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Abstract
A key challenge in microbial phylogenomics is that microbial gene families are often af-fected by extensive horizontal gene transfer (HGT). As a result, most existing methodsfor microbial phylogenomics can only make use of a small subset of the gene familiespresent in the microbial genomes under consideration, potentially biasing their results andaffecting their accuracy. To address this challenge, several methods have recently beendeveloped for inferring microbial species trees from genome-scale datasets of gene fami-lies affected by evolutionary events such as HGT, gene duplication, and gene loss. In thiswork, we use extensive simulated and real biological datasets to systematically assessthe accuracies of four recently developed methods for microbial phylogenomics, Species-Rax, ASTRAL-Pro 2, PhyloGTP, and AleRax, under a range of different conditions. Ouranalysis reveals important insights into the relative performance of these methods ondatasets with different characteristics, identifies shared weaknesses when analyzing com-plex biological datasets, and demonstrates the importance of accounting for gene tree in-ference error/uncertainty for improved species tree reconstruction. Among other results,we find that (i) AleRax, the only method that explicitly accounts for gene tree inferenceerror/uncertainty, shows the best species tree reconstruction accuracy among all testedmethods, (ii) PhyloGTP (developed previously by the authors of this paper) shows the bestoverall accuracy among methods that do not account for gene tree error and uncertainty,(iii) ASTRAL-Pro 2 is less accurate than the other methods across nearly all tested condi-tions, and (iv) explicitly accounting for gene tree inference error/uncertainty can lead tosubstantial improvements in species tree reconstruction accuracy. Importantly, we alsofind that all methods, including AleRax and PhyloGTP, are susceptible to biases present incomplex real biological datasets and can sometimes yield misleading phylogenies.
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Introduction
The accurate inference of phylogenetic relationships between different microbes is an im-

portant problem in evolutionary biology. A key difficulty in estimating such phylogenies is the
presence of extensive horizontal gene transfer (HGT) inmicrobial evolutionary histories (Lapierre
et al., 2014). This can result in markedly different evolutionary histories for different gene fami-
lies, obfuscating the underlying species-level or strain-level phylogeny. As a result, the traditional
approach for reconstructing microbial phylogenies is to use only “well-behaved" gene families
resistant to HGT. This includes the use of small-subunit ribosomal RNA genes (e.g., Olsen et
al. 1994; Woese 1987) or of a concatenated alignment of a few core genes from the genomes
of interest (e.g., Ciccarelli et al. 2006; Lang et al. 2013; Markowitz et al. 2014). Both these ap-
proaches, however, are known to be error-prone. For instance, ribosomal RNA genes are known
to engage in horizontal transfer (Gogarten et al., 2002; Yap et al., 1999; Zhaxybayeva et al., 2009)
and to yield histories that are inconsistent with those inferred using other core genes (Doolit-
tle et al., 2003; Doolittle, 1999; Hilario and Gogarten, 1993; Hirt et al., 1999). Furthermore,
ribosomal RNA genes often cannot be used when studying closely related species due to ex-
cessive sequence similarity. Similarly, concatenation based approaches, such as the widely used
multilocus sequence analysis (MLSA) technique (Glaeser and Kampfer, 2015), essentially ignore
HGT and aggregate the phylogenetic signal from several gene families with potentially distinct
evolutionary histories (Gadagkar et al., 2005; McInerney et al., 2008). Indeed, the tree resulting
from the concatenation might represent neither the organismal phylogeny nor any of the genes
included in the concatenation (Lewis et al., 2016).

To overcome these limitations, several genome-scale methods have also been proposed for
microbial phylogeny inference. These include methods such as Phylo SI that are based on gene
order information (Sevillya et al., 2019; Shifman et al., 2014), supertree-based methods such as
SPR supertrees (Whidden et al., 2014) and MRP (Beiko et al., 2005; Zhaxybayeva et al., 2009)
that allow for the use of multiple orthologous gene families, and methods based on average nu-
cleotide identity (ANI) of genomes (Gosselin et al., 2022; Henz et al., 2004; Konstantinidis and
Tiedje, 2005). Such genome-scale methods are inherently preferable to methods that base phy-
logeny reconstruction on only a single gene or a small set of concatenated genes (McInerney
et al., 2008). However, while these above methods all represent useful approaches for microbial
phylogenomics, they are either targeted at analyzing closely related strains or species (gene or-
der and ANI based methods), or are limited to using single-copy gene families or orthologous
groups and do not model key evolutionary events affecting microbial gene family evolution (su-
pertree based methods). Recently, truly genome-scale approaches for microbial phylogenomics,
capable of using thousands of complete (multi-copy) gene families, have also been developed.
Four of themost promising suchmethods are ASTRAL-Pro 2 (Zhang andMirarab, 2022), Species-
Rax (Morel et al., 2022), PhyloGTP (Weiner et al., 2024), and AleRax (Morel et al., 2024). These
methods all take as input a collection of unrooted gene trees, where each gene tree may contain
zero, one, or multiple genes from a species/strain under consideration. ASTRAL-Pro 2 is based
on quartets and seeks a species tree that maximizes a quartet based score (Zhang and Mirarab,
2022). While ASTRAL-Pro 2 does not directly model any specific evolutionary processes, such
as HGT or gene duplication, responsible for gene tree discordance, it can handle complete (multi-
copy) gene families and previous research suggests that it’s quartet based approach should be
robust to HGT (Davidson et al., 2015). SpeciesRax uses an explicit Duplication-Transfer-Loss
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(DTL) model of gene family evolution in microbes and seeks a species tree that maximizes the
reconciliation likelihood of observing the input gene trees under that model (Morel et al., 2022).
PhyloGTP, a method previously developed by the authors of the current paper, takes a similar
overall approach as SpeciesRax but is based on the gene tree parsimony approach and uses a
different heuristic search strategy. Specifically, PhyloGTP uses a parsimony-based DTL frame-
work to account for HGT, gene duplication, and gene loss and uses local search heuristics to
find a species tree with lowest total reconciliation cost with the input gene trees (Weiner et al.,
2024). AleRax performs species tree inference under a probabilistic DTL model (Morel et al.,
2024) and is more sophisticated than the other methods in that it can co-estimate gene trees
along with the species tree. Unlike ASTRAL-Pro 2, SpeciesRax, and PhyloGTP, which all take as
input a single, fixed gene tree per gene family, AleRax takes as input multiple MCMC gene tree
samples for each gene family and can thus explicitly account for gene tree reconstruction error
and uncertainty.

In this work, we use an extensive simulation study and two real biological datasets to evaluate
the species tree reconstruction accuracies of ASTRAL-Pro 2, SpeciesRax, PhyloGTP, and AleRax.
Our simulation study focuses on systematically evaluating the impact of number of input gene
trees, realistic rates of duplication, HGT, and loss events, and input gene tree error rates on all
methods, and on evaluating the impact of using multiple gene tree samples on AleRax. We find
that AleRax, the only method that explicitly accounts for gene tree inference error/uncertainty,
shows the best species tree reconstruction accuracy among all tested methods, while PhyloGTP
shows the best overall accuracy among methods that do not explicitly account for gene tree
error and uncertainty. AleRax shows similar accuracy as PhyloGTP when using true (error-free)
simulated gene trees, but yields a substantial improvement in reconstruction accuracy compared
to PhyloGTP when using estimated (error-prone) simulated gene trees. Between PhyloGTP and
SpeciesRax, we find that PhyloGTP can substantially outperform SpeciesRax when the number
of input gene trees is small or when DTL rates are high, while SpeciesRax often outperforms Phy-
loGTP on datasets with lowDTL rates. ASTRAL-Pro 2 shows worse accuracy than all other meth-
ods across nearly all tested conditions. Overall, the average reconstruction accuracies (defined
formally later) of ASTRAL-Pro 2, SpeciesRax, PhyloGTP, and AleRax across our core simulated
datasets with estimated gene trees are 81.2%, 86.9%, 88.8% and 91.3%, respectively. We find,
however, that the improved accuracies of AleRax and PhyloGTP over the other methods come
at the expense of substantially longer running times. We also investigate how AleRax’s ability to
handle gene tree error/uncertainty contributes to its species tree reconstruction accuracy. We
find that when AleRax is provided as input only a single estimated gene tree per gene family (as
with the other methods), its accuracy becomes comparable to that of PhyloGTP. This suggests
that explicit handling of gene tree error/uncertainty can lead to an approximately 20% reduction
in species tree reconstruction error.

We also use the four methods to analyze two real microbial datasets; a more complex 174-
taxon Archaeal dataset exhibiting extreme divergence and compositional biases, and a less com-
plex dataset of 44 Frankiales exhibiting low divergence. We find that all four methods perform
well on the less complex dataset, recovering identical relationships among the major clades. On
the more complex dataset, PhyloGTP, SpeciesRax and ASTRAL-Pro 2 result in some incorrect
placements, but appear to perform better than AleRax which produces a tree that is markedly
different than any highly supported previously calculated Archaeal tree. Overall, this suggests
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that all tested methods, including AleRax and PhyloGTP, are potentially susceptible to biases
present in complex datasets.

Overall, our results indicate that AleRax and PhyloGTP may be the two best methods cur-
rently available for microbial phylogenomics, though their improved accuracies come at the cost
of significantly longer running times. Our results also suggest that phylogenomics methods can
benefit substantially from explicitly account for gene tree error and uncertainty. At the same
time, our results show that even the best existing methods for microbial phylogenomics may not
produce accurate results for certain complex microbial datasets and that their results should be
interpreted with caution. A preliminary version of this manuscript, which focused on describing
and evaluating PhyloGTP, appeared in the proceedings of the RECOMB Comparative Genomics
2024 conference (Weiner et al., 2024). The current manuscript focuses more heavily on a sys-
tematic experimental assessment of the four methods and expands upon the preliminary version
by (i) including the recently published method AleRax in the experimental evaluation, (ii) study-
ing the impact of event cost assignments on PhyloGTP’s accuracy, (iii) providing descriptions of
all four methods evaluated, (iv) evaluating the methods on additional datasets with different ra-
tios of evolutionary events, (v) evaluating memory requirements of all methods, (vi) providing an
updated and expanded assessment of the methods on the two real datasets, and (vii) presenting
a more extensive discussion of the experimental evaluation and our findings.

Materials and Methods
Description of evaluated methods

We provide brief descriptions of the four methods considered in this work and state their
specific objective functions.
Basic definitions and preliminaries. Let T be a leaf-labeled tree with node, edge, and leaf sets
denoted by V (T ), E (T ), and Le(T ). If T is rooted, we denote its root by rt(T ). For any node
v ∈ V (T ), where T is a rooted tree, the (maximal) subtree rooted at v is denoted Tv . Unlessotherwise specified, all trees are binary and unrooted.

We use the term species tree for the tree depicting evolutionary relationships for the taxa (e.g.,
species, strains, etc.) under consideration. Given a gene family from the taxa under consideration,
a gene tree is a tree that depicts the evolutionary relationships of the genes in the gene family.We
assume that each edge in a gene tree has an associated branch length (representing substitutions
per site), though not all methods make use of branch lengths. Note that a gene tree may have
zero, one, or multiple genes from the same taxon.

We assume that the taxon set under consideration is denoted by Ω and that the species tree,
denoted S , depicts the evolutionary relationships for taxa in Ω, i.e., Le(S) = Ω. We use G to de-
note a collection of gene trees {G1, ...,Gk}, where each Gi , 1 ≤ i ≤ k , describes the evolutionary
history of a gene family present in the taxon setΩ. We implicitly assume that Le(S) = ∪k

i=1 Le(Gi ).ASTRAL-Pro 2, SpeciesRax, and PhyloGTP assume that each input gene tree (i.e., each gene tree
in G) corresponds to a different gene family, while AleRax requires multiple gene tree samples
per gene family, as explained below. All methods considered in this work assume that the input
gene trees are unrooted.

The methods SpeciesRax, AleRax, and PhyloGTP utilize DTL reconciliation to assess the fit
of input gene trees with candidate species trees. DTL reconciliation provides a framework for
reconciling the differences between a gene tree and the corresponding rooted species tree by
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invoking gene duplication, HGT, and gene loss events. The method ASTRAL-Pro 2 uses quartet
trees to assess the fit between the input gene trees and candidate species trees. A quartet tree
is an unrooted tree on four leaves, and the number (or fraction) of quartet trees shared between
a gene tree and an unrooted species tree can serve as a measure of similarity between the two
trees. Further details on each method appear below.
ASTRAL-Pro 2. This quartet-based method builds upon the widely used ASTRAL method (Mi-
rarab et al., 2014). ASTRAL is designed to work with single-copy gene trees constructed from
orthologous sequences and seeks a species tree that maximizes the quartet score with the in-
put gene trees. ASTRAL-Pro 2 uses a related but different similarity measure called per-locus
quartet score, designed to avoid over-counting of quartets in multi-copy gene trees. Thus, given
a collection of unrooted gene trees G as input, ASTRAL-Pro 2 seeks an unrooted species tree
S that maximizes the per-locus quartet score with the input gene trees. Since the underlying
computational problem is NP-hard (Lafond and Scornavacca, 2019), ASTRAL-Pro 2 implements
a heuristic for the problem, using dynamic programming to efficiently find an optimal species
tree within a restricted search space. We note that ASTRAL-Pro 2 does not make use of gene
tree branch lengths. Further details on the method appear in Zhang and Mirarab 2022.
SpeciesRax. This method uses the “undatedDTL" probabilistic DTL reconciliation framework of
GeneRax (Morel et al., 2020) to estimate the species tree and model parameters (rates of du-
plication, HGT, and loss) given a collection of input gene trees. Specifically, SpeciesRax takes a
collection of unrooted gene trees G as input and seeks a rooted species tree S and model param-
eters Θ that maximize the reconciliation likelihood L(S , Θ|G). SpeciesRax uses a distance-based
method, MiniNJ, to estimate a starting species tree and then executes a local search heuristic
to further optimize this starting tree. We note that SpeciesRax utilizes gene tree branch lengths
and infers a rooted species tree. Further technical details on SpeciesRax appear in Morel et al.
2022.
AleRax. AleRax is similar to SpeciesRax in that it also uses a probabilistic model of DTL recon-
ciliation and uses the same search strategy as SpeciesRax (miniNJ followed by local search) for
finding a maximum likelihood species tree and model parameters given the input gene trees.
However, unlike SpeciesRax, AleRax accounts for gene tree inference error and uncertainty by
taking as input multiple gene tree samples for each gene family. Specifically, AleRax uses the
ALE algorithm (Szollosi et al., 2013) to integrate over gene tree uncertainty by approximating
the probability of observing a gene family sequence alignment given a rooted species tree. Thus,
AleRax seeks to find a rooted species tree S and model parameters that maximize the likelihood
L(S |A), where A denotes the collection of sequence alignments for all gene families represented
in G. We note that AleRax does not directly take sequence alignments as input and instead uses
the multiple (typically 1000) input gene tree samples for each gene family sequence alignment
to estimate the fit of an alignment with a species tree. Like SpeciesRax, AleRax utilizes gene tree
branch lengths and infers a rooted species tree. Further details on this method appear in Morel
et al. 2024.
PhyloGTP. Unlike SpeciesRax and AleRax, PhyloGTP uses the parsimony-based DTL reconcili-
ation model of Bansal et al. (2012), David and Alm (2011), and Tofigh et al. (2011). Under this
model, each event type has an associated (user-defined) cost and the objective is to find a rec-
onciliation of minimum total cost. This model allows for an unrooted gene tree to be optimally
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reconciled with a rooted species tree within O(mn) time, where m and n denote the number of
leaves in the gene tree and species tree, respectively (Bansal et al., 2012).

In the following, we denote the event costs for gene duplications, HGTs, and gene losses by
Pd , Pt , and Pl , respectively. Given a gene tree G ∈ G, species tree S , and event costs Pd , Pt , and
Pl , we denote by RPd ,Pt ,Pl

(G ,S) the reconciliation cost of an optimal DTL reconciliation of G
and S under the event costs Pd , Pt , and Pl . Given a species tree S , a collection of gene trees G =

{G1, ...,Gk}, and event costs Pd , Pt , and Pl , we define the total DTL reconciliation cost of G with
S to be the sum of the DTL reconciliation costs of each G ∈ G with S , i.e., ∑k

i=1 RPd ,Pt ,Pl
(Gi , S).Given as input a collection of gene trees, PhyloGTP seeks a species tree that minimizes the

total DTL reconciliation cost against the collection of input gene trees. More formally, we can
define theMost Parsimonious Species Tree (MPST) problem as follows: Given a collection of gene
trees G and event costs Pd , Pt , and Pl , find a species tree S that minimizes the total DTL recon-
ciliation cost with G.

We note that under this formulation only the topology of the gene tree is used and branch
lengths are ignored. The MPST problem can be shown to be NP-hard, W[2]-hard, and inap-
proximable to within log factor through a reduction from the NP-hard gene duplication prob-
lem (Bansal and Shamir, 2011; Ma et al., 2000). The gene duplication problem is a special case
of MPST problem defined in this manuscript and seeks a species tree minimizing just the total
number of gene duplications. Details of the reduction are straightforward and therefore omitted.
PhyloGTP uses a local search heuristic to solve the MPST problem. For completeness, further
methodological details on PhyloGTP appear in the supplement (Weiner et al., 2025).
Experimental setup

We use both simulated and real biological datasets to carefully assess the reconstruction
accuracy of the four methods. ASTRAL-Pro 2, SpeciesRax, and PhyloGTP take as input a sin-
gle unrooted maximum-likelihood gene tree per gene family, while the recommended input for
AleRax is 1000 unrooted gene trees, sampled from the posterior using Mr.Bayes (Ronquist et al.,
2012), per gene family. All methods were run using their default/recommended parameter set-
tings. For AleRax, we present results both for the recommended number (1000) of gene trees
per gene family, allowing it to account for gene tree inference error/uncertainty, as well as when
only a single gene tree is used per gene family, effectively disabling its ability to account for gene
tree error/uncertainty.
Evaluating reconstruction accuracy. To evaluate the species tree reconstruction accuracies of
the different methods, we compare the species tree estimated by each method with the cor-
responding ground truth species tree. To perform this comparison we utilize the widely used
(unrooted) normalized Robinson-Foulds distance (NRFD) (Robinson and Foulds, 1981) between
the reconstructed and ground truth species trees. For any reconstructed species tree, the NRFD
reports the fraction of non-trivial splits in that species tree that do not appear in the correspond-
ing ground truth species tree. For ease of interpretation, we report results in terms of percentage
accuracy, defined to be the percentage of non-trivial splits in the reconstructed species tree that
also appear in the ground truth species tree. Thus, percent accuracy is simply (1−NRFD)× 100.
Thus, for example, a percentage accuracy of 87% is equivalent to an NRFD of 0.13.
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Description of simulated datasets
We used simulated datasets with known ground truth species trees to assess the impact of

three key parameters on reconstruction accuracy: Number of input gene trees, rates of gene
duplication, HGT, and gene loss (or DTL rates for short), and estimation error in the input gene
trees.

Our core simulated datasets were created using a four-step pipeline: (1) simulation of a
ground-truth species tree and corresponding true gene trees (one per gene family) with vary-
ing DTL rates, (2) simulation of sequence alignments of different lengths for each true gene tree,
(3) inference of estimated maximum likelihood gene trees from the sequence alignments, and (4)
inference of 1000 estimated gene trees, sampled from the posterior usingMr.Bayes (Ronquist et
al., 2012), for each true gene tree (i.e., per gene family) from the sequence alignments. In the first
step, we used SaGePhy (Kundu and Bansal, 2019) to first simulate ground-truth species trees,
each with exactly 50 leaves (taxa) and a height (root to tip distance) of 1, under a probabilistic
birth-death framework. We then used these species trees to simulate multiple gene trees under
the probabilistic duplication-transfer-loss model implemented in SaGePhy. This resulted in 9 dif-
ferent datasets of simulated true gene trees, each corresponding to a different number of true
input gene trees (10, 100, or 1000), and a different DTL rate (low, medium, or high; see Table 1).
Each dataset comprised of 10 replicates. The chosen DTL rates are based on the relative rates
and frequencies of gene duplication and HGT events in real microbial gene families from species
sampled broadly across the tree of life (Bansal et al., 2015; David and Alm, 2011). In each case,
the gene loss rate is assigned to be equal to the gene duplication rate plus the additive HGT
rate, so as to balance the number of gene gains with the number of gene losses (Table 1). Ba-
sic statistics on these simulated true gene trees, including average sizes and numbers of gene
duplication and HGT events, are provided in Table 2. We note that numbers of inferred gene
duplications and HGTs are larger for estimated gene trees, where reconstruction error manifests
itself as closely matching rates inferred for real microbial gene families based on estimated gene
trees (Bansal et al., 2015; David and Alm, 2011).

In the second step, we used AliSim (Ly-Trong et al., 2022) to simulate DNA sequence align-
ments along each true gene tree under the General Time-Reversible (GTR) model (using default
AliSimGTRmodel settings) with three different sequence lengths: 400, 100, and 50 bp. In the third
step, maximum-likelihood gene trees were inferred using IQ-TREE 2 (Minh et al., 2020) from the
simulated sequence alignments under the Jukes-Cantor (JC) model.We use the simpler JCmodel
when estimating gene trees, instead of the GTR model used to generate the sequences, since
this better captures the biases and limitations of applying standard substitution models to real
biological sequences when inferring biological gene trees. Thus, from each dataset of true gene
trees, we derive 3 additional datasets of estimated gene trees corresponding to the three se-
quence lengths. The purpose of the second and third steps above is to generate error-prone
gene trees that reflect the reconstruction/estimation error present in real gene trees. We found
that the estimated gene trees had average normalized Robinson-Foulds (RF) distances (Robinson
and Foulds, 1981) of 0.08, 0.22, and 0.35 for sequence lengths 400, 100, and 50 bp, respectively, to
the corresponding true gene trees. Since some of themethods alsomake use of gene tree branch
lengths, we additionally measured branch length inference error in the estimated medium DTL
gene trees. In particular, since the topologies of the true and estimated gene trees can be differ-
ent, we compared the leaf branch lengths and the path lengths between each pair of leaves using
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two metrics. First, we used the mean absolute percentage error (MAPE) to measure the error
itself, and second, we used the Pearson correlation coefficient (PCC) to measure the correlation
between the estimated and inferred lengths. These branch length error statistics are summarized
in Supplementary Table S3. For medium DTL datasets and sequence lengths of 400, 100, and 50

bp, path length MAPEs were 6.9%, 15.8%, and 24.1%, respectively. Overall, estimated branch
lengths show strong correlation with true lengths. For example, even with 50 bp sequences, we
observe PCC over leaf branch lengths and path lengths of 0.824 and 0.833, respectively.

In the fourth and final step, we used Mr.Bayes 3.2.7 (Ronquist et al., 2012) to generate the
1000 posterior gene tree samples per gene family required by AleRax. Consistent with the previ-
ous step, these trees were inferred by applying Mr.Bayes to the simulated sequence alignments
and using the JC model. Following Morel et al. (2024), we ran each MCMC chain for 100,000
generations and sampled every 100 generations, using themaximum-likelihood gene trees gener-
ated in the previous (third) step above as starting trees. (Note that burn-in is not needed since we
start the MCMC chain from the maximum-likelihood tree; this is consistent with how Mr.Bayes
is used by Morel et al. (2024).) As before, from each dataset of true gene trees, this creates 3
additional datasets of estimated gene trees, with 1000 estimated gene trees per gene family,
corresponding to the three sequence lengths.

Table 1 – Key parameters used to generate the core simulated datasets. The table liststhe main parameters and their values explored in the simulation study for the coredatasets. All 36 (= 3 × 3 × 4) combinations of these three parameters were evaluatedat 10 replicates each. DTL rates are specified in the form (d , t, l), where d is the geneduplication rate, t is the HGT rate (split evenly between additive and replacing HGTs),and l is the gene loss rate. The number of species was fixed at 50 for these datasets.
Parameter Values
Number of gene families 10, 100, 1000

DTL rates
low = (0.3, 0.6, 0.6)

med = (0.6, 0.12, 0.12)

high = (0.12, 0.24, 0.24)

Sequence length(nucleotides) 400, 100, 50, and true genetrees
Table 1 summarizes the specific ranges of parameter values we explored for the number of

gene families, DTL rates, and sequence lengths in the core simulated datasets described above.
We evaluated all combinations of these parameter values, resulting in a total of 36 core simulated
datasets, with each dataset comprising of 10 replicates created using that specific assignment
of parameter values. In addition to these core simulated datasets, we also created correspond-
ing simulated datasets with different relative rates of HGT and gene duplication (as described
later in the Results section; see Supplementary Table S1 for specific DTL parameters used), and
created datasets with 10 and 100 taxa for the runtime and memory usage analysis. The specific
commands used to generate the simulated datasets are available in the supplement (Weiner et
al., 2025).
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Table 2 – Basic statistics for simulated true gene trees in the core dataset. Average num-ber of leaves, duplications, and HGTs, and losses in the simulated low, medium, and highDTL true gene trees in the core simulated datasets. For each DTL rate, the number oflosses is roughly equal to the number of duplications plus half the number of HGTs. Re-sults were averaged over all 10 replicates of the 100 gene tree datasets.
DTL rate Leaves Duplications HGTs
Low 53.618 3.408 6.586
Med 55.121 6.15 11.125
High 59.718 10.077 18.37

Description of biological datasets
We assembled two previously used biological datasets of different size, composition, and

complexity to assess the accuracy and consistency of species trees inferred by AleRax, PhyloGTP,
SpeciesRax and ASTRAL-Pro 2, and traditional non-DTL cognizant methods such as MLSA and
tANI (Gosselin et al., 2022) (Table 3). To examine the effect of extreme divergence and genome
complexity variation on species tree inference, we used a dataset composed of 176 Archaea,
which was drawn from Feng et al. 2021. The Archaea included in the dataset span 2-3 kingdoms
(or superphylums), and radically different lifestyles (from extremophiles inhabiting Antarctic lakes
to mammal gut constituents). Because the pan-genome of an entire domain would be immeasur-
ably large and computationally infeasible to accurately infer, we have reduced the number of
gene families in this dataset to 282 core genes, which are shared by all members. This also al-
lows direct comparison of the species trees inferred by the fourmethods to previously calculated
phylogenies by Feng et al. (2021) which used the same loci. It should be noted that the 282 gene
families used in this analysis have been expanded to include all homologs (paralogs, xenologs,
etc.) found in each genome, while only orthologs were used by Feng et al. (2021).

To examine the impact of low sequence divergence on species tree inference, we used a
dataset of 44 Frankiales genomes, drawn from Gosselin et al. 2022. These included taxa are all
closely related members of the order Frankiales, and as such the entire pan-genome (8,862 gene
families with at least 4 sequences) was used for inference. The order Frankiales are composed
of nitrogen-fixing symbionts of pioneer flora, and although they demonstrate variation in GC
content and genome size these factors were previously shown to not bias phylogenetic inference
(Gosselin et al., 2022).
Archaea dataset assembly. Annotated genomes of 176 Archaea used in Feng et al. 2021 were
collected. The 282 core gene loci described in Feng et al. 2021 were used as amino acid query
sequences to search every collected genome, using blastp (Camacho et al., 2009) with default
parameters (-evalue was changed to 1e-10). All significant sequence for every loci across all
genomes were collected (provided they met a length threshold of 50% in reference to the av-
erage gene family sequence size to filter partial sequences). Each gene family was then aligned
using mafft-linsi (Katoh and Standley, 2013) with default parameters. These alignments were
used for inferring maximum-likelihood gene trees in IQ-Tree 2 (Minh et al., 2020), where the
best substitution model for each gene family was determined using Bayesian Inference Crite-
rion (Kalyaanamoorthy et al., 2017). The resulting maximum-likelihood gene trees were used as
input for ASTRAL-Pro 2, SpeciesRax, and PhyloGTP. To generate the input gene trees for AleRax,
we used Mr.Bayes to sample 1000 posterior gene trees under the LG amino-acid model (Le and
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Gascuel, 2008) running MCMC chain for 100,000 generations, sampling every 100 generations,
and starting each chain with the corresponding maximum-likelihood gene tree for each of the
282 gene families.
Frankiales dataset assembly. Annotated proteomes of the 44 Frankiales used in Gosselin et al.
2022 were collected. Protein sequences were clustered into gene families and using the Or-
thoFinder2.4 pipeline (Emms and Kelly, 2019) with default parameters (the search algorithmwas
changed to blast). Briefly, all-vs-all blastp (evalue of 1e-3) was used to find the best hits between
input species. The set of query-matches were then clustered into gene families using the MCL
algorithm, and the subsequent gene families were aligned using mafft-linsi with default param-
eters. Resulting alignments were used to create maximum-likelihood gene trees using FastTree
(Price et al., 2010) using the JTT model and default parameters. To create the input gene trees
for AleRax, we used Mr.Bayes to sample 1000 posterior gene trees for each of the 8,862 gene
families using the same parameter settings as before.

Table 3 – Summary of the two biological datasets.
Dataset Number ofgenefamilies

Potential biases Previous methodsused to infer speciestree
176 Archaea(domain) 282 Extreme divergence, longbranch attraction,compositional bias

tANI, MLSA, singlegene
44 Frankiales(order) 8,862 Low divergence,contamination, genome sizedifference

tANI, MLSA

Results
Results on simulated data
Accuracy on true (error-free) gene trees. We first evaluate the accuracy of the species tree re-
construction methods when given true (error-free) gene trees as input (effectively skipping steps
2, 3 and 4 of the simulation pipeline). While error-free gene trees do not capture the complexi-
ties of real data, this analysis helps us understand how the different methods perform in a con-
trolled, ideal setting. Figure 1 shows the results for low, medium, and high DTL rates with vary-
ing numbers of gene families for 50-taxon datasets. Unsurprisingly, we find that both DTL rates
and number of input gene families are highly impactful parameters. The performance of all four
methods worsens as DTL rates increase, and improves as the numbers of input gene families in-
crease. As the figure shows, AleRax shows the highest overall accuracy on these datasets, with
PhyloGTP showing comparable but slightly worse accuracy than AleRax. Between PhyloGTP
and SpeciesRax, we find that PhyloGTP shows higher accuracy when the number of gene fam-
ilies is small (100 or fewer), particularly when DTL rates are medium or high. For the remaining
datasets, both PhyloGTP and SpeciesRax show nearly identical accuracies. Notably, AleRax, Phy-
loGTP, and SpeciesRax substantially outperform ASTRAL-Pro 2, especially on the medium and
high DTL datasets. In particular, we find that ASTRAL-Pro 2 is highly susceptible to high DTL
rates, and that it also shows poor performance when the number of input gene families is small.
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Interestingly, the accuracy of Astral-pro 2 improves rapidly as the number of gene families in-
creases, with the method performing equivalently to the other methods on the low and medium
DTL datasets when the input consists of 1000 gene families.

Figure 1 – Accuracy on true gene trees. Tree reconstruction accuracies are shown forSpeciesRax, AleRax, ASTRAL-Pro 2, and PhyloGTP when applied to error-free or ‘true’gene trees. Results are shown for increasing numbers of input gene families (10, 100,and 1000) and for low, medium, and high DTL rates. The number of taxa (i.e., numberof leaves in the species tree) is fixed at 50. Higher percentages (y-axis) imply greateraccuracy. The number above each box is the mean value across 10 replicate runs, andthe dotted line within each box represents the median value.
Accuracy on estimated (error-prone) gene trees.We next assess the accuracy of reconstructed
species trees when the input consists of estimated (error-prone) gene trees. Figure 2 shows the
results of this analysis for all 27 combinations of number of input gene families, DTL rates, and
sequence lengths (or gene tree estimation error rates). As expected, the accuracy of all three
methods is substantially affected by the quality of the estimated gene trees, with higher accura-
cies achieved using gene trees estimated from longer sequences. We also find that an increased
number of input gene trees can partly make up for error in the input gene trees. AleRax, the
only method that explicitly accounts for gene tree inference error and uncertainty, shows the
best overall performance, achieving an average reconstruction accuracy of 91.3% when aver-
aged across all 27 datasets with estimated gene trees. PhyloGTP shows the next best accuracy,
with an average reconstruction accuracy of 88.8%, and SpeciesRax and ASTRAL-Pro 2 show
average accuracies of 86.9% and 81.2%, respectively. As the figure shows, the magnitude of
improvement offered by AleRax over the other methods increases as the quality of the input
gene trees decreases (i.e., with decreasing sequence length). This is not surprising and points to
the significant impact of AleRax’s ability to handle gene tree error and uncertainty. Interestingly,
PhyloGTP outperforms AleRax on 6 of the 9 datasets that use the highest quality estimated
gene trees (400 base pair sequences; plots in first column of Figure 2). We also find that all
methods still outperform ASTRAL-Pro 2 across most datasets and that ASTRAL-Pro 2 continues
to be more susceptible to high DTL rates than the other methods. As before, the performance
of ASTRAL-Pro 2 improves rapidly with increasing number of input gene trees, even sometimes
outperforming all other methods whenDTL rates are low ormedium. This suggests that ASTRAL-
Pro 2 may be well-suited for microbial phylogenomics on datasets with lots of gene trees and
relatively low prevalence of HGT. Comparing PhyloGTPwith SpeciesRax, we find that bothmeth-
ods have similar performance overall, with PhyloGTP and SpeciesRax showing average percent
accuracies of 88.8% and 86.9%, respectively, when averaged across all 27 datasets. However,
PhyloGTP shows substantially higher accuracy than SpeciesRax on datasets with high DTL rates,
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as well as on datasets with 10 input gene trees. This suggests that PhyloGTP may be especially
useful for analyzing datasets with high levels of HGT or with a small number of gene trees.

Figure 2 – Accuracy on estimated gene trees. Tree reconstruction accuracies are shownfor SpeciesRax, AleRax, ASTRAL-Pro 2, and PhyloGTP when applied to estimated genetrees. Results are shown for all 27 combinations of number of input gene families, se-quence lengths (shorter sequence lengths imply greater gene tree estimation error), andDTL rates. The first, second, and third rows correspond to datasets with 10, 100, and1000 gene families, respectively, and the first, second, and third columns correspondto 400, 100, and 50 base pair sequence lengths, respectively. The number of taxa (i.e.,number of leaves in the species tree) is fixed at 50. “AleRax” (red) refers to the defaultexecution of AleRax with 1000 gene tree samples per gene family (i.e., with gene treeerror-correction), and “AleRax w/single gene tree” (purple) refers to the modified execu-tion where only a single gene tree per gene family is provided as input (i.e., no gene treeerror-correction). Higher percentages imply greater accuracy.The number above eachbox is the mean value across 10 replicate runs, and the dotted line within each box rep-resents the median value.
Impact of gene tree error-correction on AleRax’s accuracy. Our results show that AleRax can
significantly outperform the other methods on datasets with error-prone gene trees. To better
understand how AleRax’s ability to handle gene tree error/uncertainty contributes to its species
tree reconstruction accuracy, we also apply AleRax to the estimated (error-prone) gene tree
datasets with only a single gene tree per gene family provided as input. Providing only a single
gene tree per gene family, instead of the default of 1000, effectively prevents AleRax from being
able to account for gene tree error/uncertainty. Figure 2 shows the results of this analysis and re-
veals several interesting insights (see results for “AleRax w/single gene tree” in that figure). First,
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we find that the accuracy of this restricted version of AleRax remains quite high and comparable
to that of PhyloGTP overall. Second, gene tree error-correction becomes much more impactful
on datasets with gene trees of lower quality (100 and 50 base pair sequence lengths). In fact,
on the datasets with 400 base pair gene trees, the restricted version of AleRax often slightly
outperforms regular AleRax. And third, AleRax’s ability to handle gene tree error/uncertainty is
responsible for about a 20% average reduction in reconstruction error on these datasets. These
results show that explicit handling of gene tree error and uncertainty can lead to substantially im-
proved species tree reconstruction accuracy, especially on datasets with low-quality gene trees.
Robustness of PhyloGTP to event costs. PhyloGTP relies on a parsimony-based DTL reconcilia-
tion algorithm (Bansal et al., 2012) to assess the “fit" of input gene trees with candidate species
trees. This reconciliation framework relies on user-specified costs for duplication (D), HGT (T),
and loss (L) events to compute optimal reconciliations. By default, PhyloGTP uses D-T-L costs
of 2-4-1. To assess the robustness of PhyloGTP to different event costs, we apply PhyloGTP
variants using five different D-T-L event costs, 2-2-1, 2-3-1, 2-4-1 (default), 2-5-1, and 1-3-1, to
the simulated datasets. Supplementary Figures S1 and S2 shows the results of this analysis for
true and estimated gene trees, respectively. As the figures show, the performance of PhyloGTP
remains robust to the specific event costs used. We also find that no single variant outperforms
the others across all, or even most, datasets, and that each of the five variants emerges as the
top performer across at least one of the simulated datasets.
Robustness of results to relative rates of HGT and gene duplication events. Since biological
microbial datasets can have different relative rates of HGT and gene duplication events, we
additionally evaluated the methods on simulated datasets with a different ratio of DTL events.
In particular, we used higher rates of HGT than in the core datasets ( 1.5×) and near-zero rates
of gene duplication. These event rates are based on an analysis of over 7,500 gene families from
103 Aeromonas strains representing 28 different species (Rangel et al., 2019). As before the
loss rate was set to be equal to the gene duplication rate plus the additive HGT rate. As with
the core simulated dataset, we used low, medium, and high rates of DTL, different numbers of
gene families, and different sequence lengths to obtain 36 alternative simulated datasets, each
with 10 replicates. Supplementary Table S1 shows the specific DTL rates and other parameter
settings used to generate these alternative datasets.

Results on these alternative datasets are consistent with those reported above for the core
simulated datasets. For example, on the alternative datasets with true (error-free) gene trees, we
again find that AleRax and PhyloGTP show greatest accuracy and that all methods substantially
outperform ASTRAL-Pro 2 on most datasets (Supplementary Figure S3). Likewise, on the alter-
native datasets with estimated gene trees, AleRax and PhyloGTP continue to be the two best
methods, with AleRax, PhyloGTP, SpeciesRax, and ASTRAL-Pro 2 showing average accuracies
of 91.5%, 89.0%, 86.2%, and 81.7% across the 27 datasets, respectively (Supplementary Figure
S4).
Runtimes and memory usage.We compare the runtimes of the four methods when varying the
number of taxa (10, 50, and 100) over low, medium, and high DTL rates. In addition, we also eval-
uate the impact of the number of input gene trees (100 and 1000) using the 50-taxon dataset.
These runtimes are shown in Table 4. All methods have parallel implementations and were allo-
cated 12 cores on a 2.1 GHz Intel Xeon processor with 64 GB of RAM.We find that ASTRAL-Pro
2 is, by far, the fastest method, requiring only about 5 seconds on the high-DTL 50-taxon 1000
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Table 4 – Impact of number of taxa and gene trees on running time. Runtimes in secondsare shown for the three methods for datasets with 10, 50, and 100 taxa and lowmedium,and high rates of DTL. For the 10- and 100-taxon datasets, the number of input genetrees is 100. For 50-taxon datasets, results are shown for both 100 and 1000 gene trees.The runtimes are based on simulated true input gene trees and are averaged over 10replicate runs. Each method was allocated 12 cores on a 2.1 GHz Intel Xeon processorwith 64 GB of RAM.
Dataset size DTL rate SpeciesRax AleRax ASTRAL-Pro2 PhyloGTP

10 taxa,
100 gene trees

low 1.45 8.02 0.08 4.02
med 1.36 8.89 0.08 4.45
high 1.35 10.6 0.09 4.82

50 taxa,
100 gene trees

low 5.69 503.8 1.11 1,299.56
med 6.25 947.45 1.14 1,374.92
high 8.9 1,276.77 1.43 2,015.03

50 taxa,
1000 gene trees

low 50.34 7,903.59 5.38 10,011.79
med 52.33 9,443.45 5.29 11,433.19
high 59.95 11,376.92 5.55 13,137.93

100 taxa,
100 gene trees

low 22.05 10,659.92 3.61 19,871.48
med 28.90 14,110.78 4.84 32,606.87
high 47.19 22,091.67 7.15 38,259.04

gene tree datasets and less than 10 seconds on the high-DTL 100-taxon 100 gene tree datasets.
SpeciesRax is also extremely fast, requiring only about 60 seconds and 50 seconds, respectively,
on those datasets. AleRax and PhyloGTP are much slower than the other two methods, with
AleRax requiring over 3 hours and 6 hours, and PhyloGTP requiring about 3.5 hours and 10.5
hours, respectively, on those same datasets. Thus, the improved accuracy provided by AleRax
and PhyloGTP comes at the expense of significantly longer running times. It is surprising that
PhyloGTP, despite being parsimony based, has the longest runtimes. This is partly due to Phy-
loGTP’s use of a more extensive SPR-based local search heuristic, while AleRax and SpeciesRax
both use a simpler NNI-based local search heuristic.We note that AleRax also requires additional
Bayesian analysis runs to generate its input posterior gene tree samples, which add an additional
computational burden not accounted for in the reported runtimes. Further research on AleRax
and PhyloGTP may lead to faster running times without negatively impacting their accuracies.
For example, using fewer posterior gene tree samples (say 100 instead of 1000) per gene family
may be sufficient for most analyses. Likewise, it may be possible to speed up the algorithms and
local search heuristics implemented in the current prototype version of PhyloGTP.

We also compare the computationalmemory requirements of the fourmethods bymeasuring
the peak memory usage during execution. To evaluate the impact of dataset size, memory was
profiled on the high DTL rate datasets with 1) 50 taxa and 1000 gene trees and 2) 100 taxa and
100 gene trees. Peak memory usage statistics appear in Supplementary Table S2. We find that
PhyloGTP has the lowest memory footprint for the 1000 gene tree dataset while ASTRAL-Pro 2
has the lowestmemory footprint for the 100 taxa dataset. Overall, PhyloGTP, ASTRAL-Pro 2, and
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AleRax have very modest memory requirements in the low hundreds of MBs. SpeciesRax uses
substantially more memory than the other methods, but still less than 1 GB on both datasets.
Results on biological data
Archaeal dataset. A myriad of controversies surround the phylogeny of Archaea. These con-
troversies include the monophyly of the DPANN superphylum (Aouad et al., 2018; Brochier-
Armanet et al., 2011; Feng et al., 2021; Narasingarao et al., 2012; Raymann et al., 2014), the
placement of extreme halophiles (Aouad et al., 2019; Feng et al., 2021; Narasingarao et al., 2012;
Sorokin et al., 2019), and the root of the Archaea (Raymann et al., 2015). These differences in
phylogenetic inference are driven by many factors including, but not limited to compositional
bias, long branch attraction, extremely small genomes, numerous HGT events, and biased sam-
pling of metagenome-assembled genomes. Thus, it is interesting to evaluate the performance
of the four studied methods in the face of these factors. Using 282 unrooted input gene trees,
all four methods inferred Archaeal species trees with inaccuracies with respect to commonly
accepted placements of groups in previous analyses. These inaccuracies should be interpreted
in the context that for several Archaeal clades (mostly halophiles) there is no consistent, consen-
sus position that is universally accepted amongst Archaeaologists. For example, the monophyly
of the DPANN superphylum is considered by some to be an artifact (driven by long branch at-
traction or biased genome sampling) (Aouad et al., 2018; Feng et al., 2021; Zhaxybayeva et al.,
2013).

There are no extreme topological differences between the SpeciesRax, ASTRAL-Pro 2 and
PhyloGTP Archaea tree reconstructions. Those three methods fail to recover a monophyletic
Euryarchaea kingdom (Figures 3A and 4A,B) although these resulting topologies (with the Meth-
anomada and Thermococcales on the branches leading to the TACK group) are consistent with
trees in previous attempts to find an alternative root of the Archaea (Raymann et al., 2015). One
notable difference is that compositional attractionmay have played a larger role in PhyloGTP and
ASTRAL-Pro 2, particularly with halophiles. The Haloarchaea were attracted to the Methanona-
tronarchaeia and were left out of their accepted position within theMethanotecta (Figure 3A) in
the PhyloGTP tree. The Methanonatronarchaeia are typically seen as basal to the Methanotecta
but have been attracted closer to the other methanogens in the ASTRAL-Pro 2 tree (Figure 4A).
Although the Haloarchaea were correctly placed in the SpeciesRax tree (Figure 4B), they are
on an extremely long branch. Incorrect placements of the halophiles Nanohaloarchaea, Haloar-
chaea and Methanonatronarchaeia are often attributed to compositional bias (Feng et al., 2021).
These halophiles prefer acidic amino acid residues (such as aspartate and glutamate), on account
of their survival strategies in hypersaline environments, and these acidified proteomes attract
the placement of these groups together in phylogenetic reconstructions.

In contrast, the AleRax species tree exhibits a markedly different topology (Figure 3B) com-
pared to the above methods. This was the only method that does not recover a monophyletic
DPANN group: the Nanohaloarchaea, Parvarchaeota, and Aenigmarchaeota form a clade basal
to the Euryarchaea. AleRax fails to recover the correct position of the Haloarchaea, and instead
places the group basal to the Methanotecta super-class. Additionally, several Methanomada
leaves (Methanopyrus sp. Kol6 and Methanobacteriota archaeaon) failed to associate with the
larger Methanomada clade and were placed in very different places along the tree.

These four different tree topologies for the same input data reveal interesting contrasts in
the reconstruction methods. PhyloGTP, SpeciesRax, and ASTRAL-Pro 2 are susceptible to the
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Figure 3 – Archaeal species tree reconstructions by PhyloGTP and AleRaX. Individualtaxa on both trees have been collapsed into clades and are colored corresponding tohigher level classifications (clades with the same color are part of the same class or phy-lum). The legend shows previously reported Kingdom memberships of these collapsedclades, and also the halophileswhichmay group together as a result of compositional bias.Part A) Unrooted Archaeal tree inferred by PhyloGTP, shown as a cladogram since Phy-loGTP does not infer branch lenghs. Part B) Unrooted Archaeal tree inferred by AleRax.
presence of problematic groups (such as the extreme halophiles) and other biases in complex
datasets, potentially limiting their accuracy in some cases. Still, the trees inferred by these three
methods are more consistent with previous estimates of the Archaeal tree, demonstrating that
these methods can produce a mostly accurate Archaeal tree even in the face of the many biases
present in the dataset. In contrast, the tree calculated by AleRax does not resemble any highly
supported previously calculated Archaeal tree. This can be explained by two possible causes: 1)
AleRax is not suitable for domain level comparisons, where divergence and numerousDTL events
have saturated over the extreme time scale (at least 3Ga (Martinez-Gutierrez et al., 2023)). 2) The
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Figure 4 –Archaeal species tree reconstructions by ASTRAL-Pro 2 and SpeciesRax. Indi-vidual taxa on both trees have been collapsed into clades and are colored correspondingto higher level classifications (cladeswith the same color are part of the same class or phy-lum). The legend shows previously reported Kingdom memberships of these collapsedclades, and also the halophiles which may group together as a result of compositionalbias. Part A) Unrooted Archaeal tree inferred by ASTRAL-Pro 2. Part B) Unrooted Ar-chaeal tree inferred by SpeciesRax.
tree produced by AleRax (Figure 3B) reflects the true evolution of the group. Very few previous
attempts to consider DTL events in Archaeal phylogenomics exist (Davín et al., 2018; Williams
et al., 2017), and were not done at this scale. While these previous studies recovered a mono-
phyletic Euryarchaea and DPANN (in contrast to AleRax), there is not enough information to
discount either topology. The topology inferred by AleRax could therefore be viewed as lending
credence to the idea that the DPANN are not monophyletic.
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Frankiales dataset. In the case of the Frankiales, reconstructions with the four methods yield
identical relationships between the major clades (Figures 5 and 6). This suggests that all four
methods have comparable efficacy when the dataset analyzed is less complex and less divergent.
Since this analysis used the entire pan-genome of the Frankiales, a possible concern is that small
gene families (such as those that are only found in 4-8 genomes) may negatively impact the
methods. To assess the impact of small gene families on species tree reconstruction, a subset of
1,702 genes families present in at least 20 genomes and in the smallest Frankia genome (Frankia
sp. DG2) was used for inference using PhyloGTP and SpeciesRax. The trees produced from this
subset recovered the same topologies formajor clades as those in the full complement, indicating
that the smaller gene families are not a problem for these methods.

In comparison to previous trees inferred on the same genomes using previous methods, such
as those shown in Gosselin et al. 2022, there are a few rearrangements of early branching clades
in the backbone of the Frankiales. In phylogenies inferred using tANI and MLSA sequence meth-
ods, Group 1 (Figure 5) is basal to the rest of the Frankiales. In the trees inferred by the four
methods, Group 3 is basal to the other Frankiales, with Group 1 as a later branching basal group.
In addition to the movement of these clades, Frankia sp. NRRLB16219 and Frankia sp. CgIS1
have swapped positions, where Frankia sp. CgIS1 has moved from Group 2 to Group 5. These
rearrangements may be attributed to the additional genomic data used to reconstruct the four
genome-scale trees. Only 24 loci were used in Gosselin et al. 2022, and the inclusion of thou-
sands of additional gene families have painted a slightly different picture of evolution throughout
the Frankiales. This suggests that truly genome-scale methods like AleRax, PhyloGTP, ASTRAL-
Pro 2, and SpeciesRax could lead to more accurate phylogenomic inference on real datasets
compared to other methods. These results also suggest that all four methods can perform well
when analyzing less divergent datasets with large numbers of gene families.

Discussion
In this work, we systematically evaluated four recently developed methods, ASTRAL-Pro

2, SpeciesRax, PhyloGTP, and AleRax, for microbial phylogenomics. These methods can all use
thousands of complete (multi-copy) gene families, thereby enabling truly genome-scalemicrobial
phylogenomic species tree inference. Our simulation study identifies AleRax, the only method
that explicitly accounts for gene tree inference error/uncertainty, as the best species tree recon-
struction accuracy among all tested methods. PhyloGTP shows the best overall accuracy among
methods that do not explicitly account for gene tree error and uncertainty, performing particu-
larly well on datasets with high DTL rates or a small number of gene families. Experiments using
AleRax with and without gene tree error-correction show that error-correction can lead to an ap-
proximately 20% reduction in species tree reconstruction error, especially when the input gene
trees are of poor quality.

We also find that AleRax, PhyloGTP, and SpeciesRax almost always outperform ASTRAL-Pro
2, a highly scalable but HGT-naive method. However, our experiments also show that ASTRAL-
Pro 2 matches the accuracies of the best methods on datasets with low or medium rates of DTL
and a large number of input gene families (1000 in our tests). This suggests that ASTRAL-Pro 2,
as well as other closely related quartet based methods such as DISCO-ASTRAL (Willson et al.,
2021), could be potentially useful for analyzing such datasets, especially given their exceptional
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Figure 5 – Frankiales species tree reconstructions by PhyloGTP and AleRaX. Clades onboth trees are categorized and enumerated based on the group designations describedin Gosselin et al. 2022. Note that both trees show identical relationships among the la-beled clades, but not necessarily within those clades. Part A) Unrooted Frankiales clado-gram inferred by PhyloGTP. Part B) Unrooted Frankales tree inferred by AleRax.
speed. Another potential advantage of ASTRAL-Pro 2 is that it is agnostic to the underlying evolu-
tionary processes andmay therefore bemore robust to the effect of evolutionary processes such
as incomplete lineage sorting on the datasets being analyzed. On the other hand, the robustness
of ASTRAL-Pro 2 to HGT may only hold under simple stochastic models of HGT (Davidson et al.,
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Figure 6 – Frankiales species tree reconstructions by ASTRAL-Pro 2 and SpeciesRax.Clades on both trees are categorized and enumerated based on the group designationsdescribed in Gosselin et al. 2022. Note that both trees show identical relationshipsamong the labeled clades, but not necessarily within those clades. Part A) UnrootedFrankiales tree inferred by ASTRAL-Pro 2. Part B) Unrooted Frankales cladogram inferredby SpeciesRax.
2015), of the kind employed in our simulation study. ASTRAL-Pro 2 may therefore be more sus-
ceptible than other methods to non-random patterns of HGT, such as when HGT frequency de-
pends on the phylogenetic distance between donor and recipient or when some donor-recipient
pairs are more likely to engage in HGT than others.
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Application of these methods to the two biological datasets of different complexities pro-
vides additional valuable insights.We find that all four methods performwell on the less complex
Frankiales dataset, but see mixed results on the more complex Archaeal dataset. This disparity
was an intentional element of our study design, as these datasets represent opposite ends of a
DTL complexity spectrum. The Frankiales dataset, with its higher phylogenetic resolution serves
as a transitional case between simulation and highly complex empirical scenarios. Conversely,
the Archaeal dataset, with its extensive evolutionary time and documented phylogenetic con-
troversies, represents a stress test for these methods under confounding conditions.

PhyloGTP, SpeciesRax and ASTRAL-Pro 2 produce Archaeal trees that are mostly consistent
with current estimates but also have some clearly incorrect placements. On the other hand,
AleRax produces a tree that is markedly different than any highly supported previously calcu-
lated Archaeal tree. This may be because AleRax is unable to perform well on this complex,
highly divergent dataset, or because the AleRax tree more accurately reflects the true evolution-
ary history of this group. The difficulty in resolving Archaeal phylogenies is well-documented
in the literature and stems from a manifold of factors including HGT, compositional biases and
long phylogenetic distances. Rather than viewing these inconsistencies as methodological fail-
ures, we interpret them as informative indicators of each method’s behavior when confronted
with increased evolutionary complexity. Such benchmarking against empirical datasets of vary-
ing complexity provides a more realistic assessment of method performance than simulations
alone.

Overall, these results suggest that all tested methods are potentially susceptible to composi-
tional and other biases present in complex datasets, and that the results of AleRax, in particular,
may need to be interpreted with caution. Our findings underscore the importance of method
selection based on expected dataset complexity and highlight the need for careful evaluation
of results when analyzing domain-level phylogenies with extensive evolutionary histories. The
disparity between simulation and empirical outcomes also suggests opportunities for further
methodological refinement.

This work identifies several directions for future research on microbial phylogenomics. First,
given our findings on the Archaeal dataset, it would be useful to develop simulation frameworks
that better incorporate the specific challenges present in complex empirical datasets. Such ad-
vances would help bridge the current gap between theoretical performance and practical appli-
cation. Second, and related to the above point, it may be informative to perform an expanded
simulation study that assesses the impact of additional evolutionary parameters not assessed in
the current study. For example, one could assess the impact of heterotachy along species tree
branches, distance-dependent (non-uniform) HGT rates, presence of incomplete lineage sorting
and gene conversion, compositional biases, etc. Third, the two most accurate methods, AleRax
and PhyloGTP, are also the slowest, by far, and could therefore benefit from further methodolog-
ical and algorithmic development and optimization. And fourth, our results indicate that most
methods could benefit by implementing gene tree error-correction or using other strategies to
account for gene tree error and uncertainty.
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