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Abstract
Species interactions in ecological communities are often represented as networks, thestructure ofwhich is thought to be linked to species’ interaction niches (or Eltonian niches).Interaction niches are intimately related to the notion of trait matching, which posits thata species interacts preferentially with partners whose traits are complementary to theirown. Multivariate methods are commonly used to quantify species environmental niches(or Grinnellian niches). More recently, some of these methods have also been used tostudy the interaction niche, but they consider only the niche optimum and require traitdata. In this article, we use the correspondence analysis (CA) framework to study interac-tion networks and investigate trait matching without requiring trait data, using the notionof latent traits. We use reciprocal scaling, a method related to CA, to estimate niche op-tima and breadths, defined respectively as the mean and standard deviation of the latenttraits of species’ interacting partners. We present the method, test its performance us-ing a simulation model we designed, and analyze a real frugivory network between birdsand plants. The simulation study shows that the method is able to recover niche breadthsand optima for data generated with parameters typical of ecological networks. The birds-plants network analysis shows strong relationships between species latent traits and nichebreadths: a posteriori correlation with measured traits suggests that birds and plants ofintermediate size tend to have the broadest niches. Additionally, birds preferentially forag-ing in the understory have broader niches than birds preferentially foraging in the canopy.CA and reciprocal scaling are described as fruitful exploratory methods to characterizespecies interaction profiles, provide an ecologically meaningful graphical representationof interaction niches, and explore the effect of latent traits on network structure.
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1. Introduction
The ecological niche constitutes the pool of environmental conditions and resources required

for the persistence of species (Hutchinson, 1957). Species’ abiotic requirements are described
with the Grinnellian niche (Grinnell, 1924), which centers on species’ physical and environmental
needs. In contrast, species’ biotic requirements are described with the Eltonian niche (originally
formalized in the context of food webs by Elton, 1927), which sees species’ niche through the
lens of their interactions with other organisms. Because it encapsulates both abiotic and biotic
requirements, the niche concept underpins our understanding of species’ distributions, coexis-
tence and competitive exclusion (Chase and Leibold, 2003).

The niche is often characterized by its optimum and breadth. Niche optimum describes the
conditions under which species growth is maximized (Kermavnar et al., 2023; Treurnicht et al.,
2020), whereas niche breadth defines the range of conditions tolerated by a species (Carscadden
et al., 2020; Sexton et al., 2017). Species with a broad niche are called generalists, and those with
a narrow niche are called specialists. A common approach to describe species’ niche space is to
use Gaussian curves along each axis (Gauch Jr. and Whittaker, 1972). In this framework, the
mean represents the niche optimum, and the standard deviation the niche breadth, along each
dimension.

The methods used to describe and analyze niches are often different depending on whether
the focus is on the environmental or on the interaction niche. Interaction niches are usually an-
alyzed through the formalism of ecological networks of species (nodes) and interactions (edges)
(Bascompte and Jordano, 2007; Ings et al., 2009). In these networks, niche breadth has most of-
ten been defined as the number of interacting partners, potentially considering their abundance
(Devictor et al., 2010). Alternatively, it has also been defined as the range of traits of interacting
partners (Dehling et al., 2016, 2014; Maglianesi et al., 2015).

Environmental niches are commonly estimated with multivariate ordination methods, which
allow to estimate niche optima along environmental gradient(s). The basis of these methods is
weighted averaging (Whittaker, 1956): it consists in averaging the values of the environmental
variable over the samples in which a species occurs, weighted by the species’ abundance, to es-
timate its niche optimum. These multivariate methods can use implicit or explicit environmental
gradients, and optionally relate these gradients with species traits. When the only data avail-
able are species abundances sampled in different sites, correspondence analysis (CA) (Hill, 1973,
1974), estimates species’ niche optima on latent gradients. When environmental variables are
recorded, canonical correspondence analysis (ter Braak, 1986) estimates species niche optima
on environmental gradients. Finally, when traits and environmental variables are available, one
can use fourth-corner analysis (Legendre et al., 1997), RLQ (Dolédec et al., 1996) and double
constrained correspondence analysis (ter Braak et al., 2018) to link niche optima estimated on
environmental gradients to species traits.

In this study, we focus on characterizing species interactions in ecological networks. We also
focus on realized niches (that is, the portion of niche space species effectively occupy) estimated
from community data. It is generally accepted that ecological interactions do not arise randomly,
but reflect multiple drivers such as neutral effects, trait matching, and evolutionary history (Per-
alta et al., 2024; Vázquez et al., 2009). Neutral effects imply that a given species is more likely to
interact with abundant than with rare species (Vázquez et al., 2009). Trait matching posits that
species with complementary traits preferentially engage in interactions. For instance, body size
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has been identified as a key factor influencing food web structure (Elton, 1927; Ings et al., 2009).
Species evolutionary history is also thought to influence their interaction patterns, for instance
by constraining traits via phylogenetic inertia or coevolution (Benadi et al., 2022; Dormann et al.,
2017). Finally, these processes are not mutually exclusive and often interact to shape observed
patterns (Vázquez et al., 2009).

Recently, several multivariate methods have been applied to study interaction networks. In
particular, many methods have investigated trait matching: for instance, RLQ and fourth-corner
analyses have been used to measure the correlation between two sets of partner species’ traits,
weighted by the interaction matrix (Albrecht et al., 2018; Bender et al., 2018; Dehling et al.,
2014).

Classical methods to analyze ecological networks have brought invaluable insights on trait
matching and degree of specialization, but also have shortcomings. First, trait matching in eco-
logical networks has mainly been investigated separately from interaction niches (Godoy et al.,
2018; Phillips et al., 2020). However, two species only likely interact if their niches match (e.g. in
the simulations models of Benadi et al., 2022; Fründ et al., 2016), so that trait matching implicitly
relies on species interaction niche (Albrecht et al., 2018; Eklöf et al., 2013). Second, trait match-
ing studies only consider the average relationship between species traits across the network.
Hence, they generally ignore the variability around trait matching (i.e., niche breadth). Lastly,
methods to study trait matching require the collection of trait data, which has been recognized
as a challenge (Vázquez et al., 2009), as it is tedious to collect multiple traits and identify a priori
which ones are relevant drivers of interactions.

Here, we propose correspondence analysis (CA) (Hill, 1974; Hirschfeld, 1935), a method of-
ten used to study species’ environmental niches, to study species’ interaction niches in ecological
networks.We interpret ordination scores produced by CA as species’ latent traits, corresponding
to the optima of their interaction niches. We also use reciprocal scaling (Thioulouse and Chessel,
1992) to estimate interaction niches breadths, defined as the standard deviation of the latent
traits of a species’ interacting partners. Our framework also allows to measure the magnitude
and dimensionality of trait matching, without using trait data. To do so, we use the notion of
latent traits, which are understood as a proxy of various unmeasured species characteristics.
Lastly, these methods also enable ecologically meaningful graphical representation of species
interaction niches.

In this article, we first present CA and reciprocal scaling and their interpretation in the con-
text of interaction networks. Then, we evaluate the performance of these methods to estimate
species niches (optimum and breadth) using simulated data. Finally, we analyze a real birds-plants
interaction network (Dehling et al., 2021) to show how our framework can helpmeasure and rep-
resent interaction niches, highlight trait matching, and explore the drivers of niche breadth.

2. Material and methods
All analyses were performed with R 4.4.2 (R Core Team, 2024) and are available at https:

//doi.org/10.6084/m9.figshare.28625270.v3 (Nicvert et al., 2025a).
2.1. Notations

In this part, we consider a r × c matrix Y = [yij ] representing the bipartite interaction net-
work between r resource species and c consumer species (either abundances or presences). We
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use the terms “resource” and “consumer” in accordance with the literature, as these terms can
encompass diverse bipartite network types (Fründ et al., 2016; Ings et al., 2009).

For the following mathematical developments, we define P as the table of relative frequen-
cies of interactions: P = [yij/y++] (where y++ =

∑r
i=1

∑c
j=1 yij is the grand total of Y). We also

define the weight matrices Dr = diag(r) for resources (rows) and Dc = diag(c) for consumers
(columns), where the vectors r = P1r = [p1+, ... , pr+]

⊤ and c = P⊤1c = [p+1, ... , p+c ]
⊤ repre-

sent, respectively, the rows and columns marginal sums ( i.e. pi+ =
∑c

j=1 pij and p+j =
∑r

i=1 pij ).Throughout this article, ⊤ will denote matrix transposition.
2.2. Quantify trait matching

We consider two known traits x and ymeasured, respectively, on the resource and consumer
species. A simple measure of trait matching is given by the fourth-corner statistic corP(x, y) (Le-gendre et al., 1997). It measures the correlation between the traits of consumers and resources,
weighted by their interaction frequencies:
(1) corP(x, y) = x̃⊤Pỹ

where x̃ and ỹ are centered scaled versions of the traits, respectively using weights Dr and Dc.If centered traits y0 and y0 are considered instead, the product x0⊤Py0 represents a covariancedenoted covP(x, y).This fourth-corner statistic has been used to quantify trait matching in interaction networks
(Albrecht et al., 2018; Bender et al., 2018). However, when the traits contributing to thematching
are not known, it cannot be computed. In that case, indirect gradient methods, like correspon-
dence analysis, can be useful to uncover latent axes that structure interactions in ecological
networks.
2.3. Correspondence analysis (CA) for interaction networks

Correspondence analysis (Hill, 1974; Hirschfeld, 1935) is a multivariate method used to ana-
lyze contingency tables. In the following, we describe CA applied to contingency tables of inter-
action counts.

CA is based on the generalized singular value decomposition of P0 = P − rc⊤ (the double
centered matrix of interaction frequencies P):
(2) P0 = U∆V⊤

The matrices U and V are orthonormal with respect to weights Dr and Dc (U⊤DrU = I and
V⊤DcV = I) and contain respectively the left (resource) and right (consumer) generalized sin-
gular vectors. ∆ is the diagonal matrix containing ordered singular values. The matrix of CA
eigenvalues Λ is equal to∆2.

To interpret these results, let us consider a given dimension k . The previous equation can
then be rewritten as:
(3) δk = u⊤

k P0vk

As the matrix P0 is double centered (by rows and columns), its singular vectors stored inU andV

are centered as well. It follows that δk = covP0
(uk , vk) = covP(uk , vk). Moreover, singular vectors

have also unit variance (orthonormality constraint). Hence, Equation (3) is a correlation and δk =

corP0
(uk , vk) = corP(uk , vk). This is strictly analogous to the trait matching Equation (1), but
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known traits x̃ and ỹ are replaced with the generalized singular vectors uk and vk in Equation (3).Therefore, CA amounts to finding the singular vectors uk and vk that are maximally correlated.
Consequently, the scores uk and vk can be interpreted as latent traits, associated to resources
(respectively, consumers), which maximize matching between these latent traits.

Using the relationship between∆ andΛ, we can show that the square root of a CA eigenvalue√
λk = δk represents the absolute value of the correlation between uk and vk : an eigenvalue

close to one indicates that latent traits can correctly explain the probability of interaction. The
global relationship between all pairs of latent traits can also be tested statistically, using a χ2

test on the interaction matrix (Abdi and Béra, 2017; Beh, 2004). This test can be performed
analytically if its assumptions are met, but in the context of interactions networks, a permutation
approach will often be better suited.

CA can assess trait matching, without using trait data, using these latent scores. However,
these latent traits represent more than species unmeasured traits. Indeed, they can be inter-
preted in a broader sense as proxies for unmeasured properties for species, beyond their traits
(for instance, phylogenetic signal like in Benadi et al., 2022). To facilitate interpretation, it is pos-
sible to link latent scores identified by CA to known properties, such as traits or phylogeny, a
posteriori.

CA assigns similar scores to species with the same interaction profile: in other words, two
species interactingwith the same partners will be positioned nearby in the CAmultivariate space.
Species scores can therefore be used to reorder rows and columns of the interaction matrix and
highlight the structure of the network (Lewinsohn et al., 2006). Appendix B shows an example
of reordering with the birds-plants interaction network used in this article.

Standard outputs of CA consist of two biplots in which both consumers and resources are
displayed in the same multivariate space. To convert consumer scores in the resource space (and
vice versa), we use the following transition formulas:

U⋆ = Dr
−1PV (resources)(4a)

V⋆ = Dc
−1P⊤U (consumers)(4b)

Equation (4a) expresses resources’ scores as a weighted mean of the scores of consumers they
interact with. Reciprocally, Equation (4b) expresses consumers’ scores as a weightedmean of the
scores of resources they interact with. The transformation described in Equations (4) is called
weighted averaging.

The scores U⋆ and V⋆ can also be computed using scores U (respectively, V) scaled by the
square roots of eigenvalues (Legendre and Legendre, 2012):

U⋆ = UΛ1/2 (resources)(5a)
V⋆ = VΛ1/2 (consumers)(5b)

U⋆ and V⋆ can be interpreted as niche optima, defined as the mean value of a species’ inter-
acting partners’ latent traits (Equation (4)). Equivalently,U⋆ andV⋆ can be interpreted as species’
latent traits, as they are proportional to U and V (Equation (5)). To sum up, the latent traits of
resources and consumers estimated with CA are mathematically related, as they are estimated
by maximizing their matching.

Resources and consumers can be plotted in two spaces, corresponding to two biplots. A first
biplot can be drawn by displaying resources’ scores given by their latent trait (U) and consumers’
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scores given by weighted averaging (V⋆). The second biplot mirrors the first, with consumers’
scores V (latent traits) and resources’ scores U⋆ (weighted averaging).

These scores make CA particularly suitable for analyzing interaction networks. However, this
method summarizes species’ niches with their optima, and completely ignores niche breadth.
Moreover, the niche optima can only be visualized on two different biplots.
2.4. Reciprocal scaling

Reciprocal scaling, proposed by Thioulouse and Chessel (1992), is an extension of CA that
solves the two issuesmentioned above. First, this method provides niche breadths, in addition to
optima. Second, it defines a common multivariate space for resource and consumers. Reciprocal
scaling shifts the focus of the analysis by considering the interactions, rather than the species,
as statistical individuals. For that, it uses the interpretation of CA as a special case of canoni-
cal correlation analysis (for complete mathematical development, see Thioulouse and Chessel,
1992).

Reciprocal scaling defines a score hk(i , j) for each interaction between species i and j in the
k-th dimension of the multivariate space (note that it is defined only if species i and j interact).
These interactions correspond to non-empty cells in the interaction matrix Y (they are called
correspondence in Thioulouse and Chessel, 1992). Interactions scores can be computed from
CA scores using the following formula:
(6) hk(i , j) =

u⋆
ik + v⋆

jk√
2λkµk

where λk is the CA eigenvalue for axis k and µk = 1 +
√

λk . The scores hk(i , j) can be grouped
into a vector hk of length n0̄ for dimension k (where n0̄ is the number of unique interactions in
the matrix, i.e. non-empty cells).

Figure 1 – Visualization of the interaction niche in a 2-dimensional space. The niche isdepicted by an ellipse whose center represents niche optima and semi-axes representniche breadths. The angle of the ellipse represents the covariance between niche axes.Points represent interaction scores.
Using the interactions scores hk(i , j), it is possible to display the interaction niche of a speciesas a cloud of interactions in the multivariate space. The niche can then be summarized by esti-

mating its optimum and breadth using a Gaussian approximation. If we consider species s in the
multivariate plane given by axes k and l , its niche is approximated by an ellipse (see Figure 1).
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The center of the ellipse represents the niche optima of species s on axes k and l (weighted
averages of interaction scores). The semi-minor and -major axes represent its niche breadths on
axes k and l (weighted standard deviations). Finally, the orientation of the ellipse represents the
weighted covariance for axes k and l .

Formulas to compute niche optima, breadths and covariances are given in Appendix C (from
Thioulouse and Chessel (1992), and adapted with the notation used in this article). We can show
that the niche optima computed from these scores correspond to the scores U⋆ and V⋆ defined
above, up to a scaling factor (see Equations (C.1) and (C.2) in Appendix C).
2.5. Simulation

We simulated interaction data to evaluate the performance of CA and reciprocal scaling in
estimating parameters of species interaction niches. Below, we describe the simulation model
and the different experiments we conducted.
2.5.1. Simulation model. Our simulation model takes into account species traits (through trait
matching) and their abundances (through neutral effects) and combines these two processes to
generate an observed interaction matrix (see Figure 2). This model is inspired by the models of
Fründ et al. (2016) and Benadi et al. (2022) for the simulation of trait-based interaction networks,
and by the models of Dray and Legendre (2008) and Minchin (1987) for niche modeling in the
context of species-sites associations.

We consider the interactions between the i-th resource (i = 1 ... r ) and the j-th consumer
species (j = 1 ... c ). The simulation procedure consists of different steps described below and
illustrated in Figure 2:

Step (a): we simulate two traits for both consumer and resource species (Figure 2a). The
traits of resource species are stored in matrix Tr = [trik ] (r × 2) and the traits of consumers are
stored in matrix Tc = [tcjk ] (c × 2). The first trait for both resources and consumers is drawn from
a uniform distribution between 0 and 100. The second trait is generated similarly, but in the
interval 15-85 (see length of the traits axes in Figure 2a), so that the second trait has less weight
in trait matching. For consumers, we define niche breadth with the values of S = [sjk ] (shown in
Figure 2a as the standard deviation of a Gaussian curve). The elements of S contain the absolute
values of numbers drawn from a normal distribution with mean µbreadth and standard deviation
σbreadth.Step (b): we compute an interaction probability due to the matching of traits generated in the
previous step (Figure 2b). This probability mij follows a bivariate normal distribution. Its mean
vector is the difference between the trait values of resource species i and consumer species j
(tcjk − trik ); variances in the variance-covariance matrix correspond to the degree of generalization
of consumer species (s2jk ), and covariances are null:
(7) M = [mij ] =

1

2πsj1sj2
exp

(
−
(tcj1 − tri1)

2

2s2j1
−

(tcj2 − tri2)
2

2s2j2

)

Step (c): we generate species abundances for consumer and resource species (Figure 2c) from
a uniform or from a log-normal distribution (see Table 1 for more details). These abundances are
stored in vectors nc (c × 1) for consumers and nr (r × 1) for resources.
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Figure 2 – Model used to simulate interactions between consumer and resource species.(a) Two traits are generated for each species, corresponding to their niche optima. For con-sumers, standard deviations are also associated to traits to generate the niche breadths.(b) Interaction probabilities due to trait matching are computed from species traits. (c) Inparallel, abundances of resources and consumers are generated. (d) Interactions countsrepresenting the neutral effect of abundances on interaction probability are computedfrom the abundances. (e) Matching and abundance-driven interactions are combined toget the interactions counts based on both processes. (f) Observed interactions are thensampled from the mixed interaction probabilities. Equations are explained in the maintext.

Step (d): we then compute a matrix of predicted interaction counts based solely on abun-
dances (Figure 2c):
(8) A = [aij ] =

[
nri∑r
i=1 n

r
i

ncj

]

Here, we model interactions as the result of consumer choices, driven only by the relative abun-
dance of resources (representing the availability of resource species).
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Step (e): we compute a composite interaction probability resulting from the combined effects
of trait matching (M, equation (7)) and neutral abundance effects (A, equation (8)) (Figure 2e). A
factor δ (0 ≤ δ ≤ 1) allows to control the relative weight of the matching and the abundance
processes. If δ = 0, then the strength of the matching is null, and interactions are driven only
by abundances. If δ = 1, the strength of matching is maximal, and abundances and matching
combine to produce the observed pattern. The mixed interaction frequency matrix A⋆ = [a⋆

ij ] iscomputed as:
(9) a⋆

ij = mi |j
δaij

where mi |j = mij/m+j represents the probability of interaction with resources per consumer
species and m+j =

∑r
i=1mij is the marginal probability of interaction for species j .

The interaction probability matrix P⋆ = [p⋆
ij ] is then computed from the mixed interaction

frequency matrix:
(10) p⋆

ij =
a⋆
ij

a⋆
++

where a⋆
++ is the grand total of A⋆.

Step (f): finally, we sample observed interactions counts from the interaction probability ma-
trix P∗ (Figure 2f). To do so, we sample ninter interactions from a multinomial distribution with
κ = rc outcomes corresponding to pairwise interactions. The probability vector p⋆ (of length κ)
corresponds to the flattened matrix P⋆.
(11) z ∼ Mκ=rc(n = ninter, p = p⋆)

The interactions counts vector z is finally rearranged in the matrix Z (r × c ) which corresponds
to the sampled interaction network.

2.5.2. Simulation parameters. To evaluate the performance of our method in estimating niche
parameters, we conducted 5 experiments using the model described above (detailed parameter
values are presented in Table 1):

(1) Experiment (ninter): we vary the total number of interactions in the matrix ninter, whichrepresents the sampling intensity. This allows to evaluate the robustness to incomplete
sampling.

(2) Experiment (nr, nc): we sample nr and nc from a uniform distribution or from log-normal
distributions either mildly, moderately or very skewed. The aim is to evaluate the robust-
ness of the method to skewed abundances typically encountered in ecological commu-
nities.

(3) Experiment (µbreadth): we vary the mean of the normal distribution in which the standard
deviations of consumers’ traits sjk (k = 1, 2) are sampled. This allows to contrast com-
munities of generalist (high standard deviation) and specialized consumers (low standard
deviation).

(4) Experiment (σbreadth): we vary the standard deviation of the normal distribution in which
the standard deviations of consumers’ traits sjk (k = 1, 2) are sampled. This allows to
contrast communities with homogeneous consumers (same degree of specialization) to
communities with heterogeneous consumers (diverse degrees of specialization).
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(5) Experiment (δ): we vary the value of the parameter δ, which determines the strength of
trait matching compared to neutral interactions, driven by species abundances (Equation
(9)).

Each experiment described above varies one parameter of interest, and other parameters
are fixed to a default value (see Table 1). In experiment (µbreadth), the standard deviation is also
changed to keep a constant ratio of σbreadth = µbreadth/2. For all simulations, we generated inter-
actions between r = 50 resources and c = 60 consumers.

Experiment ninter Distribution of nr and nc µbreadth σbreadth δ

(ninter)
200 Lognormal(µ = ln(3),σ = ln(1.5)) 10 5 0.25005000100010 000

(nr, nc)
5000 U(a = 0, b = 100) 10 5 0.2

Lognormal(µ = ln(10),σ = ln(1.5))
Lognormal(µ = ln(3),σ = ln(1.5))
Lognormal(µ = 0,σ = ln(10))

(µbreadth)
5000 Lognormal(µ = ln(3),σ = ln(1.5)) 2 1 0.210 520 1050 25

(σbreadth)
5000 Lognormal(µ = ln(3),σ = ln(1.5)) 10 0.1 0.2151050

(δ)
5000 Lognormal(µ = ln(3),σ = ln(1.5)) 10 5 00.20.40.60.81

Table 1 – Parameter values used for the simulation study. Experiment (ninter) varies thetotal number of interactions. Experiment (nr,nc) progressively increases the skewness ofthe species abundances. Experiment (µbreadth) varies the mean value of the consumers’niche breadth. Experiment (σbreadth) varies the standard deviation of the consumers’ nichebreadth. Experiment (δ) varies the strength of trait matching.

For each experiment, we generated 100 datasets. For each dataset, we computed the true
niche optimum as the mean of the traits of the interacting partners of a species, weighted by
their interaction frequencies. Similarly, the true niche breadth is computed as the weighted stan-
dard deviation of the traits of species’ interacting partners. These true values quantify species’
realized niche (inference of the fundamental niche is discussed in Appendix A). Then, we per-
formed reciprocal scaling on each dataset using the R package ade4 (Thioulouse et al., 2018),
thus estimating the realized niches optima and breadths. To evaluate the method’s performance,
we measured the correlation between true niche parameters and reciprocal scaling estimates.
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2.6. Real data analysis
2.6.1. Dataset. To illustrate CA and reciprocal scaling on real data, we analyzed a birds-plants
interaction network from the ANDEAN frugivory dataset (Dehling et al., 2021, network Peru1
from the dataset). In this dataset, consumers are birds, and resources are the fruiting plants
they feed on and whose seeds they disperse. This network was sampled in the lower montane
rainforest in Peru. Data were collected by direct repeated observation conducted throughout an
entire year (4 times between 2009 and 2010) in 3 plots of 100 m × 30 m. A transect was used
to determine focus fruiting plants inside each plot, and seed removal by birds was recorded on
these plants.

In addition to interactions, this dataset also includes some species traits thought to play an
important role in trait matching. To interpret the latent axes of our analysis, we used three plant
traits: fruit diameter, crop mass (mean number of fruits per plant multiplied by mean fruit mass)
and plant height. For birds, we also used three traits: bill width, body mass and Kipp’s index. The
Kipp’s index is the Kipp’s distance, i.e. the distance from the tip of the first secondary to the wing
tip, divided bywing length (Dehling et al., 2014). A lowKipp’s index indicates roundedwings, and
a high Kipp’s index indicates pointed wings. Plant traits were collected in the field, and bird traits
on museum specimens.

Before data analysis, we filtered out the birds or plants that interact only with one other
species (8 birds and 12 plants). Indeed, since CA is based on species ordination, these species
are problematic from a methodological point of view (Greenacre, 2013). These very specialized
species can be seen as interaction modules, which should be analyzed separately when using CA
(van Dam et al., 2021). The final network has 40 plants and 53 birds (species names and traits
values are listed in Appendix D).
2.6.2. Analyses. We performed CA and reciprocal scaling on this dataset, using the R package
ade4 (Thioulouse et al., 2018). We tested the relationship between latent traits using a χ2 test,
and evaluated the effect size using Cramér’s V (Ellis, 2010).

To show how our method can answer ecological questions, we modeled the relationship
between niche breadths and latent traits for resource and consumers, on 2multivariate axes each
(4 models in total). To keep simple models while also allowing a flexible shape, we considered
linear and quadratic regression models. We chose the best model with a likelihood ratio test.

Finally, to interpret CA and reciprocal scaling more easily, we computed a posteriori correla-
tions between the measured species traits and the first two latent traits.

3. Results
3.1. Simulation

The results of the 5 experiments testing the performance of niche inference are presented
in Figure 4 for trait matching strength (δ), and Figure 3 for other parameters. First, as expected,
performance improves consistently with sampling completeness for all niche measures (Exper-
iment (ninter), Figure 3a). Second, when there are enough data (here, more than 5000 sampled
interactions), the niche optima are recovered correctly on both axes (median correlation value
above 0.875). Niche breadths are well-recovered for consumers (median above 0.75), but less
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(a) (b)

(c) (d)
Figure 3 – Results of the simulation study. Each subfigure explores the influence of oneparameter on the model performance. (a) Effect of sampling intensity (number of interac-tions) (ninter). (b) Effect of species abundance distributions (nr, nc). (c) Effect of the meanconsumers niche breadths (µbreadth). (d) Effect of heterogeneity (standard deviation) ofconsumers’ niche breadths (σbreadth). The y-axis is the absolute value of the correlationbetween true and estimated values of niche optima and niche breadths (respectively,top and bottom of each subplot). Below the legend, matrices exemplify network data(resources in rows, consumers in columns) generated with the corresponding parametervalue. Points represent non-null interactions, with size proportional to the number of ob-served interactions censored at the 1st and 99th percentiles.

precisely for resources (median above 0.25 only) (Figure 3a). We can also note that for all exper-
iments, niche parameters are always better recovered on the first axis, which is consistent with
the fact that, by construction, trait matching with the first trait explains more structure.
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The model is robust to skewed abundance distributions, although performance drops slightly
with very skewed distributions (Experiment (nr, nc), Figure 3b). Moreover, the performance is
better for intermediate niche breadth (Experiment (µbreadth), Figure 3c). Here, the optimal perfor-
mance is reached with a niche breadth of 10, representing 10% of the total length of the trait
gradient in our setting. Regarding the heterogeneity of consumers’ niche breadths (Experiment
(σbreadth), Figure 3d), homogeneous niche breadths improve the performance. In particular, the
niche breadth of resources is correctly recovered only with very homogeneous consumer niches.

Surprisingly, niche parameters are optimally estimated for an intermediate matching
strength δ (around 0.2) (Figure 4a). However, Figure 4b shows that the square roots of eigenval-
ues (absolute value of the correlation between latent traits) increase with δ. This indicates that
a stronger matching signal is inferred as δ increases.

(a) Effect of matching strength (δ) on niche parameters (b) Eigenvalues evolution with δ

Figure 4 – Influence of the strength of trait matching δ on niche parameters and latenttraits correlations. (a) Quality of the inference of niche parameters depending on val-ues of δ. The y-axis is the absolute value of the correlation between true and estimatedvalues of niche optima and niche breadths (respectively top and bottom plots). Matri-ces exemplify network data (resources in rows, consumers in columns) generated withthe corresponding matching strengths. Points represent non-null interactions, with sizeproportional to the number of observed interactions censored at the 1st and 99th per-centiles. (b) Square root of eigenvalues √
λk (absolute value of latent traits correlation)depending on different values of δ. Colored points and dotted line represent the squareroot of an eigenvalue, and error bars represent the 2.5 and 97.5-th percentiles on theeigenvalues over 100 repetitions.

3.2. Data analysis
The permutation chi-squared test performed on the interaction table shows that there is a

non-random structure in the network (χ2 = 17784, 2000 permutations, p-value = 5.0 × 10−4).
The effect size computed with Cramér’s V (V = 0.29, IC95 = [0.26, 1.00]) suggests a small to
medium effect (Ellis, 2010).
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CA eigenvalues suggest that matching between latent traits is quite strong. Here, for the first
three eigenvalues, we have √

λ1 = 0.79, √
λ2 = 0.65 and √

λ3 = 0.63, which correspond to the
absolute value of the correlation between latent traits (respectively on axes 1, 2 and 3).

With reciprocal scaling, we can position interactions in the multivariate space and use them
to visualize species niches. On Figure 5, interactions (points) are grouped by interacting partner.
Figures 5a and 5b show species’ niches by grouping interactions by bird and plant species, respec-
tively. The first 2 axes together explain 28.7% of the variance in the data (17.2% on axis 1 and
11.5% on axis 2). Eigenvalues suggest that the third axis also holds structure (10.9% variability),
but here we do not discuss this axis for concision.

(a) Bird niches (b) Plant niches
Figure 5 – Reciprocal scaling of the birds-plants interaction network. Points correspondto the interaction scores hk(i , j) in the first 2 dimensions, grouped by bird (a) or plantspecies (b). Species label are placed at the reciprocal scaling mean, and ellipses corre-spond to the bivariate normal distribution with variances and covariances given by recip-rocal scaling (with a scaling factor of 1.5, i.e. the ellipse axes lengths are equal to 1.5

√
λkon axis k , corresponding to around 67% of the points contained in the ellipse). Ellipsesare colored according to the rank of their centroid on the first axis. The correspondencebetween species’ codes and names is given in Appendix D.

On these figures, two birds (or plants) whose means are located nearby have similar niche
optima. Moreover, a bird and a plant that interact preferentially have close niche optima. For in-
stance, the interaction between B05 (Cephalopterus ornatus) and P47 (Symplocos arechea), which
are close to each other, represents respectively 66% and 33% of their total interactions.

These figures also show how niches are distributed in the latent traits space. For birds (Fig-
ure 5a), many have a niche located around the origin. These birds interact with average plants,
in the sense of their latent traits. Then, we can distinguish two clusters along the positive por-
tions of the two main axes. They show two strategies of birds along the two latent plant traits
axes: either interact with plants with above-average values on axis 1, and small values on axis
2, or the reverse. This open triangle is completed by a few bird species around the diagonal (e.g.
B33 Penelope montagnii, B53 Thraupis bonariensis and B59 Turdus chiguanco), which interact with
plants with average latent traits on axis 1 and above-average latent traits on axis 2.
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For plants, many also have a niche optimum close to the origin (they interact with average
birds). Like for birds, two clusters emerge along the two main axes, which also reflects two plant
strategies. However, contrary to birds, we cannot clearly see plant species around the diagonal,
except P47 (Symplocos arechea).

(a) Axis 1

(b) Axis 2
Figure 6 – Niche breadth versus niche optimum on the 2 multivariate axes. Nichebreadths and optima were computed with reciprocal scaling. The top graphs (a) showsthe relationship on axis 1 and the bottom graphs (b) on axis 2. The left and right panelsrepresent bird and plant species, respectively. The solid line is the prediction of the bestlinear model and the gray shading represents the 95% confidence interval around thepredicted mean value. The coefficient of determination (R2) and the linear model equa-tion are written in the top left corner.

To investigate the drivers of niche breadth, we modeled the relationship between species’
niche breadths and their latent traits, also corresponding to their niche optima (Figure 6). On
latent trait axis 1, for birds, there is a concave relationship with a positive linear component
(R2 = 0.73), but the variance of the residuals increases along axis 1. For plants, there is only
a concave relationship (R2 = 0.77). On axis 2, for birds, we have a convex relationship (which
seems to be driven mainly by B32 Patagioenas plumbea) with a strong linear positive component
(R2 = 0.70). For plants, we have a very weak relationship (R2 = 0.21) with linear positive and
weak convex components.
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To interpret the latent trait axes, we correlated measured and latent traits a posteriori (Fig-
ure 7). All traits correlate positively with axis 1, strongly suggesting that this latent trait repre-
sents a size effect. Axis 2 is characterized by its negative correlation with plant height, Kipp’s
index and crop mass. All plant traits are also strongly correlated with each other. For birds, body
mass and bill width are highly correlated. Regarding cross-trophic level traits, Kipp’s index is
strongly positively correlated with crop mass and plant height.

Figure 7 – Correlation circle measured a posteriori between species measured and latenttraits. Bird traits are shown in solid red lines and plant traits in dashed blue lines. Axis 1shows a size effect while axis 2 is defined by the matching between plant height andKipp’s index.

4. Discussion
In this article, we used CA and reciprocal scaling on both simulated and real data to quantify

species interaction niches. With the case study, we also showed how this approach can be used
to test hypotheses on the drivers of species position on the specialist-generalist gradient.
4.1. Simulation

The simulation study shows that the method can recover niche optima, but results are mixed
regarding niche breadth. In particular, the niche breadths of resource species are poorly recov-
ered overall, except in a few particularly favorable cases.

Unsurprisingly, performance increases with sampling intensity (Figure 3a). Moreover, when
the proportion of variation explained by traits is smaller (on axis 2 of the simulation study), per-
formance drops.

The estimation is robust to skewed abundances, but performance decreases with extremely
skewed data (Figure 3b): in that case, we can hypothesize that the niches of rare species are
estimated less precisely because they have very few observed interactions.

Consumers’ niche breadth affects the inference of niche parameters (Figure 3c). Indeed, as
species are ordered using their similarity in interacting partners, CA needs some overlap in inter-
actions to position them on the latent trait axis. Therefore, there is a trade-off between narrow
and wide niches: they need to overlap enough to order adjacent species, but not too much so
that there is still a structure in the network.
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The heterogeneity of consumers’ niche breadth decreases the performance of the estimation
(Figure 3d). We can hypothesize that this is due to insufficient overlap between specialists’ and
other species’ niches. This might bias the placement of niche optima for specialists, and the
estimation of niche breadths for their interacting partners.

Surprisingly, a stronger trait matching does not always yield a better recovery of niche pa-
rameters (Figure 4a). As expected, when there is no trait matching (δ = 0), niche parameters are
poorly recovered, because the true niche is random. However, the performance is best when the
matching strength is intermediate (δ = 0.2), and decreases with stronger matching, although it
remains quite good even when matching is maximal (δ = 1). This can be explained by the require-
ments of CA to perform latent ordination. Indeed, if the matching is too strong, the niches of
species become increasingly separated in the ordination space. Strong trait matching essentially
translates into smaller niche overlap. In such cases, the small overlap between species’ inter-
acting partners makes species ordination difficult (as discussed above for the heterogeneity of
consumers’ niche breadths). Here, when δ = 1, all eigenvalues are also closer to 1 (Figure 4b): the
structure of the network is recovered in more than two axes, whereas the true structure used to
generate data is driven by two matching traits (i.e. two axes). For this reason, the latent traits on
the first two axes are less close to the two traits used in the simulation, thus yielding less accu-
rate estimations of the niche parameters. Therefore, if the CA of an interaction network yields
eigenvalues that are all close to one, species’ latent traits should be interpreted with caution. In
that case, one can reasonably conclude that there is a strong trait matching, but suspect that the
dimensionality of trait matching is lower than the one inferred.

Finally, niche parameters are better recovered for consumers than for resources, especially
niche breadths. This might arise from the asymmetric way niche breadths are specified in our
simulation model. Indeed, whereas consumers’ niche breaths are specified in the model, niche
breadths for resources are driven entirely by the niche breadth of the consumers they interact
with.

Our simulation model makes a number of simplifying hypotheses about interaction networks.
First, only consumers have a preferred niche breadth. This makes sense in our case study with
birds (as consumers) and plants (as resources), because birds’ cognitive processes and movement
abilities allow them to choose the plants with which they interact. However, on an evolutionary
timescale, plants might evolve to attract more diverse or more similar birds. Specifying a model
taking into account both niche breadths requires adapting the trait matching step (Equation (7)),
which is difficult. In fact, to our knowledge, no such model exists in the literature. The model
also specifies trait matching with a multivariate normal distribution, which can be unrealistic.
Despite these limitations, we think that the simulation model used here is useful to provide a
first evaluation of the method’s ability to recover niche parameters.
4.2. Data analysis

Regarding real data analysis, a permutation chi-squared test suggests that there is a non-
random structure in the network. However, the network is also very noisy, as suggested by visual
examination of the network and the small to medium effect size measured with Cramér’s V .

This non-random structure is quantified using the chi-squared statistic. However, it uses the
matrix margins to assess the expected number of interactions, thus assuming that the number
of times a species is observed in the network is a surrogate of its abundance. This hypothesis
may not be valid due to sampling effects (Blüthgen et al., 2008; Fründ et al., 2016). In particular,
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the interactions range of the most abundant species might be better sampled, thus artificially
increasing their generality. Reciprocally, under-sampling of rare species might artificially increase
their specialization. Moreover, some species engaging in frugivory interactions were probably
not sampled, which may bias niche estimates.

In the results, we explored the niche patterns for the first two axes (or latent traits). These
two axes represent 28.7% of the total variation in the network, so the patterns discussed below
explain only a small part of the network structure.

To interpret latent traits, we correlated themwithmeasured traits. The first latent trait (axis) is
mostly correlated with birds and plants size. There is a concave relationship with a positive linear
component between birds’ niche breadth and the first latent trait (Figure 6a, left). This suggests
that the larger birds are, the wider their niches are, but that medium-sized birds have the widest
niches. We can hypothesize that birds are limited by beak size: small-billed birds may not be able
to grasp large fruits, while larger-billed birds can swallow even small fruits (Wheelwright, 1985).
However, birds that are too large do not eat very small fruits, because they need to satisfy their
high absolute energy expenses. Therefore, they focus on fruits that are larger, or more abundant
on the plant tominimize foraging time (Albrecht et al., 2018; Schoener, 1971). This limiting effect
of energy requirements is weak: our results rather suggest a diversity of strategies for large birds.
For instance, B34 (Pharomachrus antisianus) and B41 (Rupicola peruvianus) eat fruits of diverse
sizes. On the contrary, B05 (Cephalopterus ornatus) and B58 (Trogon personatus) choose fruits of
more uniform sizes. In addition, the correlation between birds body mass and plant productivity
indices, such as crop mass or fruit diameter, is weak (Figure 7). This may be due to the fact
that birds’ foraging is partially modulated by other traits, like whether they are fruit-gulpers or
pulp-feeders (Palacio et al., 2017).

For plants (Figure 6a, right), the concave relationship between niche breadth and the first
latent trait (axis) is even clearer. This suggests that small plants attract only small birds, plants
of intermediate size attract birds of diverse sizes, and large plants attract large birds. General-
ist plants have diverse strategies: P11 (Elaeagia mariae) and P49 (Turpinia occidentalis) predomi-
nantly interact with small and medium-sized birds, while P12 (Endlicheria sp.) and P47 (Symplocos
arechea) interact with medium-sized to large birds. A closer examination of their respective traits
reveal that the first latent trait of P11 and P49 is predominantly driven by their height, which
does not impose a harsh barrier to interactions for small birds. In contrast, P12 and P47 produce
fruits larger than the mean bill width, so the interaction barrier is stronger.

On axis 2, we interpret the relationship for birds only Figure 6b, left), because the relation-
ship for plants is very weak. We focus on the linear component between bird’s latent traits and
niche breadths, because the convexity seems to be driven by a single species (B32, Patagioenas
plumbea). The second latent trait is negatively correlated with Kipp’s index (wing pointedness)
and plant height. This means that birds with pointed wings consume fruits from plants of ho-
mogeneous heights, whereas birds with rounded wings interact with plants of diverse heights.
Rounded wings confer more maneuverability in dense vegetation (Thiel et al., 2023), so birds
with rounded wings primarily feed on small plants in the dense understory. Conversely, birds
with pointed wings preferentially forage on tall plants in the more open canopy. Here, we find
a higher specialization for birds with pointed wings: these birds might find it difficult to navi-
gate dense understory, while birds with rounded wings may move to the canopy at a lesser cost

18 Lisa Nicvert et al.

Peer Community Journal, Vol. 5 (2025), article e73 https://doi.org/10.24072/pcjournal.580

https://doi.org/10.24072/pcjournal.580


(Thiel et al., 2023). Canopy birds might also focus on highly productive fruit patches by choos-
ing plants with high crop yields, as suggested by the high correlation between crop mass and
Kipp’s index (Foster, 1990; Thiel et al., 2023). The higher specialization of canopy birds seems to
contradict the findings of Schleuning et al. (2011): however, in this study, the authors measured
niche breadth as the diversity of interacting partners, not the diversity of their (latent) traits.

A limitation of the results discussed above is that the network analyzed here is an aggre-
gation of four observed samples collected over a year. Therefore, the inferred niche is a mean
of the interactions a species engages in throughout the year, although it may vary dynamically
depending on various temporal processes (Poisot et al., 2015; Singer and McBride, 2012). More-
over, the two axes (latent traits) discussed above explain roughly 30% of the variability, so they
account for a small fraction of the non-random network structure. Discussing patterns on the
other axes would be important, in particular on the third axis which explains almost the same
variability as the second axis. Eigenvalues also suggest that underlying structures are found up
to the 6th axis, and considering 6 latent traits would explain more than 60% of the variation of
the network (see Appendix E).
4.3. Conclusion and perspectives

This article describes correspondence analysis and reciprocal scaling applied to ecological
networks. These methods are well-suited for exploratory analyses, and not limited by costly trait
collection. CA allows to evaluate a potential signal and the dimensionality of trait matching (Eklöf
et al., 2013), without requiring trait data. Reciprocal scaling provides a quantitative measure of
the interaction niche as a hypervolume, using a Gaussian approximation. The resulting niche
is a hyperellipsoid in n dimensions, corresponding to the isocontours of a multivariate normal
distribution.

Our framework links trait matching and species specialization-generalization, through the
notion of interaction niches (Albrecht et al., 2018; Dehling et al., 2025; Godoy et al., 2018). Trait
matching is viewed as the alignment between species niche optima, defined by their (latent) traits.
Specialization-generalization are viewed as the diversity of (latent) traits of a species’ interacting
partners.

CA and reciprocal scaling are proposed as a powerful tool for analyzing species interactions,
but they are also limited within a specific scope. First, latent traits conflate several processes, like
species’ spatial and temporal variations in abundances, phylogeny, or sampling biases. Therefore,
the estimated niche corresponds to species’ realized niche, i.e. the interacting partners a species
effectively interacts with (Devictor et al., 2010; Hutchinson, 1957), which can be influenced by
a variety of factors beyond their traits. For instance, the distribution of traits in the community
might constrain species to settle for suboptimal interacting partners. Additionally, competition
may also constrain species to partition their realized interaction niches. In Appendix A, we show
that the method can also recover fundamental niches (although not as well as realized niches).
Second, reciprocal scaling estimates a Gaussian approximation of the species niche. While this
approximation will likely be sensible for symmetric and unimodal niches, the Gaussian estimate
might be irrelevant for species with highly skewed or multimodal niches (Benadi et al., 2022;
Blonder et al., 2014). For example, Gaussian nicheswould likely be a poor estimate of asymmetric
niches constrained by exploitation barriers (Santamaría and Rodríguez-Gironés, 2007).

The dimensionality of latent traits estimated with CA depends on the dimensionality of the
original data: it is min(r − 1, c − 1). Therefore, when interpreting data, it is necessary to choose
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the number latent traits to retain. In practice, ecologists should explore the first k axes (latent
traits), until eigenvalues associated to these traits decrease abruptly (i.e. the gain in explained
variation becomes negligible). They may also use methods guiding the choice of dimensionality
in multivariate analyses (similar to the method proposed by Dray, 2008, for principal component
analysis).

Niche breadths have been studied using other measures in the literature, often based on the
identity of interacting partners, as opposed to their traits (e.g. the index d ′, which also takes
into account species availability, proposed by Blüthgen et al., 2006). A notable exception is the
process-related niche proposed by Dehling and Stouffer (2018), which measures the functional
diversity of a species’ interacting partners using their traits projected in a multivariate space.
Reciprocal scaling bears similarities with both methods, as it quantifies niche breadth from the
interactionmatrix only, but also uses latent traits. Our measure hence provides a complementary
way to define niche breadth, that takes into account both species characteristics (using latent
traits) and their availability (using species’ relative frequencies in the niche breadth measure).

CA and reciprocal scaling could be extended in various ways. First, we could measure niche
overlap by quantifying the ellipses overlapping area (similarly to Pappas and Stoermer, 1997).
This would allow to gain insights regarding the similarity, or dissimilarity, of species niches,
thereby potentially allowing to measure competition strength. Second, it would be interesting
to estimate a confidence interval around niche breadth and optima, for instance using a boot-
strapping approach (i.e. iteratively removing species from the network and estimating niche
parameters on these bootstrapped data).

Although the latent approach of CA has many benefits, when traits are known, it would also
be interesting to constrain themultivariate axes with traits. Such constrained analyses have been
performed with RLQ or fourth-corner analyses in the context of network data (Albrecht et al.,
2018; Bender et al., 2018; Dehling et al., 2014). However, fourth-corner analysis considers only
pairs of traits, and does not ordinate species in the multivariate space. On the other hand, RLQ
is covariance-based, which does not allow to partition the variation explained by traits in inter-
action networks.

An alternative would be to use constrained versions of CA. More precisely, we could use
canonical correspondence analysis (ter Braak, 1986) and double constrained correspondence
analysis (ter Braak et al., 2018). These canonical methods would allow to quantifying the part
of variation explained by trait matching in ecological networks. They would also eliminate the
need for important niche overlap, which is necessary to recover structuring trait axes with latent
gradients in CA. To our knowledge, constrained versions of correspondence analyses have never
been applied to interaction networks. Moreover, for all methods above, there is no known way
to measure niche breadth. The part of variation explained by trait matching would also likely be
biased, as this is the case for canonical correspondence analysis (Peres-Neto et al., 2006) and
fourth-corner analysis (Dray and Legendre, 2008). Therefore, further methodological develop-
ments in multivariate analyses could benefit network analysis.
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