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Abstract
Estimation of abundance and demographic rates for populations of wild species is a
challenging but fundamental issue for both ecological research andwildlifemanagement.
One set of approaches that has been used extensively to estimate abundance of wildlife
populations is Distance Sampling (DS) for line or point transect survey data. The first
implementations of DS models were only available as closed population models, and
did not allow for the estimation of changes in abundance through time. The advent of
open population formulations based on the DS framework greatly extended the scope
of the models, but much untapped potential remains in models that estimate temporal
dynamics not only in abundance but also in the underlying demographic rates. Here, we
present an integrated distance sampling approach that utilizes age-structured survey
data and auxiliary data from marked individuals to jointly estimate population density
and the demographic rates (recruitment rate and survival probability) that drive temporal
changes in density. The resulting model is equivalent to an integrated population model
with two age classes: juveniles and adults. The integrated framework allows making full
use of the available data by effectively combining line transect and telemetry data, and
can easily be adapted to include additional and/or different data types. Moreover, as
demographic rates often respond to environmental variation, our approach also supports
direct estimation of the effects of such environmental covariates on demographic rates.
Through a comprehensive simulation studywe show that themodel is able to adequately
recover true population and vital rate dynamics. Subsequent application to data from
a study of willow ptarmigan (Lagopus lagopus) in Norway showcases the frameworks
ability to recover both fluctuations and trends in population dynamics and highlights
its potential applicability to a wide range of species surveyed using distance sampling
approaches.
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Introduction 

Estimating abundance and demographic rates for wildlife populations is an integral part of basic 

and applied ecology (Skalski et al. 2005; Williams et al. 2002). Over the last few decades, 

tremendous progress has been made towards this end. This progress is partly driven by 

development and application of new field data collection methods and approaches, such as citizen 

science data (Danielsen et al. 2022), camera trap data (Hamel et al. 2013) and the collection of 

environmental DNA data (Beng and Corlett 2020). In addition, developments of novel statistical 

methods alongside decreases in computational costs now allow researchers to estimate 

abundance and demographic rates in situations where it was not feasible before (Zipkin et al. 

2021). Combined, these advances put us in a much better position for estimating quantities needed 

for population management (Williams et al. 2002) and indices relevant for large scale policy 

applications, e.g. Essential Biodiversity Variables (Kissling et al. 2018). 

Until recently, joint estimation of population dynamics and demography has relied mostly on 

data from marked individuals and associated open-population capture-mark-recapture models 

(Schaub and Kéry 2021). While such methods can provide valuable information for both ecological 

research and management, collecting the necessary data is typically costly and logistically 

challenging to implement over large areas. Monitoring programs focusing on abundance trends 

over larger areas, on the other hand, are typically based on data from unmarked animals. One 

often used approach for such surveys is distance sampling (DS). DS has been used for estimating 

animal abundance in a wide range of contexts and for a variety of taxa (Buckland et al. 2015). One 

reason for the method’s popularity is that it requires neither marking of individuals nor repeated 

visits to the same sites for estimating detection probability. This makes DS particularly useful for 

implementation in participatory monitoring programs, allowing stakeholders to take part in the data 

collection process. 

Classical implementations of DS models have used closed-population formulations, i.e. models 

that treat estimates of population density or abundance at different time points as independent and 

do not include an explicit formulation of the process model that links abundance across years 

based on estimates of population growth rate (𝜆) or underlying demographic rates (Buckland et al. 

2015). In recent years, DS approaches have been extended in many ways, including applications 

that estimate changes in abundance over time in open populations via a hidden state model 

representing population dynamics (Moore and Barlow 2011; Sollmann et al. 2015; Schaub and 

Kéry 2021). This has greatly extended the potential of DS approaches for studying ecological 

dynamics across time and space. However, while these latter frameworks may allow to accurately 

quantify population changes, they typically provide little information on the drivers of these 

changes, i.e. the underlying vital rates. In fact, if the data does not contain information about the 

age (and/or sex-) structure of the surveyed population, there is no straightforward way to estimate 

demographic rates from such data. On the contrary, if age (and sex) of detected individuals can 

be determined, this information can be used to provide information on recruitment rates and 

survival probabilities. Nilsen and Strand (2018), for example, used a model based on harvest 

statistics and observations of population age structure to estimate population abundance and 

demographic rates without the need for any additional data from marked individuals. 

Concurrent with the development of more sophisticated DS models, another group of models 

has emerged and rapidly gained popularity, not least for their ability to disentangle demographic 

processes underlying population dynamic: integrated population models (IPMs, Schaub and Kéry 

2021). Through joint analysis of multiple datasets (or multiple components of the same dataset), 

IPMs allow simultaneous estimation of population size and composition, as well as all vital rates 

that form part of an underlying age- or stage-structured population model. Since both DS models 

and IPMs estimate population size/density, a combination of the two frameworks has the potential 

to provide good estimates of both population- and demographic parameters by maximizing 

knowledge gained from transect surveys by augmenting them with other available data (e.g. 

Schmidt and Robison 2020). 
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In this study, we present a new integrated distance sampling model (IDSM) which integrates 

data from line transect distance sampling survey data and survival data from marked animals. The 

model’s core is a stage-structured matrix population model that projects population size from one 

time step to the next based on underlying survival and recruitment rates. We first present the model 

and assess its robustness and performance through applications to simulated data. By doing so, 

we showcase how distance sampling models can be used to not only estimate population density 

but also demographic rates in an IPM setting. Finally, we proceed to highlight the potential of this 

new modelling framework by applying it to a case study involving data collected on willow 

ptarmigan (Lagopus lagopus) in Central Norway. 

Methods 

Integrated distance sampling model 

Our open population integrated distance sampling model (IDSM) consists of two major 
components: a latent structured population model and a set of likelihoods for data originating from 
distance sampling surveys and auxiliary survival monitoring of marked birds. In the example case, 
these auxiliary data come from a radio-telemetry study, but in principle other types of capture-
recapture data can also be used. 

Age-structured population model 

The population model follows a post-breeding census and includes two age classes: juveniles 

(young of the year) and adults (> 1 year of age, Figure 1). This structure commonly used for 

populations of passerine and game birds (Williams et al. 2002; Schaub and Kéry 2021). In the 

context of our willow ptarmigan case study (see below), the population census is set in late summer 

- which is when the annual distance-sampling survey takes place. At this time, the juvenile class 

is about 1 - 2 months old. 

Both juveniles and adults survive from year 𝑡 census to year 𝑡 + 1 census with survival 

probability 𝑆𝑡. We assume that individuals can reproduce already as 1-year olds, meaning all 

survivors may produce offspring in late June which recruit into the population as juveniles just prior 

to the census in year 𝑡 + 1 according to a recruitment rate 𝑅𝑡+1. The changes in densities of 

juveniles and adults in the population, 𝐷𝑗𝑢𝑣 and 𝐷𝑎𝑑, can thus be expressed as: 

𝐷𝑗𝑢𝑣,𝑡+1 = 𝐷𝑎𝑑,𝑡+1 ∗ 𝑅𝑡+1

𝐷𝑎𝑑,𝑡+1 = 𝑆𝑡 ∗ (𝐷𝑗𝑢𝑣,𝑡 + 𝐷𝑎𝑑,𝑡)
 

or, alternatively, in matrix notation as: 

[
𝐷𝑗𝑢𝑣,𝑡+1
𝐷𝑎𝑑,𝑡+1

] = [
𝑆𝑡 ∗ 𝑅𝑡+1 𝑆𝑡 ∗ 𝑅𝑡+1

𝑆𝑡 𝑆𝑡
] [
𝐷𝑗𝑢𝑣,𝑡
𝐷𝑎𝑑,𝑡

] 

Note that recruitment rate 𝑅 is defined as juveniles/adult (not juveniles/female). We assume no 

stochasticity beyond time-variation in vital rates in the model for population density itself, but 

instead treat local population sizes (numbers of birds in age class 𝑎 in year 𝑡 within the area of 

each transect 𝑗, 𝑁𝑎,𝑗,𝑡), as outcomes of a Poisson process with an expected average equaling 𝐷𝑎,𝑡 

times the transect area (see below). Total density 𝐷𝑡 can be calculated as the sum of the density 

of juveniles and adults. We also make the simplifying assumption that there is no age- or sex-

dependence of vital rates, but this assumption could be relaxed by including additional auxiliary 

data (Israelsen et al. 2020; Sandercock et al. 2011). 
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Figure 1 - Graphical representation of the annual ptarmigan life cycle with two age 
classes under a post-breeding census and the data sources included in the 
integrated distance sampling model. Solid arrows represent relationships within the 
ptarmigan life cycle; dotted arrows visualize information flow from data sources to 
parameters. Blue and pink data nodes originate from distance sampling and line 
transect surveys, respectively. Juvenilet = juveniles in year 𝑡. Adultt = adults in year 

𝑡. 𝑅𝑡  = recruitment rate in year 𝑡. 𝑆𝑡 = survival probability from year 𝑡 to 𝑡 + 1. 

Likelihoods for distance sampling data 

The implementation of the modelling framework we present assumes that the distance 

sampling survey data have the following characteristics: 1) the survey consists of line transects, 2) 

animals may be detected alone or in groups, and 3) juveniles and adults can be distinguished 

during surveys. These characteristics are inspired by our willow ptarmigan case study (details 

below). Our model includes three likelihoods for different components of the age-structured 

distance sampling data. First is the likelihood for the perpendicular detection distances from line 

transect, 𝑦, which are linked to distance-dependent detection probability 𝑝𝑦 through a half-normal 

detection function: 

𝑝𝑦 = 𝑒𝑥𝑝 (−
𝑦2

2𝜎2
) 

where 𝜎 is the half-normal detection parameter. We assumed 𝜎 to vary among years (index 𝑡) 
but not between transect lines or animal group sizes. Following Moore and Barlow (2011), the 

resulting 𝜎𝑡 can be used to calculate effective strip width (𝑒𝑠𝑤𝑡) and, consequently, average 

detection probability per line transect with a truncation distance 𝑊 (i.e. the distance in meter 

beyond which observations are discarded) according to: 

𝑒𝑠𝑤𝑡 = √
𝜋 ∗ 𝜎𝑡

2

2

𝑝�̂� = 𝑒𝑠𝑤𝑡/𝑊

 

The estimated average detection probability 𝑝�̂� is an integral part of the second data likelihood 

which relates the observed number of animals in each age class 𝑎, 𝑜𝑏𝑠𝑁𝑎,𝑗,𝑡 (𝑗 = transect) to the 

corresponding true number per transect, 𝑁𝑎,𝑗,𝑡: 
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𝑜𝑏𝑠𝑁𝑎,𝑗,𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑝�̂� ∗ 𝑁𝑎,𝑗,𝑡) 

𝑁𝑗𝑢𝑣,𝑗,𝑡 and 𝑁𝑎𝑑,𝑗,𝑡 are then linked back to the population model by converting them to densities 

through multiplication by 2𝐿𝑗,𝑡𝑊 (where 𝐿𝑗,𝑡 is length of transect 𝑗 in year 𝑡, and 𝑊 is the truncation 

distance). 

The third data likelihood focuses on the counts of adults (𝑜𝑏𝑠𝐴𝑑𝑗,𝑡) and juveniles (𝑜𝑏𝑠𝐽𝑢𝑣𝑗,𝑡) 

observed during the distance sampling surveys and links them to the estimated year-specific 

recruitment rate: 

𝑜𝑏𝑠𝐽𝑢𝑣𝑗,𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅�̂� ∗ 𝑜𝑏𝑠𝐴𝑑𝑗,𝑡) 

Likelihood for radio-telemetry data 

The final likelihood is for the auxiliary telemetry data. It is set up under the assumption of perfect 

detection, and hence known fates, of animals bearing transmitters and links the numbers of 

animals released at the start of season 𝑘 of year 𝑡 to the number of survivors at the end of the 

same season: 

𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑠𝑘,𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑𝑘,𝑡 , 𝑆𝑘�̂�) 

Here, 𝑆𝑘�̂� is the survival probability over the relevant time interval 𝑘 in year 𝑡. The length and 

definition of 𝑘 will be specific to any given study. For the remainder of this article, we define 𝑘 as 

6-month seasons to be consistent with our ptarmigan case study. Consequently, the annual 

survival probability, 𝑆𝑡 that appears in the population model above is calculated as the product of 

two seasonal survival probabilities, 𝑆1𝑡 defined as survival probability from August through 

January, and 𝑆2𝑡 defined as survival probability from February through July. 

Hierarchical models with time-variation in parameters 

Vital rates (survival probabilities 𝑆𝑡, recruitment rates 𝑅𝑡) and detection parameters (half-normal 

detection parameters 𝜎𝑡) can all be modelled as time-dependent in our framework. For both the 

tests with simulated data and the case study described below, we implemented log-normally 

distributed random year effects on recruitment rate and detection probability. In the case study, we 

additionally included a covariate effect (see details below) on log recruitment rates, resulting in the 

following model: 

𝑙𝑜𝑔(𝑅𝑡) = 𝑙𝑜𝑔(𝜇𝑅) + 𝛽 ∗ 𝑐𝑜𝑣𝑡 + 𝜖𝑡 

𝜇𝑅 represents the mean recruitment rate if the covariate 𝑐𝑜𝑣𝑡 is centered around 0 (e.g. z-

standardized) or a baseline recruitment rate corresponding to 𝑐𝑜𝑣𝑡 = 0 if the covariate is not 

centered. 𝛽 the slope of the covariate effect, and 𝜖𝑡 the normally distributed random effects. 

In both simulations and the case study, we treated survival as time-invariant. This was 

motivated by our case study: previous research has relatively low interannual variation in survival 

of our focal ptarmigan population (Israelsen et al. 2020) and the telemetry data used in this study 

has limited potential for accurately estimating time-variation as it is relatively sparse. We note, 

however, that also survival could be modelled as time-dependent if sufficient data is available. 

Model testing with simulated data 

We assessed the model’s overall performance and ability to estimate abundance, demographic 

rates, and detection parameters without bias by testing it on simulated data. We generated a total 

of 10 simulated datasets in five steps. First, we simulated 15-year time-series of survival and 

recruitment rates from biologically plausible values for averages and – in the case of recruitment 

– among-year variation in demographic rates (survival was held constant across years). Second, 

we used the yearly demographic rate and realistic initial population densities to simulate stochastic 

population dynamics in 50 distinct sites. Third, we simulated the grouping of individuals in each 

site by first determining the expected number of groups in a site (based on the average group size 

of 5.6 from our ptarmigan data) and then distributing individuals among groups via multinomial 

trials. Fourth, we assigned a distance from transect line to each group and simulated the line 

transect survey in all 50 sites across 15 years. Finally, we simulated 5-year time-series of radio-

telemetry data (= survival from one year to the next) for a subset of individuals (30 per year on 
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average) using the simulated survival probabilities for each relevant year. We then fit the IDSM to 

each of the 10 simulated datasets three times, using distinct seeds for both simulating initial values 

and initiating and running the MCMC. Model implementation for simulated data tests was largely 

identical to that for real data and is described in detail below. For assessing model performance, 

fit, and bias, we 1) compared model estimates to the true values of parameters used for data 

simulations visually, 2) correlated estimated and true values, and 3) calculated two metrics to 

measure bias: the proportion of samples above the true value (corresponding to Bayesian p-

values) and the root-mean square deviation (RMSD). 

Case study 

To demonstrate the applicability of the IDSM to real data, we applied it to a case study of willow 

ptarmigan, a small grouse species with a has a circumpolar distribution (Fuglei et al., 2020). In 

Norway, there has been a long-term decline in willow ptarmigan abundance across more than a 

century (Hjeljord and Loe 2022), but in the last few decades abundance trends have fluctuated 

substantially both across time and space. Willow ptarmigan is a valued game species (Andersen 

et al. 2014), and there have been several long-term research projects devoted to understanding 

how they respond to environmental variation and harvest management (Israelsen et al. 2020; 

Sandercock et al. 2011). A key insight from across several study areas is the annual recruitment 

rate (i.e. 𝑅𝑡 in our model, as outlined above) is highly variable, and is affected both by spring 

conditions (Eriksen et al. 2023) and the abundance of small rodents, which constitute alternative 

prey for common predators (i.e. the Alternative Prey Hypothesis, see Hagen 1952; Kausrud et al. 

2008; Bowler et al. 2020). Adult survival show less inter-annual fluctuations (Israelsen et al. 2020), 

although variation due to e.g. harvest management is evident when comparing across studies 

(Israelsen et al. 2020; Sandercock et al. 2011). 

Our case study was based on an ongoing long-term research project on willow ptarmigan in 

Lierne municipality in Central Norway (approximately 62.4 degrees north and 13.2 degrees east). 

The study area is located in a sub-alpine ecosystem, and the landscape is a mosaic of open heath 

and shrub vegetation (dominated by Ericacea, willow shrub Salix spp., and dwarf birch Betula 

nana), interspersed with bogs and forest patches (mainly birch Betula spp.). The climate is strongly 

seasonal, with snow typically covering the ground from October/November through April/May. 

From this study system, two datasets were used for the case study: 

• Data from a line transect survey program targeting willow ptarmigan operated under 

the natural resources management authorities (2007-2021, ongoing) 

• Data from an individual-based monitoring programme based on radio collared willow 

ptarmigan (2015-2021, ongoing) 

Line transect survey data were collected in August each year, prior to the annual autumn 

harvest season, as part of the program “Hønsefuglportalen”. Hønsefuglportalen is a national 

program for line transect surveys of tetraonid birds, and the effort is directed mainly towards willow 

ptarmigan habitats. In our case study, we used data from the western part of Lierne municipality. 

Line transects are surveyed by trained volunteers that use pointing dogs to locate the birds. When 

located, the geographical coordinate, perpendicular distance from the sampling line, the number 

of birds in the group, as well as the age (juvenile or adult) and sex of the birds are recorded. As 

the surveys are conducted in early August, juveniles can be distinguished from adults by their 

smaller body size. Males and females are mainly distinguished by sound (males often make a 

characteristic sound when being flushed). Observers are trained to distinguish age classes and 

sexes, but incomplete identification can occur. In this application we assumed that the resulting 

“unknown” age and/or sex class birds were in fact juveniles (see discussion for further 

considerations). Besides bird observations, field workers also record whether (1) or not (0) they 

encounter small rodents on any transect line, allowing the proportion of transect lines with small 

rodent detection to be used as measure of rodent occupancy (covariate ranging from 0 to 1). After 

data are collected they undergo quality control, get standardized based on the Darwin-Core 

standard (Wieczorek et al. 2012), and made publicly available as a sampling-event data set 
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published through GBIF (Nilsen et al. 2023). For additional description of the data collection 

procedures, see Bowler et al. (2020), Kvasnes et al. (2018) and Nilsen et al. (2023). 

The radio-telemetry data is the result of an individual-based longitudinal study over the period 

2015-2021. Each winter (in February-March), willow ptarmigan were located at night using 

snowmobiles and large hand nets with prolonged handles, as described in (Israelsen et al. 2020). 

High-powered head lamps were used to dazzle the birds and allow capture. Captured birds were 

fitted with a uniquely numbered leg ring (~ 2.4g) and a Holohil RI-2BM or Holohil RI-2DM radio 

transmitter (~ 14.1g) and subsequently released. The radio transmitters had an expected battery 

lifetime of 24 months (RI-2BM) or 30 months (RI-2DM), and included a mortality circuit that was 

activated if a bird had been immobile for 12 hours. We monitored the birds throughout most of the 

year by triangulation from the ground at least once a month for 10 months of the year (February – 

November) by qualified field personnel. A number of birds dispersed out of the main study areas 

and was thus out of signal range for field personnel on the ground. To avoid loss of data, we 

conducted aerial triangulation using a helicopter or airplane three times a year (May, September 

and November) in the years 2016-2020. In the analysis here, we assume that the telemetry data 

is representative for the entire duration of study period (2007-2021), despite its collection only 

starting in 2015. Data on marked birds were collected with highest concern to animal welfare, 

under legal authorisation from the Norwegian Food Safety Authority (IDs 8477, 15166 and 22919).  

Bayesian model implementation 

We implemented the model in a Bayesian framework using NIMBLE version 1.0.1 (de Valpine 

et al. 2017) in R version 4.3.1 (R Core Team 2023). The likelihood for line transect observation 

distances was set up using a custom half-normal distribution developed by Michael Scroggie as 

part of the “nimbleDistance” package (https://github.com/scrogster/nimbleDistance). We used non-

informative uniform priors (with biologically reasonable boundaries where possible) for all 

parameters. We assumed constant survival and time-varying recruitment rate in models fit to both 

simulated and real data. 

For the model fits to simulated and real data we ran 3 (simulated) or 4 (real) MCMC chains with 

NIMBLE’s standard samples for 100k iterations. 40k thereof were discarded as burn-in prior to 

thinning with factor 20, leaving us with 3k posterior samples per chain (total of 12k samples per 

run). MCMC parameters were chosen to yield a representative number of samples from converged 

chains, and convergence was determined based on visual inspection of trace plots. Posterior 

samples from the model fitted to real data are available at Nilsen and Nater (2024) (in folder 

PosteriorSamples_LierneCaseStudy). 

Results 

Model performance on simulated datasets 

Models fit to simulated datasets reached MCMC convergence within the implemented 100k 

iterations. Chain mixing was good for all parameters except average recruitment rate (𝜇𝑅); for this 

parameter, an elevated degree of autocorrelation was visible in the MCMC chains in some of the 

replicate runs, but models still produced posterior distributions that well represented the true value 

used in simulations (Figure 2). 
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Figure 2 - Vital rate and detection parameter averages estimated from 10 distinct 
sets of simulated data (= colors) using three model fits each. First columns depicts 
posterior densities from each model run relative to the true value used to simulate 
data (black dashed line). Second and third columns visualize the distributions of 
Bayesian p-values (proportion of samples > true value) and root-mean square 
deviations (RMSD) for all model runs, respectively. Purple lines and numbers mark 
the mean values across all model runs; dashed black line (second row only) marks 
the ideal Bayesian p-value of 0.5. 

Posterior estimates relative to true values, Bayesian p-values, and RMSD for parameters 

estimated in three model fits to each of 10 simulated data sets are shown in Figure 2 and Figure 3. 

Overall, the IDSM was able to correctly estimate the majority of parameters from all 10 simulated 

datasets without substantial systematic bias. The replicate runs for each dataset resulted in very 

similar posterior distributions, demonstrating that the models converged towards the same 
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posterior distributions irrespective of starting values. This may not seem to be the case for survival 

parameters (Figure 2), but this is largely due to the relatively low number of individuals in the 

simulated telemetry data; estimated posteriors match up well with simulated numbers of survivors 

in each datasets, and the averages of Bayesian p-values fell very close to 0.5 (= no bias). For 

time-variation in recruitment rate (𝜎𝑅), on the other hand, the average Bayesian p-value indicated 

a potential for overestimation (p = 0.697), and this is consistent with the relatively large spread of 

Bayesian p-values for year-specific recruitment rates (Figure 3). Across all years, the correlation 

between predicted and true recruitment rates was very high, yet closer inspection showed that 

slight over- and under-estimation was present for certain years across all replicates (see 

supplementary figures in folder SimCheck_byDataSet in Nilsen and Nater (2024)). This was also 

the case for year-specific estimates of population density and detection probability, but both were 

slightly more likely to be underestimated than overestimated (Figure 3). 

 

Figure 3 - Annual population density (𝐷𝑡), detection probability (𝑝𝑡), and recruitment 

rate (𝑅𝑡) estimated from 10 distinct sets of simulated data (= colors) using three 

model fits each. First column depicts the relationship between posterior medians 
from each model run and the true value used to simulate data (purple solid line = 
relationship estimated from linear model with a = intercept and b = slope; black 
dashed line = perfect correlation; c = estimated correlation coefficient). Second and 
third columns visualize the distributions of Bayesian p-values (proportion of samples 
> true value) and root-mean square deviations (RMSD) for all model runs, 
respectively. Purple lines and numbers mark the mean values across all model runs; 
dashed black line (second row only) marks the ideal Bayesian p-value of 0.5. And 
equivalent figure showing posterior samples instead of posterior means is available 
in the supplementary material on OSF. 
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Case study on willow ptarmigans in Central Norway 

Having evaluated the overall performance of our model on simulated data, we used data from 

our case study in Lierne to estimate abundance, vital rates and detection probabilities from a real-

world data set. Like the model fits to simulated data, convergence was reached within the given 

amount of iterations and mixing was good, albeit with somewhat higher chain autocorrelation for 

the intercept in the recruitment model. Ptarmigan population density was estimated with a marked 

increase across the study period, from < 10 ptarmigan / 𝑘𝑚2 in 2007 to > 35 ptarmigan / 𝑘𝑚2 in in 

2021 (Figure 4). The increase was most distinct from 2016 and onward. 

The average probability of detecting individuals and groups of ptarmigan within transect line 

areas was 0.61 (95% C.I = 0.57 - 0.65), and estimated with a detection decay parameter 𝜎 of 95.3 

(95% C.I = 82.18 - 110.43). Detection probabilities were highest in the start of the study and in the 

period 2016-2019 and lowest from 2010-2012. The relationship between detection probability and 

distance and changes in detection over time are visualized in supplementary figures 

“DetectionProb_distance.png” and “TimeSeries_pDetect.png” in Nilsen and Nater (2024). 

 

Figure 4 - Estimated density of willow ptarmigans in Lierne from 2007 to 2021. Solid 
line represents the posterior median, ribbon marks 95% credible interval. 

Average survival probability for August - January (𝑆1) was estimated at 0.46 (95% C.I = 0.42 - 

0.5) while average survival probability for February - July (𝑆2) was estimated as 0.64 (95% C.I = 

0.59 - 0.7) (Figure 5 A). Annual survival probability 𝑆, given by the product of 𝑆1 and 𝑆2, was 

estimated at 0.3 (95% C.I = 0.29 - 0.31), Figure 5 A). 

Recruitment (𝑅𝑡) was allowed to vary across years (see model specification), and estimates 

displayed large inter-annual variability (Figure 5 C, Figure S1). While the mean (baseline) 

recruitment 𝜇𝑅 was estimated as 2.7 (95% C.I = 2.3 - 3.2) the yearly recruitment rates ranged from 

1.2 in year 2012 to 4.9 in year 2007. 

Given the available data, the IDSM was not able to estimate a clear effect of small rodent 

abundance on ptarmigan recruitment (slope-parameter for the z-standardized rodent occurrence 

data = 0.062 ; 95% C.I. = -0.2 - 0.31, see supplementary figure “Rep_betaR.R.png” in Nilsen and 

Nater (2024)). 
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Figure 5 - Posterior densities of A) seasonal survival, B) average annual survival, 
and C) recruitment rate. For the latter, the yellow distribution is for the intercept, 
representing a baseline recruitment rate when rodent occupancy is low. The 
turquoise distributions are for year-specific estimates or recruitment rate, with darker 
colors indicating later years. For a visualization of the time-series of recruitment 
rates, see supplementary figure “TimeSeries_rRep” on OSF. 

Discussion 

We developed an integrated population model that jointly analyses line transect distance 

sampling survey data and data from marked individuals to estimate population abundance, survival 

probabilities, and recruitment rates over time. We first used simulated data to examine the model’s 

ability to retrieve the underlying parameters when they were known. We then fitted the model to 

data from an ongoing field study on willow ptarmigan in Norway to showcase its applicability to 

real wildlife monitoring data. 

Open population formulations of the distance sampling model have previously been presented 

and applied to various ecological systems (Sollmann et al. 2015; Bowler et al. 2020; Moore and 

Barlow 2011). The model presented here extends those previous applications by formulating the 

underlying population process model as a stage-structured matrix model (Caswell 2000) in which 

the matrix elements are represented by annual survival probabilities and recruitment rates. While 

this has been the common approach for a range of other statistical modelling frameworks, including 

the growing suite of models falling into the category of integrated population models (Schaub and 

Kéry 2021), the integration of mechanistic population models into distance sampling frameworks 

is rather new. The resulting modelling framework allow us to make maximum use of distance 

sampling data in combination with auxiliary information both from the distance sampling survey 
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itself (i.e. information on age, sex, etc. of observed animals) and from other types of monitoring, 

and enables estimation not only of changes in population density but also of underlying vital rates 

over time. 

In general, the model did a good job at recreating the underlying parameters when fitted to 

simulated data with known underlying true parameter values. The simulated data sets were based 

relatively wide ranges of parameter values, yet model posteriors included the true values in almost 

all cases. While there seems to be potential for overestimating time variation in recruitment rates, 

this bias did not propagate into estimates of year-specific recruitment rates (Figure 3), and may be 

related to the subpar mixing of the intercept of the recruitment model. The model was more likely 

to under- than overestimate detection probabilities and population densities, but bias in these 

estimates was generally small and spread out across time-series, i.e. bias did not seem to arise 

disproportionately at e.g. the starts or ends of time-series. Simulated data tests also revealed that 

telemetry data simulated with an average of 30 individuals may be too sparse to obtain robust and 

generalisable estimates of seasonal survival probabilites. This could be investigated further by 

repeating simulated data runs with different average numbers of individuals in the telemetry data, 

but we chose not to go down this path here as we were primarily interested in model performance 

given the amounts of data that are currently available for our ptarmigan case study. Based on the 

simulated data tests presented here, we conclude that the IDSM is able to provide meaningful and 

sufficiently accurate and robust estimates of demographic parameters from age-structured 

distance sampling data, provided that the input data are unbiased (with respect to the underlying 

model formulation). 

Real data, however, are likely to be subject to certain biases, which may result in biased 

parameter estimates unless accounted for. One type of bias that is likely to be common for age-

structured distance sampling data arises from failure to (correctly) classify the age class of 

observed individuals. In our case study on willow ptarmigan in Norway, such misclassification is 

likely to happen at an unknown rate, even if the size difference between adult and juvenile birds 

are quite substantial during the survey. Moreover, The probability for misclassificiation might be 

related to both the timing of the survey (e.g. mid August rather than early August), it might vary 

between observers, and even by survey conditions. Observations with incorrectly classified age 

have the potential to introduce bias in the IDSMs relative estimates of survival and recruitment. 

This is due to the way it uses the distance sampling data to estimate survival and recruitment rates. 

In our process model, the population growth rate (𝜆) is determined by the survival and recruitment 

rate in the following way: 𝜆 = 𝑆 + (𝑆 ∗ 𝑅), and this creates a dependence between the demographic 

parameters. If the age ratio in the data are biased or contain frequent misclassifications, this is 

likely to affect the relative contribution of survival and recruitment to the growth rate. To get an idea 

of the potential effect of this on parameter estimation, we checked the sensitivity of the output of 

the model fit to real data with regard to the treatment of birds classified as “unknown sex and age” 

by the field personnel (see Methods). In the model version presented in the results section, we 

made the assumption that these birds were in fact juveniles. Comparing estimates to an alternative 

scenario in which we discarded all birds classified as “unknown sex and age” (see supplementary 

figures in Nilsen and Nater (2024)) we found that – as expected – estimated population density 

was virtually unaffected by the treatment of “unknown sex and age” observations, while the annual 

demographic parameters shifted proportional to the amount of “unknown sex and age” 

observations in the given year (towards higher recruitment and lower survival). Thus, biases in the 

reported age ratios may affect estimations of demographic rates, but not so much population 

density. Since the proportion of “unknown sex and age” observations in our ptarmigan case study 

was low (< 3% of observations), potential biases in estimates resulting from age misclassification 

are expected to be small. Nonetheless, future developments of the IDSM modelling framework 

should focus on ways of accounting explicitly for misclassification of age class in the field. 

The density estimates that we derived from the case study on Willow ptarmigan in Norway is 

comparable to previous estimates from across Norway (see e.g. Sandercock et al. 2011; Kvasnes 

et al. 2014a). Throughout the study period from 2007 - 2021, the density increased markedly, but 

the reason for this increase is not known. Compared to previous studies on ptarmigan (see e.g. 
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Israelsen et al. 2020; Sandercock et al. 2011), we could have expected somewhat higher estimates 

of survival probability. One potential reason for the overall lower estimates obtained here is that 

our IDSM analysis assumed constant survival over the period 2007-2021 while survival, in reality, 

may have changed over time. If survival in more recent years, when telemetry data was collected 

(and the study of e.g. Israelsen et al. 2020 was carried out) was higher than in earlier years – 

something that seems likely given population increase over recent years – an average over the 

entire time period is expected to be lower. On a different note, we can also not exclude the 

possibility of a small degree of bias in survival estimates due to misclassification of age in the data 

(see above), especially seeing as the IDSM’s recruitment rate estimates also appear somewhat 

high compared to other studies on willow ptarmigan (Eriksen et al. 2023; Kvasnes et al. 2014b; 

Steen et al. 1988). As the ptarmigan case study served as an illustrative example for the IDSM 

framework in this article, we did not further investigate alternative models, such as implementations 

with time-varying survival or different treatment of uncertainty in age and/or sex. The model lends 

itself easily to such extensions, however, and methods such as posterior predictive checks and 

WAIC will be useful for assessing and optimizing the fit of the model to data from relevant case 

studies (Hooten and Hobbs 2015; Conn et al. 2018). 

In addition to estimating demographic rates from line transect data, the IDSM also allows 

including relevant environmental effects on the demographic rates themselves, and not just on 

population growth rate as a whole (𝜆). In the ptarmigan case study we thus attempted to investigate 

the effect of small rodent abundance (approximated as the proportion of transect lines on which 

rodents were reported each year) on recruitment rate. We were not able to detect a clear effect of 

rodent abundance due to large uncertainty associated with the estimate (see Supplementary 

Figures “Rep_betaR.R.png” in Nilsen and Nater (2024)). This may seem somewhat surprising 

given that such a pattern has been reported repeatedly in the literature (see e.g. Bowler et al. 

2020). We speculate that there are at least three potential and not mutually exclusive explanations 

to this result. The first is that our covariate data may not have been well suited for estimating effects 

on recruitment. The data on rodent abundance was zero-inflated, and the annual variation in the 

index was rather small otherwise, making for a covariate with relatively little information content. 

While this may be partially a consequence of how these data are collected, it is also well known 

that the amplitude and regularity of the rodent cycles has been fading in recent decades (Kausrud 

et al. 2008; Cornulier et al. 2013), and our study area might be no exception. Similar patterns have 

been seen in other rodent data sets collected from this region (Nilsen, E.B., pers obs). Lack of 

peak rodent years in the time series to which we fitted the model may thus also have contributed 

to making effect estimation challenging. Second, it is possible that rodent effects were obscured 

by other, potentially stronger, covariate effects. Previous research has shown that ptarmigan 

recruitment is also sensitive to the weather in the late winter and spring (before and during the 

breeding season); as we did not fit any weather covariates to the model, there is a possibility that 

effects of spring conditions in certain years may have masked any remaining effects of small rodent 

abundance. Finally, the data set used in this analysis is relatively short (15 years), leaving us with 

somewhat limited statistical power to detect effects of temporal covariates. Taken together we 

therefore do not consider this study as a particularly strong test of the underlying effect of small 

rodent fluctuations on ptarmigan recruitment rates. It is worth noting that future applications could 

increase statistical power by including either more years of data or capitalizing on space-for-time 

substitution as the Norwegian ptarmigan monitoring programme spans many more locations 

beyond Lierne. Bowler et al. (2020), for example, used data from the same sampling program but 

from more areas using a simpler open population DS model, and detected a very clear signal from 

small rodent abundance on ptarmigan population growth rate. An extension of our IDSM to include 

data from multiple areas therefore constitutes a promising approach for investigating to which 

extent similar results emerge by linking environmental covariates to the actual demographic rates 

and not only just to the resulting population growth rates. 

The new IDSM framework presented here is relevant for many wildlife populations that are 

surveyed using line transect sampling that includes additional information on age, sex, and/or life 

stages of the observed individuals. Following the integrated modelling philosophy, the IDSM also 
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allows for the integration of auxiliary data. In our application here, we integrated data from radio-

telemetry of marked birds, which explicitly supported the estimation of survival probabilities. The 

IDSM framework is very flexible, however, and open to the inclusion of additional/other auxiliary 

data that contains information on demographic rates or population size/density. Moreover, the 

hierarchical nature of the model makes is straightforward to adapt to different species and to 

include different suites of environmental covariates on the demographic rates. Finally, it constitutes 

a modelling framework that is well suited for extension to multiple areas and thus able to capitalize 

on space-for-time substitution (Lovell et al. 2023) to produce large-scale and spatially explicit 

estimates of population density, demographic rates, and environmental effects from large-scale 

(participatory) monitoring. 
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