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Abstract
Convergent evolution describes the process of different populations acquiring similar
phenotypes or genotypes. Complex organisms with large genomes only rarely and only
under very strong selection converge to the same genotype. In contrast, independent
virus populations with very small genomes often acquire identical mutations. Here we
test the hypothesis of whether convergence in early HIV-1 infection is common enough
to serve as an indicator for selection. To this end, we measure the number of convergent
mutations in a well-studied dataset of full-length HIV-1envgenes sampled from HIV-1
infected individuals during early infection. We compare this data to a neutral model
and find an excess of convergent mutations. Convergent mutations are not evenly dis-
tributed across the env gene, but more likely to occur in gp41, which suggests that con-
vergent mutations provide a selective advantage and hence are positively selected. In
contrast, mutations that are only found in an HIV-1 population of a single individual
are significantly affected by purifying selection. Our analysis suggests that comparisons
between convergent and private mutations with neutral models allow us to identify pos-
itive and negative selection in small viral genomes. Our results also show that selection
significantly shapes HIV-1 populations even before the onset of the adaptive immune
system.
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Introduction  

Convergent evolution is ubiquitous in nature. Phenotypic convergence is the repeated and 
independent evolution of a particular phenotype. Textbook examples are the evolution of flight, which 
occurred in bats, birds and insects independently, or the evolution of the eye, which arose many times 
independently across the tree of life (Serb, Eernisse 2008). We can also observe convergent evolution at 
the level of the genotype, which usually occurs when organisms are under extremely high selection 
pressure. Well known examples are the evolution of antibiotic resistance through the acquisition of 
mutations in the same gene or even at the same position in that gene (Lindsey et al. 2013; Farhat et al. 
2013) or the evolution of cancer, which usually involves a driver mutation in a typical cancer or cancer 
suppressor gene (Miki et al. 1994). Convergent evolution in viruses is particularly common due to the small 
and functionally constrained viral genomes (Crandall et al. 1999; Wichman et al. 2000; Bull et al. 2004; Xue 
et al. 2017).  

To study convergent evolution in viruses we focus on one of the best studied human viruses: Human 
immunodeficiency virus type 1 (HIV-1). HIV-1 is an RNA virus with a small genome and an extremely high 
mutation rate. The high mutation rate allows the virus to evade the human immune response and persist 
for years within the host (Coffin 1995; Koenig et al. 1995; Borrow et al. 1997; Goulder et al. 1997; Wei et 
al. 2003; Trkola et al. 2005; Liao et al. 2013). Over this time span HIV-1 evolves and acquires a large number 
of mutations (Shankarappa et al. 1999; Lemey et al. 2006; Keele et al. 2008; Poon et al. 2010).  

During early infection of HIV-1 when immune escape does not seem to play a major role for HIV-1 
evolution, HIV-1 evolution has been modeled as a neutral process (Lee et al. 2009; Giorgi et al. 2013). 
Similarly, diversification rates of the virus population have been shown to largely adhere to a molecular 
clock (Herbeck et al. 2011; Park et al. 2016). However, the adherence to a molecular clock does not mean 
that there is no selection during early HIV-1 infection. It is more likely that the fast accumulation of neutral 
mutations obscures selective footprints. Selection is more visible once viral phenotypes are taken into 
account. Typical phenotypes considered include the set-point viral load, which designates the average level 
of the virus during the chronic disease stage, or disease progression. For example, high evolutionary rates 
have been shown to correlate with fast disease progression and strong selection has been shown to 
correlate with slower disease progression (Boutwell et al. 2010; Garcia-Knight et al. 2016). Hence the data 
suggests that strong immune selection constrains viral diversification and hence leads to low evolutionary 
rates, which in turn leads to lower set point viral loads and therefore lower levels of disease progression. 

Selection can be measured in various different ways: (1) Probably the most common way of 
determining selected nucleotide sites is by comparing the evolutionary rates of non-synonymous 
nucleotide sites to those of synonymous sites (dN/dS) on a phylogenetic tree (Kosakovsky Pond et al. 2008; 
Wood et al. 2009; Boutwell et al. 2010; Yoshida et al. 2011). (2) If population sequence data that spans 
multiple time points is available then it is possible to identify positively selected sites by assessing the 
change in mutant frequency over time (Henn et al. 2012; Foll et al. 2014). (3) More recently it has been 
demonstrated that it is possible to determine nucleotide sites under selection by analyzing the distribution 
of those sites across a gene (Zhang, Townsend 2009; Zhao et al. 2017).  

Here we will focus on yet another way of determining nucleotide sites affected by selection: measuring 
the frequency of convergent mutations across different HIV-1 populations from different hosts (i.e. we 
define an HIV-1 population as all viruses from the same infected individual). Convergent mutations are 
mutations that occur in independent HIV-1 populations in parallel. More specifically convergence requires 
that two populations that share the same nucleotide at a specific position in the genome acquire the same 
mutation. However, due to the small HIV-1 genome it is possible that convergent mutations are the result 
of chance and not selection. Appropriate null models are necessary to distinguish adaptive from neutral 
mutations (Stayton 2015). Once we have made the distinction between selected and accidental 
convergence we reserve the term convergent mutation for mutations that occur in parallel in different 
populations.  

By comparing mutations from HIV-1 populations to a random null model, we identify convergent 
mutations that are positively selected for. To this end we reanalyze a dataset of full length env genes 
sampled from infected individuals during early infection (Keele et al. 2008; Li et al. 2010). We find that 
some mutations are over-represented in the Keele and Li datasets compared to a neutral model. These 
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convergent mutations are significantly skewed towards gp41. This biased distribution of mutations 
indicates that convergent mutations are positively selected. In contrast, the biased distribution of private 
mutations (mutations that are found in a single HIV-1 population only) towards high diversity sites in the 
env gene suggests that private mutations are strongly affected by purifying selection. Hence our results 
show that HIV-1 is under a range of selection pressures immediately after infection of a new host even 
before the onset of the adaptive immune system. 

Results  

We reanalyzed two datasets from previous studies on the evolution of HIV-1 during early infection of 
a single founder virus.  The samples are estimated to have been taken less than 50 days after infection 
(Keele et al. 2008; Li et al. 2010).  In total there are 95 env sequence alignments each from a single HIV-1 
infected individual. 

 

Figure 1. Convergent mutations are unusually frequent during early infection of HIV-1. Comparison 
between nucleotide mutations observed in one or more HIV-1 populations. Each HIV-1 population is 

isolated from a different infected individual. The Keele and Li data is compared to a neutral model of the 
same number of mutations as observed for each HIV-1 population using the same substitution rates as 

measured from the Keele and Li data. Data generated under the neutral model show the mean and 
standard deviations of 1000 simulations. 

Convergent mutations are unlikely under a neutral model of evolution 
We observed convergent evolution for a large number of the 1059 mutations identified in the Keele 

and Li datasets (Figure 1, Supplementary Data 1, Supplementary Data 2). We compared the mutations 
observed in the Keele and Li data to 1000 random distributions of the same number and identical 
substitution rates as observed in the data (Supplementary Figure 1, Figure 1). When we redistributed 
mutations we distributed the same number of mutation we observed in each infected individual across the 
genome of this individuals HIV-1 consensus sequence. We also maintained transition and transversion 
rates of the original mutations. In a comparison with the neutral model we found that mutations occurring 
in three or more populations in parallel are overrepresented in the Keele and Li dataset. Mutations 
occurring in more than five HIV-1 populations in parallel are even more inconsistent with the neutral 
model. The number of convergent mutations declines linearly on a log scale for the neutral model. We do 
not see a linear decline for the Keele and Li data. Instead the decline levels off for highly convergent 
mutations (Figure 1). For example, there is one mutation that occurs in seven individuals in parallel, the 
likelihood to observe this in a neutral model is about 0.001. For lower levels of convergence the deviation 
between neutral model and observation is still significant. For example, in our simulations we observe on 
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average one mutation that occurs in four HIV populations in parallel. In contrast, there are four such 
mutations in the Keele and Li data (Figure 1).  

In total we determined 10 mutations that occur in four or more HIV-1 populations for which we expect 
to see a total of only one mutation under a neutral model of evolution (Table 1). Among these mutations 
there is one synonymous convergent mutation, which occurs in five populations in parallel. Mutations that 
occur in three populations in parallel are also overrepresented. We expect about 12 such mutations under 
our neutral model but observe 20 in the Keele and Li data. In 5 out of 1000 neutral models we observed 20 
or more mutations occurring in parallel. Hence, probably some of the 20 mutations are positively selected. 
The exact identity and number of these mutations cannot be determined by considering parallelism.  

Despite the exclusion of hypermutated sequences the majority of the convergent mutations are G to A 
mutations (observing 6 out of 10 G to A mutations occurs in only 808 out of 10,000 random trials when we 
randomly draw mutations out of all observed mutations in the Keele and Li data, p=0.0808). Even though 
G to A mutations are not significantly overrepresented the number of G to A mutations is high and it is 
possible that residual or low APOBEC activity has caused some of these mutations. To test this hypothesis 
we analyzed the mutations that occur in all hypermutated sequences (sequences that contain four or more 
mutations) contained in the full dataset that we have excluded from the previous analysis. Only 30 HIV 
populations contain sequences with four or more mutations. The mutations in these sequences are 
predominantly G to A mutations (65% compared to 36% in the data lacking hypermutated sequences). 
Despite the low number of HIV populations that contain hypermutated sequences, mutations are shared 
in this dataset. The most common mutation occurs in nine HIV populations and is also the most common 
mutation in the dataset lacking hypermutated sequences (G7668A). The next two most common mutations 
occur in four HIV populations in parallel, one of them also occurs in the dataset lacking hypermutated 
sequences (G8311A). In total, six of the 10 convergent mutations also occur in hypermutated sequences. 
Of these six mutations, three occur in the hypermutated dataset in two or more HIV populations. If we 
exclude those three mutations as these may still be the result of residual APOBEC activity then there are 
seven mutations that are likely the result of positive selection. Among these seven mutations three are G 
to A mutations. Observing three or more G to A mutations is a very likely outcome of a sampling experiment 
when using the observed substitution rates (6551 out of 10,000 trials, p=0.6551).  

 

Figure 2. Convergent mutations are predominantly located in gp41. (A) Shows the positions of 
mutations across the env gene on the x-axis and the number of HIV-1 populations the mutations were 
observed in on the y-axis. Red bars indicate the mean of all positions of the mutations that occur in the 

same number of HIV-1 populations. (B) Shows whether there is a significant difference (adjusted p-value 
on y-axis) in the distribution of mutations before a certain position in the env gene compared to after this 

position. There is no significant signal for the distribution of private mutations (blue line). The red line 
shows the adjusted p-values for the distribution of mutations that occur in at least three HIV populations 

in parallel. The lowest p-value is found at nucleotide position 1438 in the env gene (position 7663 in 
HXB2, 479 in the env protein). For convergent mutations, a low mutation density region was identified by 
MACML (Zhang, Townsend 2009) and is indicated in green. The end of this region is also the minimum of 
the adjusted mutation distribution p-value from above. The black vertical line indicates the start of the 
Gp41 protein, a fusion protein that is part of the env gene. Black dots above the blue line indicate the 

positions of mutations that occur in three or more HIV-1 populations. 
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Convergent mutations occur predominantly in gp41 
Convergent mutations are also differently distributed across the env gene compared to mutations that 

only occur in a single HIV-1 population (private mutations).  Convergent mutations are more likely to be 
located at the end of the env gene (Figure 2). Private mutations are relatively evenly distributed across the 
entire env gene. The mean of the positions of private mutations is 439, which is very close to half the length 
of the env gene (428). However, the mean increases for mutations that occur in more than one HIV-1 
population.  

Table 1. Convergent mutations occurring in four or more HIV-1 populations in parallel. 

Nuc. Mut. AA Mut. Freq.# Subtype freq.* 
of mutation1 

env part Observed in other 
studies 

Identi-fied 
by Wood 
et al. 

C6420T H66Y 4(1) 0 gp120 --- Y 

A7770G M516V  
4 

0 gp41 --- N 

A8226G S668G 4 1 gp41  Confers 
neutralization 
sensitivity (O’Rourke 
et al. 2012)  

N 

G8552A D84N 4(2) 47 REV  --- N 

G8624A A108T 5(1) 31 REV  --- N 

A7745G Q507Q 5 49 gp41  --- N 

G8561A E87K 5 8 REV  --- N 

G8311A R696K 5(4) 6 gp41  --- Y 

G7752A E510K 6(1) 163 gp120 Reversion from E to 
the database 
consensus K. 

Y 

G7668A E482K 7(9) 1 gp120  Most common 
mutation observed 
in an in vivo 
experiment with 
humanized mice 
(Ince et al. 2010). 

Y 

*Frequency of mutant in subtype consensus out of 170 sequences 
#Frequency of mutation in hypermutated sequences from 30 different HIV populations 

When dividing the env gene at every possible position and comparing the number of mutations 
observed before and after this position then we find, again, that there is not a single position that shows a 
significant difference between the distribution of mutations for the 5’ and 3’ end of the gene after adjusting 
for multiple testing (Figure 2B). However, mutations that occur in three or more HIV populations show very 
significant differences in their distribution. We found the largest difference at position 479 (adj. p-value 
1e-12), separating the 5’ part of the env gene with few mutations from the 3’ part with many mutations. 
The 3’ part of the env gene encodes for Gp41, a protein responsible for forming the six-helix bundle during 
cell fusion with the host cell (Chan et al. 1997; Skehel, Wiley 1998; Melikyan et al. 2000).  
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Figure 3. Private mutations show lower proportions of non-synonymous mutations than expected 
by chance. The proportion of synonymous mutations in the Keele and Li data compared to a neutral 
model (randomly distributed mutations,1000 simulations). For each randomization the number of 

mutations in each convergence category (x-axis) was kept constant. A “—“ means there is no significant 
difference between the neutral model and the Keele and Li data, whereas a “*” means that the 

proportion of non-synonymous mutations in the Keele and Li data was lower in at least 950 out of 1000 
simulations. Mutations in overlapping reading frames are excluded. The error bars show standard 

deviations.  

Private mutations are more likely to cause synonymous changes 
The proportion of synonymous mutations in the Keele and Li data differ significantly from the 

predictions of a neutral model for private mutations (Figure 3). For private mutations we observe more 
synonymous mutations in the Keele and Li data than expected under a neutral model. This phenomenon 
can probably be explained by purifying selection. Purifying selection has probably led to the disappearance 
of non-synonymous mutations due to lethal or highly deleterious effects. The disappearance of lethal and 
highly deleterious mutations then leads to an overrepresentation of synonymous mutations in the data 
set. Generally synonymous mutations are more likely to have less deleterious effects because they do not 
change the amino acid sequence of proteins.  

 

 

Figure 4. Private mutations occur in positions of high nucleotide diversity. The figure shows the 
nucleotide diversity (mean and standard deviation) at nucleotide positions, for which Keele and Li 
mutations were identified (orange) as well as the positions for 1000 individual random mutation 
distributions (turquois). The positions of the same number of mutations we observe in N HIV-1 

populations was randomized in the neutral model. The diversity was determined at each position in the 
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env consensus sequence alignment of all 95 HIV-1 populations (see Methods). A diversity of 1 means that 
all nucleotides observed at a certain position occur at equal frequencies. “***” indicates that among 

1000 simulations there was not a single simulation that showed a mean diversity higher or equal to that 
observed in the Keele and Li data. “—“ indicates that there was no significant difference between the 

diversity observed in the Keele and Li data and 1000 random distributions of mutations. 

Private mutations are found significantly more frequently in regions of high diversity  
Private mutations are mutations that we only see in a single HIV population in our dataset. These 

mutations are not simply a sample of all mutations that occur during the replication of HIV. Rather, because 
viral genomes replicate for more than one generation, the appearance of a mutation is the result of 
mutation and selection (see measuring mutation rates literature (Mansky 1996)). Selection will act because 
mutations that, for example, introduce stop codons in the middle of an essential gene will be lost in the 
next generation. Those kinds of mutations we expect to be underrepresented in our set of 770 env 
mutations. The distribution of those 770 mutations across the env gene does not seem particularly biased, 
as clustering approaches have shown (Figure 2).  

Other than the location of mutations across the gene, we can also measure nucleotide diversity at each 
site in the env gene. We measure nucleotide diversity in an alignment of all 95 different consensus 
sequences. For these measures we do not take the mutations that we have observed in the Keele and Li 
data into account. For comparison to a neutral model, we randomly distribute mutations across the entire 
env gene and measure the mean diversity across all 770 positions. Interestingly the mean diversity of 
randomly distributed mutations in 1000 independent simulations was always lower than the mean 
diversity at the positions, at which the Keele and Li mutations occurred (Figure 4). This means that 
mutations do not occur in low diversity regions in the Keele and Li data. We propose that this pattern is 
caused by purifying selection, i.e. when mutations occur at low diversity sites they cause strongly 
deleterious or lethal phenotypes that will not leave offspring in the viral population and hence will be 
underrepresented in the Keele and Li dataset. 

Non-synonymous private mutations occur in highly diverse regions of the env gene 
The significantly higher proportion of synonymous mutations does not cause the significantly higher 

nucleotide diversity for private mutations. We can understand the causal relationship by comparing the 
nucleotide diversity of synonymous and non-synonymous mutations and their effect sizes for randomly 
distributed mutations.  

 

Figure 5. Nucleotide diversity of private non-synonymous and synonymous mutations in the Keele 
and Li data compared to our neutral model. The blue lines indicate the mean diversity of all private 

mutations. The purple line indicates the diversity of the neutral model if we adjust the proportion of 
synonymous mutations to that observed in the Keele and Li data. The red line shows the mean diversity 
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of randomly distributed mutations if the proportion of synonymous mutations and the diversity of 
synonymous mutations is set to that observed in the Keele and Li data. Error bars show standard 

deviations. 

The nucleotide diversity of all private Keele and Li mutations is on average 0.26, the mean diversity of 
private mutations from a set of randomly distributed mutations is 0.22 (the maximum of all 1000 
randomizations is 0.24, Figure 5). The nucleotide diversity at synonymous sites increases from a mean of 
0.29 for randomly distributed mutations to 0.3 in the Keele and Li data. The mean diversity of non-
synonymous sites increases from 0.19 in the randomization to 0.24 in the Keele and Li data. Hence, non-
synonymous mutations deviate much more from the neutral expectation than synonymous mutations, 
which are almost identical to the neutral expectation.  

If we set the proportion of synonymous sites in one of our random simulations to the value observed 
in the Keele and Li data then the nucleotide diversity increases only slightly from 0.217 to 0.221 (purple 
line in Figure 5). If we instead increase the diversity of non-synonymous mutations to that observed in the 
Keele and Li data, then the mean diversity increases by 0.04, a ten-fold difference in effect size compared 
to increasing the proportion of synonymous mutations. This demonstrates that the increased proportion 
of synonymous mutations is not the main driver for the significantly higher nucleotide diversity of private 
mutations compared to our neutral simulation. Instead, the differences in diversity can be explained by 
non-synonymous mutations that are more likely to occur at highly diverse sites of the env gene (see also 
Supplementary Figure 2).  

If purifying selection is the cause for the observed distribution of non-synonymous mutations then non-
synonymous mutations do not preferentially occur in high diversity regions of the gene (although 
mutational hot spots could also cause part of the signal). Instead non-synonymous mutations in conserved 
regions are absent from the data because these mutations are likely to cause highly deleterious changes, 
which immediately disappear from the population. We do not see this bias in synonymous mutations 
because synonymous mutations are more likely to cause neutral or only slightly deleterious changes. 
Hence, it is more likely for us to observe the complete spectrum of synonymous mutations.  

Therefore we can infer that non-synonymous mutations in low diversity regions have very strong 
negative effects on viral fitness. As one would expect these effects are much smaller for synonymous 
mutations where the difference between neutral model and Keele and Li data is much smaller (Figure 5). 
Nevertheless, there is a difference (although small) between the neutral model and Keele and Li data for 
synonymous mutations and we also identify one synonymous convergent mutation (Table 1) suggesting 
that synonymous mutations can have non-neutral effects on HIV-1 evolution.  

Discussion 

Convergent evolution, here defined as acquiring identical mutations in independent evolving 
populations, can be a good indicator for selection when a large number of independent populations can 
be sampled. In our example, mutations that emerge more than three times in independent HIV populations 
are very unlikely to occur in parallel by chance. Furthermore convergent mutations occur preferentially in 
gp41, which is not the case for private mutations and hence supports the hypothesis that convergent 
mutations are positively selected.  

Gp41 is the C-terminal part of Env and responsible for fusion with the host cell (Chan et al. 1997; Skehel, 
Wiley 1998; Melikyan et al. 2000). It is conceivable that increased fusion efficiency with the host cell 
provides significant fitness benefits even during exponential growth in the early stages of infection by HIV-
1. An example for one of these mutations is E510K. This mutation is a reversion from a relatively rare amino 
acid to the database consensus (Foley et al. 2013; Davey et al. 2014). Reversions to ancestral states have 
been observed to continue for years after infection, consistent with our observation (Carlson et al. 2014). 
The most common mutation E482K (occurs in seven infected individuals) is not in gp41 but has also been 
observed in a previous experiment as the most common mutation in a humanized mouse experiment (Ince 
et al. 2010). However, we also find that E482K is even more common in hypermutated sequences (occurs 
in nine out of 30 HIV populations), which could mean that E482K is induced by APOBEC activity and may 
not be positively selected.  
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Wood et al. identified 36 env positions that are potentially under strong positive selection (Wood et al. 
2009) mainly using methods based on dN/dS measurements. We identified a total of 10 mutations that 
occurred in four or more populations and among these seven that likely arose due to positive selection 
(Table 1). Only four mutations are shared between our list and the list published by Wood et al. We identify 
five novel putatively selected sites one is a synonymous site and hence could not have been identified with 
dN/dS. There are several reasons for the small overlap between the mutations identified by us and by 
Wood et al. First, because we wanted to exclude mutations caused by APOBEC as well as sequences that 
are unlikely to replicate due to a high mutational load, we excluded all sequences that contained three or 
more mutations compared to the consensus sequence. Second, Wood et al. have not included the Li 
dataset and hence only used 81 infected individuals instead of 95 in their analysis. Third, it is likely that 
some non-convergent mutations are also positively selected. These mutations may be beneficial only in a 
particular host and hence it would be impossible for our analysis to identify such mutations. Fourth, we 
have not included mutations that occur in three HIV-1 populations in parallel in our list, although about 
eight of those mutations are potentially the result of positive selection. Wood et al also identified one of 
the 20 mutations that occur in three populations in parallel (E322K) as under positive selection.  

Although an excess of convergent mutations compared to a neutral model is a good indicator of 
selection, the strength of selection is difficult to infer from the number of convergent mutations. A 
mutation that occurs in a large number of individuals may be a mutation that is beneficial in a large number 
of different environments. Such a mutation may still have a smaller fitness effect than a mutation that 
increases the viral fitness only in a single environment but deleterious in the rest. Nevertheless, it is likely 
that the convergent mutations we identified have large fitness effects, as they need to have significantly 
increased in frequency since infection to be present in the Keele and Li dataset. It is possible to explicitly 
simulate the evolution of HIV-1 and to thus infer fitness effect distributions of convergent mutations (Bons 
et al. 2018).  

One major advantage for identifying selected sites by analyzing convergent mutations over 
identification of selection in time course experiments is that linkage effects do not have to be considered. 
Mutations that rise in frequency in a population as the result of selection can sometimes also lead to 
sweeps of neutral or even detrimental mutations. However, the probability that an identical mutation 
hitchhikes multiple times independently with a beneficial mutation to fixation or high frequency should be 
similar to that of our neutral model. Hence hitchhiking mutations should not become convergent 
mutations. 

Finally, our work also raises the question of why these mutations have not been present in the ancestral 
strain if they arose in parallel in up to 7% of all subjects. There may be multiple reasons for this 
phenomenon. First, it is possible that the observed mutations are only beneficial in a small proportion of 
all hosts. Second, it is possible that the convergent mutations we observed are beneficial during 
exponential growth but do not confer benefits after the immune response takes effect and hence will be 
lost during later stages of infection.  

One could also wonder why there are only few mutations that occur in parallel in few hosts. This may 
be because mutations that are beneficial in most environments (human hosts) have probably already 
swept through the entire HIV-1 population and are now part of the consensus sequence. There may have 
been more convergent evolution early on during the HIV-1 epidemic when HIV diversity was low and the 
virus was still adapting to the human host. 

Methods 

Identification of mutations 
The Keele and Li datasets consist of full-length env sequence alignments from a total of 102 and 30 

infected individuals, respectively, containing on average 29 (minimum of 11 to a maximum of 63) full-length 
env sequences per infected individual amplified by single genome amplification (Keele et al. 2008; Li et al. 
2010). The sequences are from viruses at different stages of early infection but each infected individual 
was sampled only once. In 78 of the 102 infected individuals from the Keele study and in 17 out of 30 
infected individuals of the Li study the infection was likely caused by a single founder strain. We only 
analyzed those sequence alignments (a total of 95), because it becomes almost impossible to distinguish 
mutations from recombination events for the other cases (Keele et al. 2008).  
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We defined a mutation as a change from the consensus sequence of the virus population. The 
consensus sequence of each HIV-1 population is likely to be identical to the most recent common ancestor 
or even the sequence of the founder virus (Keele et al. 2008). Between infected individuals the consensus 
sequences differ. Hence to be able to compare mutations between individuals we also aligned all 
sequences to each other. 

Mutation comparison between HIV populations 
To be able to compare mutations that occurred in virus populations from different infected individuals 

we aligned all of 95 alignments to each other as well as a reference sequence (HXB2). Alignments were 
performed using Clustal-Omega with standard settings (Sievers et al. 2011). Mutations that occur in virus 
populations of different infected individuals that changed the same consensus nucleotide to the same 
mutated nucleotide are considered identical.  

Neutral mutation distribution model 
To assess whether the number of observed convergent mutations is indicative of selection we 

compared the Keele and Li data to a neutral model. We constructed the model in the following way: 
1) We determined all possible mutations for each consensus sequence individually to generate a pool 

of mutations from which we can later randomly draw mutations. 
2) To make sure that our results are not affected by mutation biases we amplified mutations according 

to their respective substitution rates measured from the Keele and Li dataset. First we counted the 
frequency of each of the twelve possible substitutions (A to C, A to G…). We normalized the lowest value 
in the substitution matrix to one and the remaining values in the matrix were scaled up accordingly. Each 
mutation from step one was amplified by the respective value in the substitution matrix. 

3) This means for each of the 95 individual HIV-1 populations we end up with a set of possible mutations 
that are normalized by substitution frequency (e.g. G to A substitutions are more frequent than G to C 
mutations). From these normalized sets of mutations we randomly draw mutations without replacement 
(we cannot draw the same mutation twice). The number of mutations we draw is determined by how many 
mutations were originally observed in each of the 95 HIV-1 populations (identical mutations are only 
counted once!).  

4) For the resulting dataset convergence analyses can be performed.  
5) We repeated step 3) and 5) 1000 times to obtain statistically robust results. 

Randomly distributing mutations keeping the number of convergent mutations constant 
To compare characteristics of convergent mutations to a neutral null model we randomized mutations 

for each convergence category (i.e. mutations occurring in different numbers of HIV-1 populations). In this 
randomization, we (1) maintain substitution rates; (2) maintain the origin of the mutation, i.e. mutations 
are randomly selected from the same HIV-1 population where they were observed in the Keele and Li 
dataset; and (3) only chose identical mutations if they were identical in the Keele and Li datasets.  

Measuring nucleotide diversity 
Here we define nucleotide diversity as Shannon entropy at a certain position 𝑖 for all consensus 

sequences. 

(1) 𝐻𝑖 = − ∑ 𝑝𝑗  𝑙𝑜𝑔#𝑏𝑎𝑠𝑒𝑠 𝑎𝑡 𝑝𝑜𝑠 𝑖𝑗∈{𝐴,𝑇,𝐶,𝐺} 𝑝𝑗  

Where 𝑝𝑗  is the proportion of nucleotide 𝑗 in all consensus sequences at reference position 𝑖. 

The diversity at a particular position in the env gene was determined by calculating the Shannon 
entropy across all positions of a consensus sequence alignment. To normalize the diversity value to a range 
from 0 to 1, we determined the number of different bases present in all consensus sequences at each 
position and used this number as the base for the logarithm. Hence a diversity of 1 means that all observed 
nucleotides at a certain position occur in equal quantities. If only a single nucleotide occurred at a given 
position then the nucleotide diversity was set to 0. 
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Measuring the proportion of synonymous mutations 
For each mutation we can determine whether it causes a synonymous or non-synonymous change. The 

proportion of synonymous mutations is the number of synonymous changes divided by the number of total 
changes. For Figure 3 we excluded all positions from 8379 to 8653 in the HXB2 reference sequence because 
this region overlaps with the rev reading frame. 

Measuring differences in the distribution of mutations across the env gene 
We performed a chi-square test that tested whether the number of mutations before a given position 

is significantly different from the number of mutations after this position for the corresponding sequence 
lengths. This means we performed a total of 2623 chi-square tests. We then adjusted the p-values from 
these test for multiple tests with the Bonferroni Correction. All tests were used as implemented in R 
(Team). 

Figures 
Figures were created using cowplot and ggplot2 (Wilke 2016; Wickham 2016). 
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Supporting Information 

Supplementary Data 1. Position of all identified mutations in the env gene. This file contains detailed 
information about the identity of the observed mutations. It provides the position in the HXB2 genome, 
the amino acid change they cause in the different genetic backgrounds and the number of HIV-1 subtypes 
(out of a total of 170) the mutations occurs in (Bertels et al. 2021), 
https://doi.org/10.5281/zenodo.5574871. 

Supplementary Data 2. Position of all identified mutations in the rev exon part of the env gene. Same 
as Supplementary Data 1, except that only mutations and amino acid substitutions in the rev exon 2 are 
shown (Bertels et al. 2021), https://doi.org/10.5281/zenodo.5574871. 

 

Supplementary Figure 1. Convergent mutations are unusually frequent during early infection of 
HIV-1. Same as Figure 1 except that mutations occurring in more than three HIV populations 

independently were grouped together. 
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Supplementary Figure 2. Correlation between the presence of nonsynonymous and synonymous 
mutations with diversity across the env gene. Linear clusters were computed with MACML (Zhang, 

Townsend 2009). 

Supplementary Program. With this program one can redo the analyses and simulations of the 
manuscript (Bertels et al. 2021), https://doi.org/10.5281/zenodo.5574871.  
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