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Abstract
Wildfire events are increasingly recognized as agents of taphonomic alteration in archae-
ological contexts. This study applies causal and statistical modeling to assess the impact
of thermal alteration on lithic assemblages in the San Matías Gulf region of Northern
Patagonia, Argentina. Utilizing data derived from naturalistic sampling after recent wild-
fires, we developed a Directed Acyclic Graph (DAG) to identify key mediators and po-
tential confounders affecting lithic fragmentation. A minimal adjustment set was deter-
mined to isolate the indirect effect of fire on mechanical alterations, and Random Forest
classifiers were trained to evaluate the predictive power of variables such as pebble
shape, fissures, and rock type. Comparison between models based on original and syn-
thetically balanced datasets revealed significant improvements in classification accuracy,
particularly for unfractured samples. The results emphasize the central role of shape in
fracture likelihood, and demonstrate the utility of synthetic resampling and causal in-
ference for interpreting complex taphonomic processes in observational archaeological
data. Experimental findings corroborate the observed patterns, supporting the potential
generalizability of the proposed causal model across fire-affected contexts.
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Introduction 

In recent decades, causal models have gained increasing relevance in scientific research 
(Pearl & Mackenzie, 2018; Bulbulia, 2024; Snodgrass et al., 2024; among others). However, their 
adoption remains limited in the social sciences, where causal inference from observational data is 
commonly avoided or replaced by correlational analyses. While predictive approaches have 
proven useful for anticipating patterns in data, they often do so at the expense of theoretical 
interpretability and external validity. As Shmueli (2010) argues, explanation and prediction are 
distinct analytical tasks, each with its own goals and assumptions. Prediction focuses on empirical 
accuracy, whereas explanation requires identifying theoretically grounded causal relationships. In 
observational and ethnographic contexts, such as those discussed by Snodgrass et al. (2024), 
causal inference is key to understanding how certain practices or social processes generate 
observable effects (see also McElreath & Koster, 2024). Similarly, Deffner et al. (2022) contend 
that without a formal framework for explicitly representing causal relationships, even the mere 
description of phenomena across populations can lead to misinterpretations. Therefore, this study 
adopts an approach that complements traditional statistical techniques with causal modeling to 
analyze the mechanisms underlying the formation of surface lithic assemblages. One of the most 
powerful tools in causal modeling is the use of directed acyclic graphs (DAGs). DAGs provide a 
visual and mathematical framework for formalizing the causal assumptions underlying statistical 
analyses, thereby enhancing the transparency and reproducibility of research (McElreath & Koster, 
2024). By explicitly illustrating the causal structure, DAGs help researchers identify potential 
sources of bias, such as confounding variables, and guide the selection of appropriate covariates 
for adjustment. Furthermore, they facilitate the application of causal inference techniques, such as 
the backdoor criterion or instrumental variables, to estimate causal effects more accurately. Their 
utility extends beyond theoretical modeling, as they also serve as a communication tool, enabling 
researchers to clearly convey complex causal relationships to diverse audiences. 

In this work, we first explore the theoretical foundations and practical applications of causal 
inference models, highlighting their relevance to naturalistic research in archaeology. Particular 
emphasis is placed on the integration of these models into common research. Following this, we 
present a model specifically designed for experimental analyses, which is informed and validated 
using data derived from a naturalistic sample. Subsequently, a random forest classification tree is 
employed to quantify the effect of fire (not directly observed) on the probability of rock fracture 
throughout mediation (observed) variables, offering a nuanced understanding of the processes at 
play. The results are used as a foundation, alongside the causal model, to determine the minimum 
number of variables that need to be adjusted in order to estimate the effect of fire on pebbles in 
naturalistic contexts. Finally, we discuss the role of the occurrence of wildfires along the northern 
coast of Argentinian Patagonia in the formation of lithic landscapes, providing insights into the 
long-term impacts of such events on the archaeological record. 

Observational data 

The San Matías Gulf (Río Negro Province, Argentina) encompasses an extensive coastline 
stretching approximately 380 linear kilometers (Figure 1). The region is characterized by a 
temperate semi-arid climate, with an average annual temperature of 12°C and precipitation ranging 
between 100- and 350-mm. Prevailing winds originate from the western quadrant (NW, W, and 
SW), with maximum recorded speeds of approximately 90–100 km/h. The strongest winds typically 
occur between September and January. Vegetation is predominantly shrubby and corresponds to 
the Monte phytogeographic province (Oyarzabal et al., 2018). These environmental conditions — 
marked by low rainfall during summer months, elevated temperatures, and low relative humidity 
— create a high susceptibility to wildfires, particularly during specific months that constitute the 
regional “fire season” (Zacconi & Toppazzini, 2018; Sottile et al., 2018). 

Within this context, a wildfire event occurred during the summers of 2019 and 2020, affecting 
a broad area within the study region (Figure 1). Based on local reports and satellite data (FIRMS), 
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the wildfire in the study area occurred naturally in a low-density shrubland without active firefighting 
measures such as water application or direct extinguishing in the sampled locations. 
Consequently, the rocks were not subjected to rapid cooling by water, which is known to cause 
distinct thermal shock fracturing patterns. This absence of artificial fire suppression suggests that 
the observed fracture patterns result primarily from natural thermal processes. Following the event, 
field surveys were conducted in the burned areas with the aim of making actualistic observations 
and conducting a preliminary assessment of the fire’s potential impact on the archaeological record 
and surrounding landscape. Two targeted sampling campaigns were carried out, enabling an 
evaluation of the diversity of affected contexts, the density and distribution of archaeological 
materials, the variability of raw materials, and the establishment of analytical units (Cardillo et al., 
2022). These efforts allowed for a preliminary assessment of the extent of fire-induced alterations 
to the lithic record and the development of criteria to better understand how fire processes 
influence the formation of surface lithic assemblages and the archaeological record as a whole. 

 

Figure 1 - Study area; 1: Satellite image of burnt area in 2021. 

One of the characteristics of naturalistic observations is that there is no control over the 
variables affecting the phenomena of interest or, at best, such control is limited. This contrasts with 
controlled experiments, where exposure and treatment variables, as well as covariates, can be 
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regulated through randomization processes. In a randomized design, each individual has the same 
probability of belonging to the treatment or control group, which helps limit confounding factors. In 
contrast, in naturalistic samples or experiments, there is no control over the individuals included in 
the sample, and some of the factors under study may not be directly observable, increasing the 
risk of confounding factors biasing the results. 

The archaeological record of the study area is characterized by surface distributions of lithic 
materials, associated with hunter-gatherer groups who occupied the coastal fringe and exploited 
marine resources over a temporal span of approximately 6.000 years (Favier Dubois, 2019). These 
distributions, exhibiting variable density, are linked to the occurrence of secondary pebble sources 
of variable knapping quality, widely distributed across the landscape as a result of Pleistocene 
alluvial processes (Alberti, 2016; Cardillo, 2013; Cardillo & Alberti, 2013). Early-stage reduction 
sequences are commonly observed within these assemblages, along with cores made on nodules 
of high-quality acidic and basic volcanic rocks that are readily available in the area. In contexts 
where evidence of fire action was identified, various degrees of thermal alteration are visible, along 
with the accumulation of post-depositional processes that alter archaeological materials over time 
(Alberti & Carranza, 2014; Alberti & Cardillo, 2018; Borella et al., 2020). Of particular interest is 
how these processes can generate mixed assemblages that complicate the identification of 
intentional human modifications, including lithic knapping or the presence of combustion features. 
In this context, causal modeling offers a promising approach to identifying the key variables 
involved in the formation of such palimpsests and to assessing the specific effects of fire on natural 
lithic distributions. Given the complex interplay of natural and anthropogenic factors shaping these 
surface scatters, disentangling the specific impact of fire remains a significant challenge. 
Traditional descriptive approaches are often insufficient to address this complexity, particularly in 
contexts where diagnostic features are lacking or obscured. Therefore, a causal modeling 
framework (particularly through the use of DAGs) is employed here to formalize assumptions about 
the relationships among variables, to identify potential sources of bias, and to guide the analytical 
strategy needed to isolate the effects of fire within these palimpsests. 

Material and methods 

Modelization 

Following Grace et al. (2025), it is important to distinguish between estimating causal effects 
and modeling causal mechanisms (see also Shmueli, 2010). While causal effects quantify the 
impact of an intervention or treatment (e.g. fire) on an outcome (e.g. thermal alteration), causal 
mechanisms describe the internal pathways through which these effects are realized. The present 
study focuses primarily on modeling causal mechanisms, specifically identifying the properties of 
lithic materials (such as shape, fissures, and rock type; see below) that mediate the effects of fire 
on mechanical fragmentation. By formalizing these pathways through a causal diagram (DAG), we 
aim not only to estimate whether fire increases lithic fragmentation, but also to explain how and 
why specific lithic attributes condition the outcomes of thermal alteration.  

DAGs are fundamental tools in causal inference, providing a graphical framework to represent 
cause-effect relationships among variables (Pearl, 1995; Pearl & Mackenzie, 2018; see Figure 2). 
Within this framework, causal modeling allows us to move beyond the identification of mere 
associations (correlations) between taphonomic processes and archaeological record formation, 
enabling the explicit formulation of causal hypotheses essential for understanding the complex 
dynamics that shape surface lithic assemblages. 

By encoding causal structures through nodes and directed edges, DAGs allow researchers to 
formally express qualitative assumptions about dependencies and interdependencies within a 
system (Pearl & Mackenzie, 2018; Bulbulia, 2024). In this case, DAGs are used to model the 
causal effect of fire on rocks in naturalistic environments. This visual representation facilitates a 
systematic assessment of causal relationships, particularly in complex scenarios where 
experimental data are difficult to obtain. 
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Figure 2 - Causal model for mechanical alterations of pebbles under the effect of 
fire. Red, direct and mediation effects (Fire -unmeasured-, Fissures, Rock_Type 
and Shape). Gray, latent unobserved variables (Biomass, Knapping and Trampling). 
Green, outcome variable (Mech_Alt). 

In a DAG, an arrow connecting two variables represents a path, indicating the direction of 
influence between variables. There are three main types of paths: forks, chains, and colliders. 
Forks occur when a single variable acts as a common cause for two or more variables, with arrows 
pointing outward (Pearl, 1995; Pearl & Mackenzie, 2018). For example, if a specific rock property 
influences both its heat resistance and its susceptibility to human knapping (due to its quality), this 
property would be the common cause, creating a fork between heat resistance and knapping 
patterns. Forks introduce associations because changes in the common cause affect both 
outcomes. Chains describe a sequence in which one variable influences a second variable, which 
in turn affects a third. For instance, fire (the cause) may lead to thermal alterations in rock type (an 
intermediary variable), which then affects flake patterns (the outcome) by altering breakage 
patterns. Chains propagate causal effects along the sequence, making each node dependent on 
its predecessors. Colliders occur when two or more variables have arrows pointing into a common 
effect. For example, both fire and trampling by humans or animals might independently contribute 
to surface alterations in lithics. Unlike forks and chains, colliders do not inherently introduce 
associations; however, conditioning on a collider can induce a spurious association between its 
causes (e.g. fire and rock properties), even if they were otherwise unrelated. 

DAGs also capture key relationships crucial for causal reasoning, such as direct causation, 
mediation, and confounding. Causation refers to a direct influence in which changes in one variable 
(the cause) result in changes in another (the effect) (Pearl, 1995; Huntington-Klein, 2021). This 
study specifically investigates the causal role of fire in shaping the lithic landscape. However, due 
to the constraints of naturalistic sampling, although fire is conceptualized as the exposure variable 
in the causal mode (Figure 2), its effects are inferred through the mediation of observable pebble 
traits (e.g., shape, fissures, rock type; see below).  

Mediation occurs when an intermediary variable transmits the effect of one variable on another. 
In this context, pebble shape or size may mediate the impact of fire on alteration patterns. 
Confounding arises when an external variable influences both the cause and the effect, creating a 
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spurious association. For instance, fire could act as a confounder if it causes mechanical 
alterations to rock types that were also preferentially selected for knapping, introducing bias when 
studying surface scatters of lithic materials. 

Unlike purely statistical models that describe relationships and dependencies, DAGs enable 
researchers to establish causal directions based on domain knowledge and theoretical 
assumptions. Each directed edge in a DAG represents a hypothesized causal link. Given that 
many studies rely on observational data -where variable control is often impossible- DAGs provide 
a structured approach for inferring causal effects from non-experimental data when specific 
graphical conditions, such as d-separation, are met. D-separation (short for “directional 
separation”) is a criterion used in DAGs to determine whether two variables are conditionally 
independent given a set of other variables. If two variables are d-separated by a given set, 
adjusting for these variables effectively removes any spurious associations introduced by 
confounders, isolating the direct causal relationship. For example, the differential effects of fire and 
human activity on rocks could be d-separated by controlling for rock type (e.g. using statistical or 
experimental methods, see below). D-separation is thus a tool for identifying the appropriate 
variables for adjustment, preventing confounding in causal analysis.  

Adjustment Set 

In causal inference, adjustments for confounders focus on blocking backdoor paths and 
leveraging frontdoor paths. Backdoor paths are non-causal pathways between an independent 
variable X (e.g. fire) and an outcome Y (e.g. mechanical or morphological alterations) that 
introduce bias due to confounding. These paths contain at least one arrow pointing into X, and 
controlling for confounders along these paths ensures an unbiased estimation of the causal effect. 
Front door paths describe causal pathways where X effects Y through an intermediary variable Z 
(a mediator). When direct confounding between X and Y cannot be controlled, front door 
adjustment can still enable causal inference if Z satisfies specific conditions (Pearl, 1995; Pearl & 
Mackenzie, 2018; Huntington-Klein, 2021). 

The minimum adjustment set in a causal model consists of the smallest set of variables that 
must be conditioned on to block all backdoor paths between exposure (fire) and outcome 
(mechanical alterations in our study), ensuring that observed associations reflect a true causal 
relationship. This set depends on the specific causal effect being estimated whether the total effect 
(includes all causal pathways) or the direct effect. 

In this study, we focus on estimating the causal pathway through which fire affects rocks. This 
means assessing the extent to which the observed alterations in lithics can be attributed to fire, 
while controlling for relevant mediating variables. DAGs construction and analysis was made by 
means of ggdag (Barrett, 2024) and dagitty (Textor et al., 2016) R packages. 

Naturalistic sample 

Establishing the impact of natural fires on the lithic landscape through naturalistic observations 
presents certain challenges since not all fire-effect indicator variables can be directly observed. 
However, it is expected that they influence the observed relationships between the model 
variables. For example, even though the naturalistic sampling was conducted shortly after the fire 
event, some patterns were observed that may be linked to post-depositional processes, such as 
the horizontal displacement of artifacts, which showed varying degrees of integrity in the thermally 
altered assemblages (Cardillo et al., 2022). Similarly, the presence of pre-existing features, such 
as patinas or weathering, is not easily identifiable, as it cannot be determined with certainty 
whether they resulted from fire action or are merely mediating variables affecting morphological or 
mechanical alterations. 

Sampling of altered stones involved non-systematic surveys and systematic surface collection 
with random sampling in areas affected by 2019–2020 wildfires, focusing on zones near Las 
Grutas (see Figure 1). The southern access area covered 20,340 m², and the northern access 
area encompassed 25,640 m² (see Figure 1). In this initial phase, a total of n = 203 burned lithic 
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fragments were collected. Clear evidence of fire impact on the landscape was recorded, including 
charred stems and wood, reddening (rubefaction) of surface sediments surrounding the remains 
of burned shrubs, and, in some instances, burned bones (Figure 3). Regarding the lithic record, 
pebbles composed of acidic volcanic, intermediate-basic volcanic rocks, silicified stones and 
sedimentary — some of which possess qualities suitable for knapping — were identified, exhibiting 
signs of thermal alteration. These included color changes and in situ fracturing consistent with 
exposure to high temperatures (Figure 3). All findings were documented through digital 
photography in the field, with their positions georeferenced using GPS. The collected materials 
were subsequently transported for laboratory analysis. The analyzed assemblage consists of 203 
lithic fragments corresponding to 58 pebbles that could be refitted either totally or partially (Cardillo 
et al., 2022). The most frequently observed surface alterations on the rocks include color changes, 
followed by the development of patinas. Less commonly recorded were oxidation, carbonization, 
and the presence of thermally-induced flake scars. Technological attributes were also 
documented, allowing for the identification of artifact classes (flakes and cores) as well as distinct 
pseudo-artifacts (undifferentiated debris and pseudo-flakes), (see also supplementary material). 

 

 

Figure 3 - Top panel: effects of fire on the landscape observed in 2021 and 2022. 
Bottom panel: burned surface lithic scatters showing effects such as fractures and 
color changes. 

Regarding integrity, the degree of fragmentation into smaller particles — often rapidly dispersed 
— was assessed. This study focuses particularly on fracture patterns. In situ observations enabled 
the identification of refittable fragments, their spatial distribution, and the occurrence of breakage 
relative to rock type. Due to extensive fragmentation, in a number of cases (n = 8) it was not 
possible to estimate the original shape of the specimens. Therefore, for the purposes of model 
comparison, a subset of 50 cases was selected. 
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The selection of variables and the construction of the causal model were informed by empirical 
observations made during these field surveys (Cardillo et al., 2022). Variables included in the DAG 
are the outcome Condition (fractured, not_fractured); pebble shape, grouped following Waters’ 
(1992) shape classification as a reference: oblate and bladed forms were classified as tabular, 
while equant and prolate forms were classified as rounded; rock type (sedimentary [Sed], acidic 
volcanics [AV], intermediate-basic volcanics [IBV], and siliceous rocks [Sil]), and the presence of 
fissures (absence = N, presence = Y). These variables were selected based on their consistent 
visibility, presumed relevance to thermal response (see also Cardillo et al., 2022; Carranza & 
Cardillo, 2024), and their potential influence on mechanical alteration patterns observed in burned 
lithic assemblages. Other factors, such as biomass availability, trampling intensity, or pre-existing 
patinas, although recognized as potentially influential, could not be systematically recorded during 
fieldwork and were therefore treated as unobserved variables in the model. 

Methods: Decision Tree 

The Random Forest approach relies on a bootstrapping procedure that generates an ensemble 
(or forest) of decision trees, each trained on a random subset of the data and predictors (Breiman, 
2001, 2002). Compared to other classification or regression methods, the ensemble prediction of 
Random Forest tends to have lower variance and higher predictive performance. Also, one 
advantage of these methods is that they inherently account for variable interactions through 
hierarchical data partitioning, making them suitable for uncovering complex dependencies 
between variables. The performance of the model is measured using the Out-of-Bag (OOB) score, 
a confusion matrix, and two common feature importance metrics: Mean Decrease in Gini (MDG) 
and Mean Decrease in Accuracy (MDA). MDG quantifies the reduction in Gini impurity when a 
feature is used for node splitting in decision trees. A higher MDG value indicates that the feature 
plays a significant role in separating the data. MDA evaluates feature importance by measuring 
the drop in model accuracy when a feature is randomly permuted. Both metrics provide insights 
into feature importance but do not directly measure overall classification performance. Random 
forest classification and metrics was performed by means of randomForest R package version 4.7-
1.2 (Liaw & Wiener, 2002).  

However, classification models are sensitive to class imbalance in the data, as they tend to 
assign more weight to the most frequent categories (Menardi & Torelli, 2014). For this reason, 
when one class is significantly underrepresented, classifiers tend to ignore it, leading to poor model 
performance. This is common in observational studies, where the distribution of predictors cannot 
be controlled. To analyze the impact of class imbalance in the data, a second Random Forest 
model was fitted using oversampling with ROSE (Random Over-Sampling Examples), an R 
package designed to address the issue of class imbalance in binary classification (Lunardon et al., 
2014). ROSE generates artificially balanced samples using a smoothed bootstrap approach, which 
improves both model estimation and accuracy evaluation when dealing with rare classes 
(Lunardon et al., 2014). Finally, both models were compared to estimate the bias in the naturalistic 
dataset and to assess changes in the classification model’s performance in the context of more 
balanced samples, (see supplementary material for the complete R code and analytical workflow). 

In this DAG, Fire, although not directly observed, is the treatment variable and Mechanical 
Alterations (Mech_Alt) is the outcome. The causal pathway from Fire to Mech_Alt is mediated by 
three variables: Fissures, Shape, and Rock Type, meaning that Fire influences these variables, 
which in turn affect Mech_Alt. For example, Fire might affect the likelihood of fracture while 
interacting with previous fissures in the pebble. Also, different shapes could be heated or cooled 
at different rates, and it is expected that different rock types could increase or reduce the effect of 
fire (Cattáneo et al., 1997; Mercieca & Hiscock, 2008; Halbrucker et al., 2021). Additionally, there 
are three unobserved variables — Biomass, Trampling, and Knapping — that could potentially 
influence the system. These variables are not measured or explicitly included in the model, but 
they may confound the relationships between Fire the mediators, and the outcome. For instance, 
Biomass could affect the intensity of Fire, Trampling might independently produce pseudo-artifacts 
and Knapping could directly cause mechanical alterations. Since these variables are unobserved, 
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their effects are not accounted for, which could introduce bias or uncertainty in estimating the direct 
and indirect effects of Fire on Mech_Alt.  

In this case, five open paths were identified from Fire to Alt_Mech. Additionally, no paths were 
observed from a third variable linking Fire to Mech-Alt, which could act as confounders; therefore, 
it is not necessary to control for other variables. The minimal adjustment set includes only those 
variables directly contributing to the effect (Fissures, Rock_Type, and Shape) (see also 
supplementary material). 

Results 

In this sample, the percentage of fractured pebbles by shape, rock type, and presence of 
surface fissures suggests that rounded forms have higher percentages of fractured AV and IBV 
specimens, particularly among those with no visible surface fissures (27% and 30%, respectively) 
(Figure 4).  

 

Figure 4 - Relative frequency of Fissured surface (N,Y) for each Rock_Type (Sil, 
Sed, IBV, AV) and Shape (Rounded, Tabular) by Condition (Fractured, 
Not_Fractured).  

Rounded pieces also show the highest occurrence of fractures among specimens with or 
without surface fissures. As for the unfractured pieces, the highest percentage corresponds to 
tabular forms, with 23.5% for AV, regardless of the presence of fissures (Figure 4). Therefore, in 
this assemblage, the occurrence of fractures appears to be more closely related to shape, while 
no clear pattern of fractures associated with the presence of surface fissures on the nodule is 
observed. 

To explore the contribution of these three variables in relation to mechanical fractures, two 
Random Forest classification models were constructed: one based on the frequencies quantified 
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during field sampling, and another using balanced factors through synthetic resampling, in order 
to assess the impact of sample imbalance on the results. 

The Random Forest model was used to classify rock conditions (Fractured vs. Not Fractured) 
based on Shape, Rock Type, and Fissures, with 1000 trees and mtry = 1. The out-of-bag (OOB) 
error rate was 48%, indicating moderate misclassification. The confusion matrix showed better 
performance for predicting fractured rocks (error rate 27.3%) than non-fractured ones (error rate 
64.7%), (Table 1, see also supplementary material). The high misclassification rate for not 
fractured instances suggests that the selected variables may not be sufficiently discriminative. 

The variable importance plots illustrate the contribution of each predictor to the classification 
performance (Figure 5). The left plot, based on the mean decrease in accuracy, shows that Shape 
is the most important variable, followed by Fissures and Rock Type, indicating that removing 
Shape would lead to the most significant drop in model accuracy (Figure 5). The right plot, which 
measures mean decrease in Gini, also confirms that Shape has the highest importance in 
determining node purity, with Rock Type playing a moderate role and Fissures being the least 
influential. These results suggest that Shape is the strongest predictor of rock condition, whereas 
Rock Type and Fissures contribute less to the classification. 

 

Figure 5 - Variable importance plot for naturalistic model.  

The estimated probability of fracture varies across Shape and Rock Type categories, as shown 
in the bar plot (Figure 6). Rounded shapes exhibit a higher probability of fracture than tabular 
shapes, regardless of rock type. Within the fissures group, where fissures are present (Y), IBV 
rocks show the highest probability of fracture (~0.75), while Sed rocks exhibit the lowest (~0.3). 
The fracture probability decreases for tabular shapes, with IBV still showing the highest value 
(~0.4) and Sil and Sed the lowest (~0.25). In contrast, within the not fissured samples (N), fracture 
probabilities increase, particularly for Rounded shapes of AV and IBV, both reaching a probability 
of 1.0, indicating that all rocks of these types fractured. Sed and Sil also show elevated probabilities 
(~0.85 and ~0.7, respectively). For tabular shapes, fracture probabilities remain lower, with IBV 
and AV around 0.5 and Sil showing the lowest value (~0.2). These results suggest that rounded 
shapes are more prone to fracture than tabular ones, and IBV rocks consistently exhibit higher 
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fracture probabilities, while Sil and Sed tabular rocks appear to be the most resistant to fracturing 
(see also supplementary material). 

 

Figure 6 - Probability of fracture estimated by means of random forest trees and 
naturalistic samples related to different nodule shape and rock type by fissures (Y, 
N). 

A notable reduction in misclassification error was observed in random forest performance when 
using a balanced dataset, decreasing the out-of-bag error rate from 48% to 16% (Figure 6). 
Variable importance analysis confirmed shape as the most influential predictor, followed by 
fissures and rock type (Figure 7). 

 

Figure 7 - Variable importance plot for balanced model. 
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The barplot of estimated fracture probability for each factor level, indicates IBV rocks show the 
highest probability of fracture (~0.75), while Sed rocks exhibit the lowest (~0.25) (Figure 8). The 
fracture probability decreases for tabular shapes, with IBV still showing the highest value (~0.5) 
and Sil and Sed the lowest (~0.25). Estimated probabilities for balanced trees also suggest that 
the presence of fissures (Y) could be a clear factor in explaining fracture probability, and maybe 
even reduce it (see discussion). These results suggest that rounded shapes are more prone to 
fracture than tabular ones, and IBV rocks consistently exhibit higher fracture probabilities, while Sil 
and Sed tabular rocks appear to be the most resistant to fracturing. 

 

Figure 8 - Probability of fracture estimated by means of random forest trees and 
balanced sample related to different nodule shape and rock type by fissures (Y, N). 

The comparison between two models shows that the balanced sample model significantly 
improved classification, reducing the overall error from 40% to 16% (Table 1). Also, the balanced 
sample achieved much better accuracy for “Not_Fractured” cases (92%), while the first model had 
higher misclassification (only 35% correct). Thus, results between unbalanced and balanced 
samples suggest that differences in factor levels have an impact in results, in particular in overall 
error and in the accuracy to predict not fractured samples. 

Table 1 - Performance comparison between the two models. 

Metric Nat_sample Bal_sample 
OOB Error Rate 40% 16% 
Fractured Accuracy 24/33 (72.7%) 19/25 (76%) 
Not_Fractured Accuracy 6/17 (35%) 23/25 (92%) 
Class Error (Fractured) 27.30% 24% 

Class Error (Not_Fractured) 64.70% 8% 

 
In general, results of the Random Forest classification align with the causal assumptions 

proposed in the DAG. Pebble shape, which was identified as the most influential predictor, 
corresponds to a key mediating variable hypothesized to transmit the effects of fire on mechanical 
alterations. Similarly, the contribution of rock type, although lower, are consistent with their 
proposed roles as mediator. The agreement between the model structure and the variable 
importance rankings supports the validity of the causal framework, suggesting that the 
mechanisms formalized in the DAG adequately capture the main pathways through which fire 
influences lithic fragmentation in naturalistic contexts. 
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Discussion 

In both models, Shape emerged as the variable with the greatest influence on predicting fire-
induced fracture, both in terms of accuracy and the Gini index. In the first model, Fissures ranked 
second in mean accuracy, followed by Rock_Type, whereas in the balanced model, this order was 
reversed. The influence of pebble shape on fracture probability has been previously discussed by 
various authors (Custer, 2017; Graesch et al., 2014; Pagoulatos, 1992, 2005). For instance, the 
association between the presence of surface fissures and fracture probability presents a 
counterintuitive pattern; in the adjusted model, pebbles lacking visible fissures appear more likely 
to be fractured. However, this may reflect a systematic underestimation of fissures in already 
broken specimens; it is possible that pre-existing fissures may become indistinguishable after 
thermal fragmentation, as they effectively constitute the fracture itself. This pattern needs to be 
studied further in the context of controlled experiments. As expected, the difference between 
models shows that class balance has a measurable impact on the relative importance of predictors. 
Furthermore, the balanced model demonstrated a lower average prediction error for both the 
presence and absence of fractures. This finding suggests that increasing the sample size or 
employing a stratified sampling strategy may be more effective in this case, ensuring a more even 
distribution across predictor variables. To this end, ongoing fieldwork is implementing random 
sampling within the fire-affected area using variable-sized collection grids. These grids are 
distributed across the landscape to account for differences in surface lithic density and to optimize 
data recovery for statistical analysis. Despite the usefulness of DAGs in making causal 
relationships explicit and formal, in naturalistic contexts one must assume the empirical 
completeness or sufficiency of the model, that is, that all relevant relationships are included and 
no unobserved confounding variables are influencing the observed outcomes. This assumption 
cannot be fully verified, as not all phenomena and their interactions can be observed, particularly 
given the complexity of natural processes compared to those in controlled, experimental settings. 
In this study, although fire was not directly measured, we evaluated its influence through the 
predictive power of its mediators — shape, fissures, and rock type — on pebble fracture. Since 
these variables lie along the causal pathway from fire to mechanical alteration, the model indirectly 
captures the structure of the fire effect, as formalized in the DAG. In this regard, the use of 
experimental or quasi-experimental models can serve to provide external validation criteria for the 
proposed models and help mitigate potential biases. 

A potential limitation of the current study is the presence of unobserved confounders, such as 
trampling, kicking, and other post-depositional processes, which may influence the fragmentation 
and dispersion patterns of lithic materials after fire events, potentially leading to intrusion into 
archaeological sites (Schiffer, 1987; Petraglia, 2002; Frank & Baridón, 2021). Although these 
processes were recognized as plausible factors that could increase fragmentation, promote 
dispersion, or create clusters, they could not be systematically recorded during field surveys. To 
address this limitation, we are currently tracking fire-altered nodules in situ, in order to model post-
depositional modifications over time.The possibility that this area has been subjected to multiple 
fire events over time raises important considerations for the cumulative effects of thermal stress 
on lithic materials. Repeated exposure to fire likely results in progressive fragmentation and 
surface modification, potentially following an exponential degradation pattern. While the present 
study centers on a recent, well-documented wildfire, future research could benefit from comparing 
surface assemblages with buried pebble deposits dated to the Pleistocene, which presumably 
experienced fewer fire episodes. Such comparisons would help to better understand the long-term 
impacts of recurrent fire on archaeological materials in this region. 

A logical next step involves assessing the potential for generalizing this model. Applying a 
causal model to different contexts is conceptually akin to evaluating the model’s external validity. 
Transportability and external validity (see Eren et al., 2016) both address the generalization and 
intervention or the results of observations across different contexts, but they differ in approach. 
Transportability, rooted in causal inference, assesses whether causal relationships established in 
one setting (e.g. an experiment) can be applied to another (e.g., a natural context) using DAGs to 
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evaluate differences and identify necessary adjustments (Huntington-Klein, 2021; see also 
Bulbulia, 2024). External validity, a broader concept in research design, concerns whether study 
results can be generalized to different populations, locations or conditions, without necessarily 
focusing on causal mechanisms. While external validity evaluates the overall applicability of 
findings, transportability provides a structured, causal framework to determine when and how 
causal effects can be transferred between settings. In this case transportability of our results to 
other observational contexts need to build a DAG for the target context and identify structural 
differences between the two DAGs — this will reveal potential bias sources that could limit 
transportability. A recent experimental study (Carranza & Cardillo, 2024) was conducted to validate 
the general patterns observed in the naturalistic context, particularly the incidence of fractures in 
local raw materials from the study area (acidic volcanics and intermediate to basic volcanic rocks). 
During the experiment, a fracture rate between 30% and 40% was recorded. These values are 
consistent with those observed in the naturalistic context, showing a significant association among 
the various alteration variables. Additionally, a range of morphological alterations typical of fire 
exposure — such as those previously described — were reproduced (Carranza & Cardillo, 2024). 
The comparison between naturalistic observations and experimental analysis will be highly 
valuable for assessing the potential to generalize the latter across different archaeological 
contexts.  

Conclusions 

From an archaeological perspective, the findings presented here have significant implications 
for the interpretation of fire-affected lithic assemblages. The central role of pebble shape, and to a 
lesser extent rock type and fissures, suggests that mechanical fragmentation patterns in burned 
contexts are not random but rather mediated by specific, observable properties of the lithic 
materials. The minimal adjustment set identified through the causal model, along with the low 
contribution of unobserved confounders, supports the notion that fire can independently generate 
recognizable patterns of fracture in surface lithic scatters, without necessarily requiring human 
agency. This insight is crucial for evaluating the integrity of archaeological assemblages and for 
distinguishing between intentional human activity and taphonomic processes, particularly in 
palimpsests where pseudo-artifacts generated by natural fires may mimic human-produced flakes. 
More broadly, the application of causal modeling to actualistic archaeological data offers a 
promising avenue for improving our understanding of site formation processes under complex 
natural disturbance regimes. Future research should focus on testing the generalizability of the 
proposed causal model across different environmental and archaeological contexts, and on 
integrating experimental and observational datasets to further refine the identification of fire-
induced taphonomic signatures. 

Acknowledgments 

To the research team for their collaboration in field tasks. The work permits were granted by 
the National Parks Administration and the Río Negro Secretary of Culture. We acknowledge the 
use of data and/or imagery from NASA’s Fire Information for Resource Management System 
(FIRMS) (https://earthdata.nasa.gov/firms), part of NASA’s Earth Science Data and Information 
System (ESDIS).We are very grateful to the reviewers and editors for their time, effort, and 
constructive feedback throughout the evaluation process. 

Preprint version 3 of this article has been peer-reviewed and recommended by PCI 
Archaeology (https://doi.org/10.24072/pci.archaeo.100613) (Arzarello, 2025). 

14 Marcelo Cardillo & Eugenia Carranza

Peer Community Journal, Vol. 5 (2025), article e88 https://doi.org/10.24072/pcjournal.609

https://earthdata.nasa.gov/firms
https://doi.org/10.24072/pci.archaeo.100613)
https://doi.org/10.24072/pcjournal.609


Funding 

This research was funded by the National Scientific and Technical Research Council of 
Argentina [PIP CONICET 112-202101-00908 CO] and National Agency for Scientific and 
Technological Promotion [PICT ANPCyT 2021-I-A-00436]. 

Conflict of interest disclosure 

The authors of this preprint declare that they have no financial conflict of interest with the 
content of this article. 

Data and supplementary information 

Data or any supplementary material are available at https://zenodo.org/records/16335811 
(Cardillo & Carranza 2025). 

References 

Alberti, J. (2016). Disponibilidad y explotación de materias primas líticas en la costa de 
Norpatagonia (Argentina): Un enfoque regional. British Archaeological Reports, International 
Series 1901, #27. Archaeopress. https://doi.org/10.2307/j.ctv1zckxn7 

Alberti, J., and Cardillo, M. (2018). El registro lítico en la costa del golfo San Matías (Argentina). 
Análisis comparativos de los materiales líticos provenientes de depósitos de superficie, 
enterrados y concheros de la costa rionegrina. Revista Chilena de Antropología, 38, 310–329. 

Alberti, J., and Carranza, E. (2014). Primera caracterización de los conjuntos líticos provenientes 
de depósitos de tipo conchero en la costa del golfo San Matías (Río Negro, Argentina). La 
Zaranda de Ideas. Revista de Jóvenes Investigadores en Arqueología, 10, 47–64. 

Arzarello, M. (2025). Fire as a Taphonomic Agent: Statistical and Causal Modelling of Lithic 
Assemblages. Peer Community in Archaeology, 100613. 
https://doi.org/10.24072/pci.archaeo.100613 

Barrett, M. (2024). ggdag: Analyze and Create Elegant Directed Acyclic Graphs. R package 
version 0.2.13.9000, commit 46d7ca800ae1f617a4a2f8c33f68dc7f644b59c6, 
https://github.com/malcolmbarrett/ 

Borella, F., Cardillo, M., Alberti, J., Scartascini, F., Carranza, E., Favier Dubois, C., and Guichón-
Fernández, R. (2020). Resultados preliminares de las investigaciones arqueológicas en el Área 
Natural Complejo Islote Lobos, costa oeste del golfo San Matías (provincia de Río Negro). 
Revista del Museo de Antropología, 13, 57–68. 

Bulbulia, J. A. (2024). Methods in causal inference. Part 1: Causal diagrams and confounding. 
Evolutionary Human Sciences, 6, e40. https://doi.org/10.1017/ehs.2024.35. 

Breiman, L. (2001). Random Forests, Machine Learning, 45(1), 5-32. 
https://doi.org/10.1023/a:1010933404324 

Breiman, L. (2002). Manual On Setting Up, Using, And Understanding Random Forests V3.1, 
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf. 
https://doi.org/10.32614/cran.package.randomforest 

Cardillo, M. (2013). Cambios en el paisaje, uso del espacio y conjuntos líticos promediados en la 
costa norte del golfo San Matías (Río Negro, Argentina) durante el Holoceno medio-tardío. 
Comechingonia virtual, 1, 1–26. https://doi.org/10.4067/s0718-22442013000100013 

Cardillo, M., and Alberti, J. (2013). Stone tool manufacture strategies and lithic raw material 
exploitation in coastal Patagonia, Argentina: A multivariate approach. Journal of Archaeology, 
1–13. https://doi.org/10.1155/2013/128470 

Cardillo, M., Carranza, E., Alberti, J., and Borella, F. (2022). Alteraciones térmicas en guijarros 
costeros en la localidad de Las Grutas (Río Negro). Discutiendo sus implicancias para la 

Marcelo Cardillo & Eugenia Carranza 15

Peer Community Journal, Vol. 5 (2025), article e88 https://doi.org/10.24072/pcjournal.609

https://zenodo.org/records/16335811
https://doi.org/10.2307/j.ctv1zckxn7
https://doi.org/10.24072/pci.archaeo.100613
https://github.com/malcolmbarrett/
https://doi.org/10.1017/ehs.2024.35
https://doi.org/10.1023/a:1010933404324
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf
https://doi.org/10.32614/cran.package.randomforest
https://doi.org/10.4067/s0718-22442013000100013
https://doi.org/10.1155/2013/128470
https://doi.org/10.24072/pcjournal.609


interpretación del registro arqueológico lítico. Revista Del Museo De Antropología, 15(3), 273–
288. https://doi.org/10.31048/1852.4826.v15.n3.38007 

Cardillo, M., and Carranza, E. (2025). Data and supplementary material for “Fire as a Taphonomic 
Agent: Statistical and Causal Modelling of Lithic Assemblages”. Zenodo. 
https://doi.org/10.5281/zenodo.16335811 

Carranza, E. and Cardillo, M. (2024): Burned Lithics: An Experimental Approach to Characterize 
the Effects of Fire on the Lithic Archaeological Record of Northern Patagonia, Argentina. Lithic 
Technology. https://doi.org/10.1080/01977261.2024.2425876 

Cattáneo, R., Pupio, A., Valente, M. and Barna, A.(1997). Alteración térmica en dos tipos de rocas 
silíceas: resultados experimentales y aporte de datos para el análisis arqueológico. Relaciones 
de la Sociedad Argentina de Antropología, XXII-XXIII: 343-361. 

Custer, J. F. (2017). Experimental analysis of fire-cracked rocks from varied use contexts: Fracture 
attributes. North American Archaeologist, 38(3), 237-291. 
https://doi.org/10.1177/0197693117696533 

Deffner, D., Rohrer, J. M., and McElreath, R. (2022). A causal framework for cross-cultural 
generalizability. Advances in Methods and Practices in Psychological Science, 5(3), 1–18. 
https://doi.org/10.1177/25152459221106366 

Eren, M. I., Lycett, S. J., Patten, R. J., Buchanan, B., Pargeter, J., and O’Brien, M. J. (2016). Test, 
model, and method validation: The role of experimental stone artifact replication in hypothesis-
driven archaeology. Ethnoarchaeology, 8(2), 103–136. 
https://doi.org/10.1080/19442890.2016.1213972 

Favier Dubois, C. M. (2019). Human occupation chronologies modeled by geomorphological 
factors: A case study from the Atlantic Coast of Northern Patagonia (Argentina). In: Inda 
Ferrero, H., García Rodríguez, F. (eds) Advances in Coastal Geoarchaeology in Latin America, 
The Latin American Studies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-030-
17828-4_1 

Frank, A., and Baridón, J. (2021). The effect of fire in the distribution of lithic assemblages: An 
experimental approach. Lithic Technology, 47(2), 133–146.  
https://doi.org/10.1080/01977261.2021.1981653 

Graesch, A. P., DiMare, T., Schachner, G., Schaepe, D. M., and Dallen, J. (2014). Thermally 
modified rock: the experimental study of “fire-cracked” byproducts of hot rock cooking. North 
American Archaeologist, 35(2), 167-200. https://doi.org/10.2190/na.35.2.c 

Grace, J.B., Huntington-Klein, N., Schweiger, E.W., Martinez, M., Osland, M.J., Feher, L.C., 
Guntenspergen, G.R. and Thorne, K.M. (2025) Causal Effects Versus Causal Mechanisms: 
Two Traditions With Different Requirements and Contributions Towards Causal Understanding. 
Ecol Lett. 28(4):e70029. https://doi.org/10.1111/ele.70029 

Halbrucker, É., Fiers, G., Vandendriessche, H., De Kock, T., Cnudde, V., and Crombé, P. (2021). 
Burning flint: An experimental approach to study the effect of fire on flint tools. Journal of 
Archaeological Science: Reports, 36, 102854. https://doi.org/10.1016/j.jasrep.2021.102854 

Huntington-Klein, N. (2021). The Effect: An Introduction to Research Design and Causality. Taylor 
& Francis, 646 pp. https://doi.org/10.1201/9781003226055 

Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest. R News, 2 (3), 
18-22. https://CRAN.R-project.org/doc/Rnews. 

Lunardon, N., Menardi, G., and Torelli, N. (2014). ROSE: a Package for Binary Imbalanced 
Learning. R Journal, 6:82–92. https://doi.org/10.32614/rj-2014-008 

McElreath, R. and Koster, J. (2024). The End of Human Behavioral Ecology. In: Koster J., Scelza 
B. and Shenk M.K. (Eds). Human Behavioral Ecology. Cambridge Studies in Biological and 
Evolutionary Anthropology: Cambridge University Press, 402-419. 
https://doi.org/10.1017/9781108377911.018 

Mercieca, A., and Hiscock, P. (2008). Experimental insights into alternative strategies of lithic heat 
treatment. Journal of Archaeological Science, 35(9), 2634-2639. 
https://doi.org/10.1016/j.jas.2008.04.021 

16 Marcelo Cardillo & Eugenia Carranza

Peer Community Journal, Vol. 5 (2025), article e88 https://doi.org/10.24072/pcjournal.609

https://doi.org/10.31048/1852.4826.v15.n3.38007
https://doi.org/10.5281/zenodo.16335811
https://doi.org/10.31048/1852.4826.v15.n3.38007
https://doi.org/10.1177/0197693117696533
https://doi.org/10.1177/25152459221106366
https://doi.org/10.1177/25152459221106366
https://doi.org/10.1177/25152459221106366
https://doi.org/10.1080/19442890.2016.1213972
https://doi.org/10.1007/978-3-030-17828-4_1
https://doi.org/10.1007/978-3-030-17828-4_1
https://doi.org/10.1080/01977261.2021.1981653
https://doi.org/10.2190/na.35.2.c
https://doi.org/10.1111/ele.70029
https://doi.org/10.1016/j.jasrep.2021.102854
https://doi.org/10.1201/9781003226055
https://cran.r-project.org/doc/Rnews
https://doi.org/10.32614/rj-2014-008
https://doi.org/10.1017/9781108377911.018
https://doi.org/10.1016/j.jas.2008.04.021
https://doi.org/10.24072/pcjournal.609


Menardi, G. and Torelli, N. (2014). Training and assessing classification rules with imbalanced 
data. Data Mining and Knowledge Discovery, 28:92–122. https://doi.org/10.1007/s10618-012-
0295-5 

Oyarzabal, M., Clavijo, J., Oakley, L., Biganzoli, F., Tognetti, P., Barberis, I., Maturo, H. M., Aragón, 
R., Campanello, P. I., Prado, D., Oesterheld, M., and León, R. J. C. (2018). Unidades de 
vegetación de la Argentina. Ecología austral, 28(1), 40– 63. 
https://doi.org/10.25260/EA.18.28.1.0.399 

Pagoulatos, P. (1992). The re-use of thermally altered stone. North American Archaeologist, 13(2), 
115-129. https://doi.org/10.2190/buh5-3bvn-up4k-j91g 

Pagoulatos, P. (2005). Experimental burned rock studies on the Edwards Plateau: a view from 
Camp Bullis, Texas. North American Archaeologist, 26(3), 289-329. 
https://doi.org/10.2190/9j4u-1m73-1wt4-ad9n 

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–710. 
https://doi.org/10.2307/2337329 

Pearl, J., and Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. 
Penguin Books Limited. 

Petraglia, M. D. (2002). The heated and the broken: Thermally altered stone, human behavior, and 
archaeological site formation. North American Archaeologist, 23(3), 241–269. 
https://doi.org/10.2190/4d7x-h9hr-1p4j-417l 

Snodgrass, J. G., Dengah, H. F., Sagstetter, S. I., and Zhao, K. X. (2024). Causal inference in 
ethnographic research: Refining explanations with abductive logic, strength of evidence 
assessments, and graphical models. Plos one, 19(5), e0302857. 
https://doi.org/10.1371/journal.pone.0302857 

Sottile, G. D., Giaché, Y. S. and Bianchi, M. M. (2018). Reconstrucción del régimen de incendios 
en ecosistemas templados patagónicos sobre la base de registros de carbón vegetal 
sedimentario (Charcoal) y polen durante el Cuaternario tardío. Tendencias metodológicas, 
resultados y perspectivas. In : Prieto A. R. (Ed.), Metodologías y estrategias del análisis 
palinológico del Cuaternario tardío. Publicación Electrónica de la Asociación Paleontológica 
Argentina, Asociación Paleontológica Argentina: Vol. 18, No. 2, pp. 102–119. 
https://doi.org/10.5710/peapa.23.07.2018.262 

Schiffer, M.B., (1987). Formation Processes of the Archaeological Record. University of New 
Mexico Press, Albuquerque. 

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310. 
https://doi.org/10.1214/10-STS330 

Textor, J., van der Zander, B., Gilthorpe, M.S., Liśkiewicz, M. and Ellison, G.T. (2016). Robust 
causal inference using directed acyclic graphs: the R package. Dagitty. International Journal of 
Epidemiology, 45 (6), 1887-1894. https://doi.org/10.1093/ije/dyw341. 

Waters, M. R. (1992). Principles of geoarchaeology: A North American perspective. University of 
Arizona Press. 

Zacconi, G., and Toppazzini, M. (2018). Áreas afectadas por incendios forestales y rurales en la 
región pampeana y noreste de la región patagónica durante la temporada 2016- 2017. Informe 
Técnico N° 13. Servicio Nacional de Manejo del Fuego, Ministerio de Ambiente y Desarrollo 
Sustentable de la Nación. 

Marcelo Cardillo & Eugenia Carranza 17

Peer Community Journal, Vol. 5 (2025), article e88 https://doi.org/10.24072/pcjournal.609

https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.25260/EA.18.28.1.0.399
https://doi.org/10.2190/buh5-3bvn-up4k-j91g
https://doi.org/10.2190/9j4u-1m73-1wt4-ad9n
https://doi.org/10.2307/2337329
https://doi.org/10.2190/4d7x-h9hr-1p4j-417l
https://doi.org/10.1371/journal.pone.0302857
https://doi.org/10.5710/peapa.23.07.2018.262
https://doi.org/10.1214/10-STS330
https://doi.org/10.1214/10-STS330
https://doi.org/10.1093/ije/dyw341
https://doi.org/10.24072/pcjournal.609

