unknown variation in density
within the region. We suggest viewing the regional population as a Cox process and applying a
variance inflation factor for D̂ that reflects variation in Da, the local density of the collection as
a whole.

The sample variance of the number of individuals detected at each subgrid, divided by its
mean, is a straightforward and effective estimate of overdispersion when subgrids are identical,
independent and sufficiently numerous. Extension to other scenarios (e.g., subgrids of varying
size or varying effort or that overlap in the individuals they sample) requires further work along
the lines of Fewster et al. (2009), noting that they applied a different frame of reference (sto-
chastic sampling locations instead of a stochastic point process for object locations).

Howe et al. (2022) performed simulations that appeared to refute the need for a variance
adjustment. In their scenarios, three zones of differing density were sampled with two subgrids
in each; coverage of unadjusted confidence intervals for global density was close to the nominal
95% when detection parameters did not vary. The simulations enforced a fixed density for each
subgrid and the aggregate Da for all subgrids was constant. Hence, as expected for a static IHPP,therewas no overdispersion in n.When local densities were drawn at random from a distribution,
as in a stochastic IHPP, the counts were overdispersed relative to a Poisson distribution and
coverage was poor (Table 1). The adjustment for overdispersion was effective in terms of CI
coverage, particularlywhen the number of subgridswas increased; precisionwas greatly reduced
owing to the high variability of the simulated Cox process.

The general expression for overdispersion (Equation 4, replacing nk with nj ) allows the ex-
pected number on each subgrid E(nj) to vary according to a spatial model for density. We there-
fore expect the method to be useful when the fitted model includes habitat covariates and ad-
ditional coefficients are estimated (ν > 1). The variance inflation factor ĉn would then apply to
habitat-specific densities and to the regional population size N̂ (e.g., Efford and Fewster, 2013).
Fixed population size

It is common practice to compute the variance of D̂ conditional on fixed N(A). This is implied
in Bayesian estimation using data augmentation (Royle et al., 2014). Conditioning on N(A) is
appealing because it shrinks the computed confidence intervals. For a Cox process, conditioning
also severely constrains var(Da) and overdispersion is reduced, even relative to the lower (bino-
mial) variance of n that applies when N(A) is fixed. The simulated coverage of variance-inflated
intervals was improved, especially with data generated from a conditional Thomas process (Fig.
5).

However, conditioning on fixed N(A) is inelegant if the choice of A is arbitrary, and suggests
an improbable scope of inference. It is not clear why we would want to restrict inference to
the subset of realisations that result in one particular value of N(A). Specifically, it is biolog-
ically implausible that N(A) is fixed in IHPP scenarios with stochastically varying intensity or
dynamic clustering. N(A) has been considered fixed when evaluating design-based (i.e. model-
free) estimators of the encounter rate in distance sampling, reasoning that a fixed population
of individuals might relocate themselves within A between realisations (Fewster et al., 2009). It
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is hard to reconcile this with biological models for the distribution of AC; as stated by Diana
et al. (2022), “assuming that the number of points is independent of the spatial structure of the
process is often unrealistic".

Data, script, code, and supplementary information availability
Simulation results are archived in Zenodo at https://doi.org/10.5281/zenodo.15461025

(Efford, 2025d). Efford (2025d) also includes an R script to generate the text figures and a vi-
gnette detailing the simulations (summaries for each scenario are in an appendix to the vignette).
Other code required to perform the simulations is publicly available as the R package ‘overdisp-
sim’ at https://github.com/MurrayEfford/overdispsim, archived in Zenodo at https://doi.
org/10.5281/zenodo.15460402. Supplementary information is available online (https://doi.
org/10.5281/zenodo.15758339, Efford and Fletcher, 2025).
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