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Abstract

Evolution by natural selection can occur when organisms harbor genetically inherited
phenotypic variation, and phenotypic variants have differential fitness. Stable transgen-
erational epigenetic variation also exists for fitness-related traits and theory predicts
that selection can act on this variation alone without a contribution of genetic varia-
tion. Here, we artificially selected for divergent biomass, rosette size, flowering time and
height at first silique in experimental Arabidopsis thaliana populations harboring DNA
methylation polymorphism in an identical genetic background. We found significant epi-
allele frequency changes in response to selection. Our results show how selection rapidly
changed population trait values and their epigenetic basis, over one generation of selec-
tion. Our results imply the role of the transgenerational epigenetic variation of popula-
tions as an additional source of short-term adaptive potential
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Introduction

Evolution by natural selection occurs when organisms express heritable variation for fitness.
As a result, fitness-related traits change in response to selection (Walsh & Lynch, 2018). The
heritable trait variation upon which selection can act is typically equated to variation in the DNA
sequence of bases in most studies of adaptive evolution. However, transgenerational epigenetic
variation exists for fitness-related traits (Kronholm et al., 2017; Muyle et al., 2021; Stajic & Jansen,
2021). Under the assumption that epigenetic variants are stable across generations, theory
predicts that selection can act on this heritable variation alone, without any contribution of genetic
variation (Bonduriansky & Day, 2009; Danchin et al., 2011; Jablonka et al., 2005).

DNA methylation is the most studied epigenetic mark that influences chromatin structure and
the silencing of transposable elements (TE) and genes (H. Zhang et al., 2018). Epigenome-wide
association studies (EWAS) have been successfully used in the past (Ong-Abdullah et al., 2015)
to identify population divergence based on heritable DNA methylation patterns linked to phenotypic
traits. The presence of epigenetic divergence between populations that have a variable genomic
background is difficult to interpret as strong evidence that selection can shape standing epigenetic
variation independently from DNA sequence variation but sheds light on this possible scenario.

The stakes are high for evaluating the potential role of epigenetic variation as a source of
variation upon which selection can act. This is because the epigenetic response to selection may
participate to adaptation of wild populations confronted to environmental constraints. Selection of
standing epigenetic variation could also participate to breeding strategies (Kakoulidou et al., 2021).
Epigenetic breeding might be rather straight forward in crops, particularly in vegetatively
propagated crops (Latutrie et al., 2019). There is no reason why the response to selection could
not be predicted from stable epigenetic heritability and the selection differential as usually done on
the basis of the standing genetic variation of traits (Walsh & Lynch, 2018). Another stake lies in
the debate around the evolutionary significance of epigenetic variation (Charlesworth et al., 2017;
Quadrana & Colot, 2016; Richards et al., 2017; Verhoeven et al., 2016). This debate roots in the
confounded genetic and epigenetic variations of traits that are technically and statistically difficult
to separate (Thomson et al., 2018). It also roots in the potential lack of stability of DNA methylation
across generations (Ossowski et al., 2010; Becker et al., 2011; Schmitz et al., 2011; Quadrana et
al., 2019). We therefore tested for an epigenetic signature of selection by using a selection
experiment in artificial plant populations displaying DNA methylation polymorphism in the same
genetic background, which to our knowledge has never been done before (for a signature of
population epigenetic divergence attributed to selection, see Schmid et al., 2018).

Here, we tested the hypothesis that directional selection can act on heritable epigenetic trait
variation in an identical genetic background by conducting artificial selection experiments in
Arabidopsis thaliana. There is growing evidence for epigenetic variation, notably DNA methylation,
at quantitative traits in animals and plants (Cortijo et al., 2014; Noshay & Springer, 2021; Vogt,
2021). This is notably the case of size traits and flowering time in A. thaliana (Cortijo et al., 2014).
Size traits and flowering time strongly influence the fitness of most plants in nature (Halbritter et
al., 2018). There is evidence for the heritable epigenetic variation of these traits associated with
differentially methylated regions (DMRs) that are stably inherited across generations in epiRILs
(Johannes et al., 2009; Reinders et al., 2009; Roux et al., 2011; Y.-Y. Zhang et al., 2018). These
EpiRILs are a set of 123 fixed homozygous lines, descending from an F2 population, that were
obtained by an initial cross of isogenic parents with different DNA methylation profiles (Col-0 x Col-
ddm1-2) (Johannes et al., 2009). The mutation in the DDM1 gene (ddm1) —a chromatin remodeler
involved in DNA methylation — induced hypomethylation of 126 clusters of cytosines (DMRs). We
therefore expect selection differentials based on size and flowering time, e.g., by allowing to breed
only bigger or late flowering epiRILs, to produce the expected directional trait changes in the
progeny.

Novel phenotypes can be selected in A. thaliana populations that only differ with respect to
epigenetic variation in a fixed genomic background (Schmid et al., 2018). These changes were
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stably inherited over at least two generations in the absence of selection and correlated with
changes in DNA methylation and transcription. Potential genetic differences that could have
occurred over the 7-8 generations of this experiment were excluded by resequencing the complete
genome of several individuals. The epigenetic divergence found between lab populations exposed
to fragmented and disturbed landscape environments and natural plant populations could therefore
be attributed to selection (Schmid et al., 2018). Today, the time is ripe to reach a better
understanding of the epigenetic response to selection. Whether directional selection shapes the
standing epigenetic variation of traits as it would do with the standing genetic variation of traits
remains to be clarified. Confirming this hypothesis would confirm that the genetical theory of natural
selection also applies to epigenetic variation and unlock new potential for breeding strategies.

First, building upon the available knowledge, we described DNA methylation polymorphism
acknowledged to be stable across generations (Cortijo et al., 2014; Johannes et al., 2009) and
phenotypic variation in two different artificial A. thaliana epiRIL populations. We grew these two
populations made of two totally different sets of A. thaliana epiRILs in similar conditions and at
different times, in order to repeat the experiment in two different populations. Second,
independently in each population and for each trait, we artificially generated a fitness differential
between plants by selecting them based on their morphological and reproductive trait values. We
selected in two different directions - for upper and lower trait values — and applied two different
selection intensities - weak and strong - to explore the potential properties and limits of epigenetic
selection. Third, we estimated the phenotypic response to selection in the next generation of plants
and assessed whether changes in epigenetic allele frequencies can be directly attributed to the
response to selection. To this aim, we developed an approach that consists in growing all the
progeny as if every parental plant had been selected to be a breeder and removing the progeny of
counter selected parents in silico. This is equivalent to selecting the offspring that survived based
on the phenotype of their parents, almost as a delayed operation of selection. We did not find any
equivalent approach in the literature, but do not claim that we are the only one who could have
thought of this. This method allowed us to conduct in silico selection on as many traits as needed,
based on the same real plant population. For every trait, we replicated the approach a thousand
times in silico, using each time a different random sample of the base population to build the control
group, which allowed us to build strong confidence intervals.

Material and methods

Plant material

Epigenetic Recombinant Inbred Lines (epiRILs) of Arabidopsis thaliana plants represent one
of the few study systems available to date to investigate epigenetic variation associated with
phenotypic trait variation, clearly identified as epiQTLs located on chromosomes, in an almost fixed
genomic background (Johannes et al., 2009, Roux et al., 2011; Colomé-Tatché et al., 2012; Cortijo
et al., 2014). We obtained 123 epiRILs from the Institute Jean-Pierre Bourgin (IJPB - UMR1318
INRAE-AgroParisTech, Versailles, France). These epiRILs were originally created by crossing two
parents from the same accession (Columbia, Col) that differed only at the Decreased DNA
Methylation 1 gene (DDM1), with one parent homozygous for the wild type DDM1 allele (Col-wt),
and the other for the ddm1-2 mutant allele (Col-ddm1) (Johannes et al., 2009). The latter is
characterized by a widely different DNA methylation profile background. These epiRILs were
obtained after six generations of single seed descent and harbor differentially methylated regions
(DMR) across the entire genome. These DMRs are stably inherited over multiple generations and
associated with substantial heritable variation in flowering time and plant height (Cortijo et al.,
2014; Johannes et al., 2009; Roux et al., 2011). Genome-wide DNA methylation data are available
for these 123 epiRILs as well as the derived recombination map for 126 meiotically stable DMRs
covering 81.9% of the genome (Colomé-Tatché et al., 2012). Some of these 126 DMRs function
as epigenetic quantitative trait loci (Cortijo et al., 2014) that underlie the variation of the phenotypic
traits that we measured.
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We built two independent samples of 60 different epiRILs by randomly choosing lines without
replacement out of the 123 lines available, in our seed storage in dry conditions under 20°C, in
order to create two independent experimental populations of Col-wt epiRILs and replicate our
selection experiment in these two populations at different times. Population 1 included the following
epiRILs (Colomé-Tatché et al., 2012): 14, 20, 36, 52, 54, 55, 62, 64, 70, 92, 99, 108, 112, 144,
164, 166, 169, 183, 193, 195, 215, 216, 238, 257, 260, 275, 277, 297, 305, 326, 333, 340, 344,
350, 356, 361, 362, 368, 371, 393, 394, 400, 408, 432, 434, 437, 458, 466, 467, 473, 477, 480,
488, 492, 493, 497, 503, 539, 561 and 567. Population 2 included the following epiRILs: 8, 11, 18,
24,486, 53, 60, 69, 71, 73, 94, 95, 101, 114, 118, 137, 147, 148, 150, 159, 170, 172, 202, 208, 218,
222, 225, 229, 232, 244, 252, 258, 262, 276, 315, 323, 363, 366, 375, 391, 410, 425, 438, 439,
454, 471, 494, 495, 500, 506, 508, 523, 538, 556, 558, 559, 570, 572, 573 and 579.

Plant cultivation

The selection experiment required growing two successive generations of plants (G0 and G1)
for each of the two independent experimental populations of Col-wt epiRILs. GO of population 1
was grown in June 2018 and G1 in January 2019. GO of population 2 was grown January 2019
and G1 in August 2019. At GO, three plant replicates per epiRIL were grown (n = 180 plants for
each population). Ninety-eight percent of GO plants survived until flowering (n = 177 plants in
population 1 and n = 177 plants in population 2). At G1, three descendants of every GO plant were
grown (n = 531 plants per population). Because of a final success rate of 96 %, 524 plants were
available for population 1, and 521 plants for population 2. All the plants were grown in a growth
chamber under controlled long-day conditions (day: 16 h — 20/22°C, night: 8 h — 16°C/18°C) with
artificial light (120 mmol/m2s-1), in 7x7x6.4 cm pots (Soparco, France) on a substrate composed
of 80% BP Substrate K716 (Klassman, France) and 20 % of vermiculite (Souflet Vigne, France).
About 5 to 10 seeds, equivalent in terms of lineage and parental plant, were sown in each pot and
seedlings were thinned out to retain a single plant per pot. Plant location in the growth chamber
and planting occurring over a few hours was fully randomized. Comparisons were carried out under
identical environmental conditions and the design was fully randomized. GO and G1 were grown 6
months apart in different seasons, but in an underground growth chamber under fully controlled
environmental conditions.

Plant phenotypic measurement

Four growth- and flowering-related phenotypic traits were recorded: Flowering time (in number
of days since sowing) and rosette diameter were recorded when the first flower opened. Height at
first silique and above-ground biomass were measured after plants ceased flowering. Above-
ground biomass was measured on an analytical high precision lab balance (Sartorius, Germany)
after plants were dried for 24h at 40°C in a laboratory oven (France Etuves, France). These traits,
and in particular growth traits, are not expected to be fully independent. They were chosen because
they present transversal and comparative interest in ecological and evolutionary plant studies as
they are usually recorded in A. thaliana and other plant studies (Halbritter et al., 2018; Roux et al.,
2011; Herrera & Bazaga, 2010).

Selection experiment

GO populations formed the base generation upon which selection was conducted. In each
population, we ranked plants based on their trait values. We randomly selected plants from this list
without replacement to establish a control line. We then selected the top-ranked and bottom-
ranked of the remaining plants to establish high and low selection lines, respectively. The high and
low selection lines (HSL and LSL) respectively aim at increasing and decreasing trait value in
response to selection at the next generation. In order to test the limits of the selection protocol, the
selection experiment was conducted at two selection intensities: weak selection, whereby each
selection line (HSL and LSL) consisted of 33% of the plants (60 plants out of 180) and strong
selection, whereby ca. 11% of the plants were randomly sampled to build a control group and then
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the upper and lower ca. 11% (20 plants out of 180) of the remaining plants were selected to build
each selection line (HSL and LSL). The sample size of control groups matched the size of selection
lines. G1 control group phenotypes, their similarity to GO, and their difference with G1 selection
lines, allows to control for confounding effects between the response to selection and the effect of
temporal changes in the controlled environment of the growth chambers, which in itself is highly
unlikely.

Selection experiments conducted on outcrossing plants require cross-pollinating different sets
of plants for the different traits under selection and the different selection lines, and sometimes
require isolating the plants forming control and selection lines before pollen might be dispersed
between groups. This was not necessary in our selection experiment because Col-wt epiRILs
reproduce almost exclusively by self-fertilization and were grown in tubes that isolate flowering
stems from each other. Here, we grew the progeny of every GO plant as if it had been chosen and
multiplied (three descendants per parent) to be part of the control, the HSL and LSL. G1 lines were
made up of the progeny of their GO parents (three progeny per parent). As a result, we obtained a
large number of plants in G1, so that we could build in silico the G1 dataset corresponding to a
given selection intensity based on a given trait (Figure 1a, b). This original protocol is challenging
on the logistical front because the number of plants cultivated in the growth chamber, and the
number of phenotypic records, grew exponentially between GO and G1, but it has certain
advantages. It allowed us to establish HSL, LSL and control lines and estimate the response to
selection in silico based on the four different phenotypic traits after the two generations of plants
had been grown and measured in vivo.

A. Plant experiment /9\

° e Q 2

$¥e o% °en=3 per
9 Sof 0 > 08 &

° 2

4 Traits

. BIOM: above ground dry biomass
123 EpiRILs 60 randomly DIAM: rosette diameter

Col-wt  chosen EpiRILs# FLTM: flowering time

4, am  HGHT: height of first silique
Seed Generation 0 Generatio
Collection n=180 n=540

Q Experiment repeated twice @ Self-fertilization
(replicated on 60 different epiRILs) (n=3 progeny per plant)

°

B. Selection
2 Strengths 2 Directions 1000 Bootstraps

Control group (n=60, n=20) = % 3 Selection lines
Weak selection (n=60) Low ey ==

Strong selection (n=20) Low

S LSL: low selection line
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Figure 1 - Selection experiment drives phenotypic trait changes. (A) Plant
experiment: Two sets of 60 different epiRILs (Arabidopsis thaliana Col-ddm1) were
randomly assembled to build the two different experimental populations that were
cultivated at different periods in the cultivation chamber. Seeds from the collection
were grown to produce a buffer generation without selection and generate the seeds
used to grow GO plants. G1 plants — the progeny of GO — were produced by self-
fertilization. (B) Selection design: At GO, a control group was made of randomly
selected plants. Plants with the highest and lowest trait values were respectively
used to build the high and low selection lines. Weak and strong selection lines were
respectively made up of 33% and 11% of the population. Corresponding progenies
were used to build control groups and selection lines in G1, with differences between
G1 lines reflecting responses to selection.
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Statistical analysis

The classical in vivo estimation of the response to selection can be biased because a unique
event of random sampling without replacement of a fixed set of individuals from the base
population is used to establish the control line. This protocol can potentially produce a sample of
values that is upward or downward biased by chance alone. The remaining individuals available
to establish the high and low selection lines are then biased towards average values. Our original
protocol allowed us to overcome this potential bias although we applied the same logical random
sampling of individuals without replacement to build the control line. This is because we replicated
1000 times this random sampling in silico. We built the corresponding distribution and estimated
unbiased estimates of the trait mean, Standard Error, and 95% Confidence Interval, for each line
(control group, HSL, LSL) and each selection intensity. We used the lack of overlap between the
95% confidence intervals of phenotypic estimates to test for a significant difference between high
and low selection lines. This is a conservative approach because we did not allow overlap between
Cl to be considered a significant difference, and some overlap would have been allowed if we had
used p values. Cl provides information on the statistical effects (range, direction, strength and
reliability) that is not provided by p values (Ho et al., 2019). Scripts in R (R Core Team, 2023) are
publicly available on the Zenodo repository (https://doi.org/10.5281/zenodo.7603324, Pujol et al.,
2025)

Phenotypic selection analysis

Despite the absence of genetic variation, we tested whether each experimental population
responded to directional selection for higher and lower morphological and reproductive traits
(above ground biomass, rosette diameter, flowering time, and height of first silique) values
independently in each population, and for each trait. On the basis of the unbiased control and
selection line values obtained on the basis of 1000 replicates, we estimated the response to
selection (R). In our selection experiment, the response to selection evaluates the change in trait
mean obtained after one generation of selection. R was calculated by the difference of mean trait
value between the selection line and control line in G1, which allows controlling for potential
between-year environmental variation of the mean phenotype (Walsh & Lynch, 2018). We also
calculated the different parameters of the breeder’s equation, R = h?S, where S is the selection
differential and h? is the realized narrow-sense heritability (Lush, 1937). The selection differential
evaluates the selection pressure imposed on the base population by measuring the trait mean
difference between the population and the selection line. The selection differential (S) was
calculated by the difference of mean trait value between the selection and control line in GO (Walsh
& Lynch, 2018). We estimated h? for each trait on the basis of the available measurements of R
and S. Caution must be taken when interpreting the heritability parameter calculated by the
breeder’s equation in self-fertilizing plants because it might in fact estimate broad-sense heritability
(H2).

Analysis of DNA methylation changes after selection

We tested in silico for changes in DNA methylation frequencies in response to phenotypic
selection conducted in vivo. We constructed heat maps to visualize the changes in mean epi-allelic
frequencies after selection for all the DMRs in both experimental populations by using the package
ggplot2 (Wickham, 2016). To this aim, we estimated in G1 the mean epi-allelic frequencies at each
of the 126 DMRs, for each selection and control line, and at each selection intensity and trait, on
the basis of the 1000 resampled data sets. Epi-alleles were defined as “0” when originating from
the DDM1 wild type Col-wt and “1” when originating from the ddm1-2 mutant col-ddm1. As a resullt,
the more ddm1-2 mutant epi-alleles are present in a given line, the higher the frequency of DNA
methylation.

We condensed the epi-allelic variation of each experimental population into a reduced number
of linearly independent dimensions by using a Principal Component Analysis. PCA was done using
the function dudi.pca of the ade4 package (Dray & Dufour, 2007). It summarized more than 90 %
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of epi-allelic variation in 16 dimensions for population 1 and in 17 dimensions for population 2. As
a result, every plant had a coordinate on each of those PCA dimensions. We estimated the average
coordinate and its 95% CI based on the 1000 resampled datasets, for each PCA dimension,
selection or control line, selection intensity, and trait. We tested for significant differences in DNA
methylation associated with selection by comparing the 95% Cls of high and low lines in G1. We
used the lack of overlap between the 95% confidence intervals to test for a significant difference
between high and low selection lines. This approach provided information on statistical effects
(range, direction, strength and reliability) that is not provided by p values (Ho et al., 2019).

Analysis of molecular epigenomic integrity

Molecular epigenomic sequence data covering the whole genome were used to confirm the
integrity of the DMRs in the epiRILs that were used in the plant selection experiment. Tissue
sampling of 24 epiRILs (12 per population) and Col-wt was done 24 days after germination. Two
rosette leaves were sampled and put into a 2-ml tube that was directly dropped into liquid nitrogen
for instant freezing to ensure DNA conservation. Samples were kept at — 80°C. DNA extraction
was performed using DNeasy kit (Qiagen, Germany) following the manufacturer’s protocol. Three
replicates per EpiRIL were extracted separately and DNA content was quantified by using a Qubit
fluorometer with the dsDNA HS Assay Kit (Invitrogen, USA). Quality was controlled using a
NanoDrop spectrophotometer (Thermo Fisher Scientific, USA). The three DNA replicates were
then pooled together and a control of the possible degradation of the DNA was performed by using
TapeStation automated electrophoresis (Agilent, USA). Enzymatic Methyl-sequencing (EM-seq)
was then conducted on these DNA samples by the IGen Seq platform (ICM, Paris, France). EM-
seq library was prepared with the NEBNext® Enzymatic Methyl-seq (EM-seq™) (New England
Biolabs, USA) following the manufacturer’s protocol. This method is known to provide accuracy
and reliability at least equivalent to that achieved by Whole Genome Bisulfite Sequencing (WGBS)
with similar global methylation levels indicating high resemblance in the overall detection of
methylated Cs (Feng et al., 2020; Hoppers et al., 2020). Only the bisulfite conversion step differs
between these two approaches; it is an enzymatic reaction in the EM-seq approach while it is a
sodium bisulfite chemical treatment in the WGBS approach. The first EM-seq conversion step uses
TET2 and an Oxidation Enhancer to protect modified cytosines from downstream deamination.
TET2 enzymatically oxidizes 5mC through a cascade reaction into 5-carboxycytosine, protecting
5mC from deamination. The second enzymatic step uses APOBEC, which deaminates cytosines
but does not affect 5caC. As a result, converted sequences are similar in the data generated by
these two approaches and can be analyzed in the same way. Sequencing was done on an lllumina
Novaseq 6000 sequencer (lllumina Inc, USA) with a flow cell S1 (300 cycles of 1600 million of
reads (2*53 million reads of 150 base pairs per sample).

We verified the quality of the sequence reads by using the FastQC software Version 0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We then trimmed 10 bp from each
end of the paired-end reads and removed adapter sequences using Trim Galore software Version
0.6.5 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Trimmed reads were
subsequently aligned to the reference TAIR10 genome version of A. thaliana (Assembly:
GCA_000001735.1) using BSMAP aligner Version 2.9 (Xi and Li 2009) specifying an allowed
minimal insert size of 40 pb and a maximal insert size of 2500 bp. Only reads aligning uniquely to
the reference genome were used for subsequent analyses. Cytosines with an average coverage
below 8 (and above 100) across each line were removed to avoid a potential bias. Average
genome coverage was 73.6 after filtering, which is well above most previous studies on DNA
methylation in plants (Schmid et al., 2018). Mapped reads were then used as input data in the
BSMAP methylation caller Version 1.0.0 implemented in the Galaxy interface (http://usegalaxy.org)
(Goecks et al., 2010) to extract the methylation of each cytosine call and distinguish between the
three contexts of methylation that can occur in plants in Cytosine-phosphate-Guanine
dinucleotides (CpG), CHG and CHH contexts (H= A, T or C) (H. Zhang et al., 2018). We used the
methylKit package Version 1.20.0 for DMR analysis (Akalin et al., 2012). False-positive
methylation levels were measured by calculating methylation levels in the unmethylated
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chloroplast genome. The 126 DMRs were identified in the epiRILs used in our experiment by
calculating the mean methylation ratio of each marker found by filtering genomic positions
(chromosome and start and stop bp) from the BSMAP methylation calling files with a custom script
in R made publicly available using the packages tidyverse and dplyr (Mailund, 2019; Wickham et
al., 2019). These DMRs cover genomic regions of a size ranging from 200 base pairs to 11 kb.
The distribution of the Bisulfite Sequence signals was verified for the 126 markers by plotting the
distribution of BS signals in boxplots of the WT-inherited (Methylated) and the ddm1-inherited
(Unmethylated) markers with a custom script in R made publicly available on the Zenodo repository
(https://doi.org/10.5281/zenodo.7603324; Pujol et al., 2025).

For each DMR marker, percentages of methylated cytosines were compared between Col-wt
and each epiRIL by using Fisher's exact tests to confirm whether they were WT-inherited (not
significantly different from Col-wt) or ddm1-inherited (significantly hypomethylated in comparison
to Col-wt). To this aim, we used the methylKit package. Parameters used to call for differentially
methylated markers were defined as follows: differential methylation > 25% and q value < 0.01 as
established by other work on the same species (Kim et al., 2017). This approach allowed us to
identify statistical differences between Col-wt and each epiRIL for the 126 differentially methylated
regions (DMRs) published in Colomé-Tatché et al., (2012), and then compare the DMRs found in
our experiment with those already published in the literature. To this aim, we calculated the
percentage of overlapping probe classification following the methods developed by Colomé-Tatché
et al., (2012) between published epiRIL DMR data and our EM-seq data for the plants used in our
experiment. We considered percentages of similarity greater than 80% as a signal of very strong
molecular correspondence, > 70% as strong, > 60% as moderate, and < 50% as weak. We also
evaluated the molecular correspondence between the available WGBS data published for 8
epiRILs (60, 92, 150, 193, 202, 232, 260 and 480) (Bewick et al., 2016; Kooke et al., 2019; Lauss
et al., 2018) and the EM-seq data of these same epiRILs used in our experiment by comparing
directly the bisulfited sequencing signal. To this aim, we estimated the correlation between the 126
regions methylation ratios obtained from both techniques by using a Kendall rank correlation
coefficient for each methylation context and for global methylation (cumulated information for all
methylation contexts). We also conducted a hierarchical cluster analysis of the global methylation
at the 126 DMRs of epiRILs and Col-wt, and then compared the hierarchical clusters by using
cophenetic correlation coefficients. We also annotated the 126 DMRs using the PlantGDB
database (Dong et al.,, 2004) and the Assembly version: AtGDB TAIR9/10 v171
(https://plantgdb.org/AtGDB/).

DNA hypomethylation can release TEs that can potentially impact gene expression and
compromise genome integrity (Slotkin and Martienssen, 2007; Johannes et al., 2009; Reinders et
al.,, 2009). Novel TE insertions have been shown to contribute to phenotypic variability in A.
thaliana epiRIL populations (Mirouze et al., 2009; Reinders et al., 2009). However, several studies
on A. thaliana epiRILs did not find that novel TE insertions contributed to phenotypic variation
(Johannes et al., 2009; Reinders et al., 2009; Cortijo et al., 2014; Kooke et al., 2015; Bewick et al.,
2016). These studies qualified these insertions as rare and random; most of them were found to
be neutral (Ossowski et al., 2010; Cortijo et al., 2014; Kooke et al., 2015; Quadrana et al., 2019).
Most of these insertions are described as private, i.e., found in a single epiRIL, at the hemizygous
state (Quadrana et al., 2019). TEs are often considered not to affect estimates of phenotypic
variation and DNA methylation polymorphism estimated on the basis of multiple epiRILs because
their effect would be diluted in a population made of multiple epiRILs as a result of DMRs differing
by definition between epiRILs (Schmitz et al., 2011; Cortijo et al., 2014; Kooke et al., 2015). Our
in silico resampling approach also warrants our results against any bias produced by a given
epiRIL by making any such potential effect infinitesimal. In the absence of resequencing approach,
changes in copy numbers of private TE insertions affecting a given epiRIL phenotype cannot be
strictly excluded.
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Results

DNA methylation and phenotypic traits vary

We assessed and confirmed that the two A. thaliana experimental populations harbored DNA
methylation polymorphism and trait variation in the Columbia wild type (Col-0) genetic background.
Each experimental population (n = 180 plants per population; Figure 1A) consisted of a different
set of 60 distinct epigenetic recombinant inbred lines (epiRILs) out of the 123 available epiRILs
produced in A. thaliana (Schmid et al., 2018; see material and methods for details).

Molecular epigenomic sequence data covering the whole genome were used to confirm the
integrity of the DMRs in the epiRILs on the basis of three biological replicates per epiRIL for 24
epiRILs. This molecular analysis confirmed that epiRILs differed as expected by harboring DNA
methylation polymorphism in the form of 126 Differentially Methylated Regions (DMRs) previously
identified and whose stable inheritance is acknowledged (Johannes et al., 2009; Roux et al., 2011)
(Figures S1 and S2, Tables S1 and S2). Although we do not expect biomass, rosette diameter,
flowering time and height to be independent at the phenotypic level, the extent to which their
variation is associated with DNA methylation polymorphism was found to vary (Roux et al., 2011).
In the two artificial populations, we found 14% to 25% variation (estimated by the coefficient of
variation 100*SE/mean) in above-ground dry biomass (average + SE in populations 1 and 2,
respectively; 0.64 + 0.09 g and 0.60 £ 0.15 g), 12% to 23% variation in rosette diameter (9.7 £ 1.12
cmand 7.7 £ 1.80 cm), 7% to 9% variation in flowering time (27.3 £ 1.92 d and 28.3 + 2.4 d), and
21% to 23% variation in height at first fruit (12.1 £ 2.50 cm and 11.6 + 2.69 cm). Thus, in
accordance with the making of these experimental populations as different subsets of epiRILs, we
found phenotypic trait variation and epigenetic variation in each of these two populations.

DNA methylation stability across generations

We conducted molecular correspondence analyses that confirmed the broad stability of the
126 DMRs. Stability of DNA methylation polymorphism was assessed by comparing the 126 DMRs
(Colomé-Tatché et al., 2012) between reference epiRILs established by Johannes et al., (2009)
and the same epiRILs used in our selection experiments, therefore after regeneration. This
comparison confirmed their molecular correspondence (Figure S1). We used an Enzymatic
Methyl-seq (EM-seq, 26) molecular sequencing approach that provided us with the methylation
status of the whole genome cytosines of 24 epiRILs (12 per experimental population) with a high
sequencing coverage (see methods and Table S3). We found high molecular correspondence by
using the overlapping probe classification approach developed by Colomé-Tatché et al., (2012).
This correspondence reached on average 87%, ranging from 69% to 97%, for the CpG methylation
context and on average 86%, ranging from 64% to 98%, for the CHG methylation context (Tables
S1 and S2). We did not investigate the CHH methylation context because it presents a low
methylation ratio, varies among cells, is often stochastic (Harris & Zemach, 2020) and is less stable
than CpG and CHG contexts (Gouil & Baulcombe, 2016), and was not available in the literature
(Colomé-Tatché et al., 2012). Additionally, we compared the EM-seq data of 126 DMRs with the
published WGBS data available for eight epiRILs (Bewick et al., 2016; Lauss et al., 2018; Kooke
et al., 2019) (Figure S2 and Table S4). We found an average correlation of 0.65 (ranging between
0.49 and 0.79) for the CpG context, and an average correlation of 0.73 (ranging between 0.64 and
0.79) for the CHG context. Furthermore, the hierarchical clustering analysis indicated a high
similarity of the methylation in epiRILs sequenced by both EM-seq and WGBS approaches, with a
high (0.89) cophenetic correlation coefficient (Figure S2). Our results were coherent with the
knowledge that hypomethylation is stable across generations in the CpG context (Mathieu et al.,
2007) and with the stability of hypomethylation in the CHG context where molecular mechanisms
driving modifications differ (Niederhuth & Schmitz, 2014). Although the methylation status is known
to be reversible in DMRs (Reinders et al., 2009; Johannes & Colomé-Tatché, 2011), we detected
a very small number of changes in the 126 DMRSs, illustrating the broad stability across generations
of DNA methylation polymorphism (Tables S1 and S2).
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Our results showed that over the 126 DMRs, which included protein coding genes, intergenic
regions, and TEs, only 25 DMRs included potentially mobile TEs (Ossowski et al., 2010) that could
affect traits of interest (Colomé-Tatché et al., 2012) (Table S5). We therefore identified methylation
changes occurring at these 25 DMRs between the 24 epiRILs sequenced by the EM-seq approach
and the same epiRILs from the reference epiRIL data established by Johannes et al., (2009). Most
of these DMRs did not change. Very few new hypomethylation changes occurred in these DMRs,
a mean of 0.2% (ranging from 0% to 4%) in CpG context, and of 0.3% (ranging from 0% to 4%) in
CHG context. On average 6.3% (ranging from 0% to 32%) of these DMRs in the CG context and
9.6% (ranging from 0% to 36%) of these DMRs in the CHG context reverted from a hypomethylated
state to the wild-type methylation state that is known to silence TEs and therefore keep the integrity
of the genome structure (Tables S1 and S2).

DNA methylation stability across generations

In the progeny, we found significant divergence in response to selection between high and low
selection lines in terms of rosette diameter and height in both populations (Table 1).

Table 1 - Selection differential (S), response to selection (R) and heritability (h?) for
every selection line. Weak selection: selection by truncation of the upper and the
lower third (n = 60) of Arabidopsis thaliana plants ranked by trait values to compose
high and low selection lines (HSL and LSL, respectively). Strong selection: same
method but selecting by truncation of the upper and lower ca. 11% (n = 20) of plants.
Values in bold are true estimates of selection differentials or statistically significant
responses to selection and heritability estimates. Other values in italics should be
considered non-significantly different from zero. R is presented as trait change in
trait units (g, cm, d) and percentage change. Narrow-sense heritability (h?)
calculated by the breeder’s equation is in fact broad-sense heritability (H?) in self-
fertilizing plants. Selection was considered significant following a conservative
approach avoiding sampling bias; when the 95% Confidence Intervals of average
trait values estimated on the basis of 1000 bootstraps did not overlap between upper
and lower selection lines (Table S6). Biomass: above-ground dry biomass (g).
Diameter: rosette diameter (cm). Flowering time (d). Height: Height at first fruit (cm)

Weak selection Strong selection
LSL HSL LSL HSL
Pop Trait s R H: S R H: S R H? s R H?
1 Biomass 0.07 ?1'9/:) 0os 007 ?1'9/:) 013 0.16 ?2'9/02) 01 0.14 ?1'9/:) 0.06
Diameter 0.87 ?5'?;/3) 0.48 089 ?5'?;/:) 046 1.90 ?7'5’/?) 031 174 ?é‘f/g 0.38
o 0.85 0.80 1.28 1.81
Flowering time  1.36 (3%) 0.63 1.34 (3%) 0.60 2.65 (5%) 0.48 3.41 (6%) 0.53
Height 0.41 0.41 1.28 1.50
185 (o 022 185 0. 022 380 (S, 034 394 %o 038
2 Biomass 0.02 0.02 0.03 0.05
011 (Gop 021 011 oh 049 024 ggn 041 023 ZoA 0.2
Diameter 0.97 ?éf/f) 057 1.69 ?éz/f) 042 176 ?ég/Z) 0.38  3.90 (11'13:;)) 0.29
Flowering time 0.28 0.22 0.87 0.62
163 o0 017 172 oh 043 277 0 031 488 o0 043
Height 0.99 0.90 2.04 1.47
211 gy 047 191 on 047 405 (lg 050 460 o 0.32

We found trait changes in response to selection for size traits in both replicate populations of
epiRILs, changes for flowering time, but not under every selection treatment, and no change for
biomass. Statistical significance was established by lack of overlap between 95% Confidence
Intervals (Cls) of trait means, which is a conservative approach (Ho et al., 2019). Divergence was
also found in most cases for the flowering time, with the exception of population 2 where it was
non-significant after weak selection. This discrepancy between population 1 and 2 may be
attributed to the different periods at which populations 1 and 2 were grown, and the longer storage
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of seeds before growing population 2 GO plants, or the fact that populations 1 and 2 were made of
a different set of epiRILs. No significant response to selection was detected for the above-ground
biomass, in both populations at both selection intensities. The largest trait change after selection
was found for height at first fruit, with a 16% reduction observed in the LSL and a 13% increase in
the HSL, but most trait changes were around 3 to 8 percent (Table 1). Strong selection logically
generated larger trait changes in response to selection, but also more variable and therefore less
predictable selection responses (Wilson & Rambaut, 2008), as illustrated by larger 95% Cls (Table
S6). Heritability, which is the heritable part of phenotypic variation that is available to selection,
was estimated as the proportion of phenotypic variation available for selection to act upon by using
the breeder’'s equation (Lush, 1937). It was absent for biomass, which had not changed in
response to selection, but relatively high for height at first fruit, rosette diameter and flowering time
(ranging from 0.13 to 0.63, Table 1), all of which changed after selection.

DNA methylation stability across generations

We tested whether responses to selection are mirrored by changes in epigenetic allele
frequencies at DMRs. After selection, we observed modifications of these frequencies (see the
heatmap in Figure 2 presenting the average frequencies based on 1000 in silico replicates for all
selection and control lines in each experimental population).

Epigenetic allele frequencies after selection
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Figure 2 - Selection experiment drives changes in epigenetic frequencies. Changes
in epigenetic allele frequencies after selection: The heat map presents DMR
frequencies in G1 selection lines (LSL: low selection line and HSL: high selection
line) and control groups (CG) for each of the four traits (BIOM: above ground dry
biomass, DIAM: rosette diameter, FLTM: flowering time, HGHT: height of first
silique) in populations 1 and 2. DMRs location on the five chromosomes are labelled
on the left-hand vertical axis. Methylation frequencies of DMRs are represented by
a colored band, with a gradient from blue (wild-type methylation status) to yellow
(fixation of ddm1-2 mutant methylation status). In each panel, DMR frequencies on
a given chromosome are presented for the low, control and high selection lines.
Each column corresponds to a trait. Frequencies were estimated on the basis of

1000 bootstraps.
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We used a Principal Component Analysis (PCA) to reduce the dimensionality of epigenomic
data and summarize its variation distributed over the whole genome into 16 independent variables
that can be statistically analyzed. We found significant epigenetic divergence after selection on
rosette diameter and height at first fruit in both populations (lack of overlap between 95%
confidence intervals for PCA coordinates on the first dimension, representing 18% and 22% of the
global DMR variation in populations 1 and 2, respectively, other statistically significant PCA
coordinates are not presented because they explained very little variation, Figure 3). Thus, the
divergent selection for wider and narrower rosette diameters led to opposite changes in the
frequency of cytosine methylations in the same genetic background. A similar epigenetic response
to selection was observed after divergent selection for smaller and higher plant height at first fruit.
Phenotypic selection for either increased or decreased above-ground biomass did not trigger a
significant phenotypic change in response to selection. It was therefore not surprising to observe
the absence of significant epigenetic divergence in this trait between selection lines. Interestingly,
selection for earlier and later flowering plants, which had resulted in moderate responses to
selection in population 1 and almost no response in population 2, did not drive statistically
significant epigenetic changes (Figure 3).

Weak selection (low, high)

Biomass - ——— (1)
Diameter A }'@—'{_.._
Flowering time - - S —

Height { © o IS S
Biomass —_— e
Diameter - :

Flowering time e ——

Height - (S)

Strong selection (low, high)

Biomass - —— o
Diameter © i M
Flowering time _._I_
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Diameter © ——H '

Flowering time A ——
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65-4-32-1012 3 4
PCA coordinates (dimension 1)
Statistically significant @ Populationo ore

Figure 3 - Epigenetic divergence or its lack thereof between selection treatments.
Epigenetic divergence for each Arabidopsis thaliana epiRIL population (pop 1 and
2), each trait, each selection strength (n = 60 for each line under weak selection, n
= 20 for each line under strong selection), and line (high and low selection lines) of
plants. Principal Component Analysis coordinates for the first dimension (PC1),
which synthesizes 18% and 22% of the global DMR variation in populations 1 and
2 respectively, are presented with their 95% confidence intervals. Divergence was
considered significant following a conservative approach avoiding sampling bias:
when 95% Confidence Intervals of PC1 values estimated on the basis of 1000
bootstraps did not overlap between upper and lower selection lines. Significant
epigenetic divergent responses to selection are shown in red.
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Discussion

Theory predicts that selection can also act on transgenerational epigenetic variation, even
without a contribution of genetic variation (Bonduriansky and Day, 2009, Danchin et al., 2011).
Evidence for epigenetic divergence between populations sharing different histories of adaptation
suggests such shaping of epigenetic trait variation by selection in both plants and animals (Herrera
and Bazaga, 2010, Zhang et al., 2013, Baerwald et al., 2016, Groot et al., 2018, Schmid et al.,
2018, Johnson and Kelly, 2020, Vernaz et al.,, 2021, Lemmen et al., 2022). Our selection
experiment contributes to advancing this knowledge by providing a test confirming this expectation
in real time over a single generation of selection, through the comparison of epiRIL experimental
populations of A. thaliana surveyed before and after selection. Our results corroborate previous
work on the inheritance of epiRIL trait variation (large heritability of height and flowering time) or
lack thereof (negligible heritability of dry biomass) (Roux et al., 2011). We also found surprising
results because rosette diameter, which was originally expected to lack heritability based on
previous work (Roux et al., 2011), showed some ability to change under selection, which indicates
heritability. Yet it is not rare to observe discrepancy between heritability estimates based on the
phenotypic variation of related individuals and those based on the actual response to selection
(Barton and Turelli, 1989, Pujol et al., 2018).

Our experimental results show that selection can act on stable transgenerational epigenetic
variation presumably without a contribution of genetic variation. Our findings therefore imply the
contribution of DNA methylation polymorphism to short-term adaptation in natural A. thaliana
populations. It is reasonable to expect that the selection response observed here over one
generation could be reproduced over several generations, as theory would predict for genetic
variation. It is however difficult to predict whether this response would gradually decrease as a
result of the erosion of DMRs underlying trait variation, or whether epistatic interactions between
DMRs would maintain the amount of heritable variation. Much remains to be learnt about
transgenerational mechanisms underlying the epigenetic response to selection. Highly demanding
studies requiring high throughput phenotyping and epi-genotyping are needed to fill in this gap in
the theory.

One of the limitations of our experimental setting is that it does not allow us to predict whether
the epigenetic response to selection plays a predominant role in nature, where selection is a much
more complex mechanism. In nature, selection will not target independently genetic and epigenetic
components of fitness-related traits (Pujol et al., 2018). Natural selection will affect simultaneously
all components of fitness variation, which encompasses tightly linked genetic and epigenetic
variation, some reversible methylation patterns and hypomethylation driven release of TEs
modifying the integrity of the genome structure.

One cannot exclude that high copy numbers of private TEs might affect the phenotype of a
given epiRIL. Our findings imply that the likelihood is low and the potential effect greatly diluted by
our resampling approach since the weight of a given epiRIL could only affect one thousandth of
our result. Our selection experiment should therefore have mostly targetted epiRIL phenotypic
variation directly caused by DMRs but caution is necessary because it may act occasionally on
genomic variants caused by high copy number TEs, which release would be due to
hypomethylation.

Our study in plants provides direct experimental evidence for heritable epigenetic changes in
response to selection based on size. Lack of statistically significant epigenetic response for traits
that changed in response to selection (Figure 3), in particular flowering time, may reflect that its
epigenetic architecture consists of one to few loci whose variation was not captured by our
statistical approach. Epigenetic allele frequencies at DMRs reflected divergent epigenetic changes
in the progeny of high and low selection lines in each population, notably under strong selection
(Figure 2). Since sets of epiRILs differed between populations, selection lines and control groups,
it is therefore legitimate to observe different frequencies for a given trait or chromosome region
between populations, and to denote the signature of selection depicted by a similar enrichment of
epigenetic alleles on the heatmap (Figure 2).
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Our study did not aim to infer which causal epigenetic variants were responsible for which
phenotypic trait value, but rather to test for an epigenetic response to selection. It is nevertheless
interesting to note that the range of artificially induced epigenetic trait variation in A. thaliana
epiRILs is similar to the heritable fitness-related trait variation observed in divergent natural
populations (Roux et al., 2011). Although the DNA methylation polymorphism of epiRILs is larger
than what can be observed in natural populations (Becker et al., 2011), our results provide us with
evidence that a range of trait epigenetic heritabilities can be used to predict a range of phenotypic
changes in response to selection. Furthermore, as illustrated by Figure 2, LSLs tend to have higher
DNA methylation state variability than HSLs, which appears to be mostly due to Chromosomes 1
and 5. In A. thaliana epiRILs, an increasing DMR frequency represents an increase in the
proportion of ddm1-2 mutant epigenetic alleles in the population. LSLs therefore harbor more
hypomethylated loci than control and HSLs harbor more hypermethylated loci in comparison to
control. This finding suggests that our selection for bigger epiRIL plants that flower later selected
against the hypomethylated nature of epiRILs that was artificially created by using the ddm1
mutation. The artificially induced global hypomethylation of the A. thaliana epiRIL genome
produced smaller plants flowering earlier. In fact, we selected for epigenomes and phenotypes that
are closer to wild-type plants.

The scope for replication in other species of our proof of concept experimental approach is
limited. This is because EpiRIL biological material is only available in very few species (Roux et
al., 2011, Colomé-Tatché et al., 2012). Heritable epigenetic variation for traits influencing fitness
under environmental changes nevertheless exists in both plants and animals (Johannes et al.,
2009, Herrera and Bazaga, 2010, Zhang et al., 2013, Baerwald et al., 2016, Groot et al., 2018,
Schmid et al., 2018, Johnson and Kelly 2020, Vernaz et al., 2021, Lemmen et al., 2022, Stajic and
Jansen 2021), suggesting that our finding may be a common feature in many species. Other
species harboring transgenerational epigenetic variation for fithess-related traits may benefit from
this additional source of short-term adaptive or breeding potential (Kakoulidou et al., 2021,
Gonzalez-Recio et al., 2015).
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