
C EN T R E
MER S ENN E

Peer Community Journal is a member of theCentre Mersenne for Open Scientific Publishing
http://www.centre-mersenne.org/

e-ISSN 2804-3871

Peer Community Journal
Section: Mathematical & Computational Biology

Research article
Published2025-08-21

Cite asLinard Hoessly, Carsten Wiufand Panqiu Xia (2025) Reactioncleaving and complex-balanceddistributions for chemicalreaction networks with generalkinetics, Peer CommunityJournal, 5: e87.
Correspondencewiuf@math.ku.dk

Peer-reviewPeer reviewed andrecommended byPCI Mathematical &Computational Biology,
https://doi.org/10.24072/pci.

mcb.100405

This article is licensedunder the Creative CommonsAttribution 4.0 License.

Reaction cleaving andcomplex-balanced distributionsfor chemical reaction networkswith general kinetics
Linard Hoessly1, Carsten Wiuf ,2, and Panqiu Xia3
Volume 5 (2025), article e87
https://doi.org/10.24072/pcjournal.614

Abstract
Reaction networks have become a major modelling framework in the biological sciencesfrom epidemiology and population biology to genetics and cellular biology. In recentyears, much progress has been made on stochastic reaction networks (SRNs),modelledas continuous timeMarkov chains (CTMCs) and their stationary distributions. We are in-terested in complex-balanced stationary distributions, where the probability flow out ofa complex equals the flow into the complex.We characterise the existence and the formof complex-balanced distributions of SRNs with arbitrary transition functions throughconditions on the cycles of the reaction graph (a digraph). Furthermore, we give a suf-ficient condition for the existence of a complex-balanced distribution and give preciseconditions for when it is also necessary. The sufficient condition is also necessary formass-action kinetics (and certain generalisations of that) or if the connected compo-nents of the digraph are cycles. Moreover, we state a deficiency theorem, a generalisa-tion of the deficiency theorem for stochastic mass-action kinetics to arbitrary stochas-tic kinetics. The theorem gives the co-dimension of the parameter space for which acomplex-balanced distribution exists. To achieve this, we construct an iterative proce-dure to decompose a strongly connected reaction graph into disjoint cycles, such thatthe corresponding SRN has equivalent dynamics and preserves complex-balancedness,provided the original SRN had so. This decomposition might have independent interestand might be applicable to edge-labelled digraphs in general.
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Introduction
Reaction networks offer a framework to model the dynamics of natural systems. They are

applied across the sciences, for example in epidemiology (Murray, 2002; Pastor-Satorras et al.,
2015), genetics (Ewens, 2004), and cellular biology (Wilkinson, 2006). A reaction network con-
sists of a set of reactions, where a reaction represents a conversion, birth, or death of constituent
particles (molecules, individuals, allele copies). For example, A −−→ B might represent the con-
version of one molecule of A into one of B , and S + I −−→ 2I might represent the infection of a
susceptible individual by an infected individual, leading to two infected individuals.

A stochastic reaction network (SRN) is a homogeneous Markov chain on Zn
≥0, given by an

edge-labelled digraph (the reaction graph) (Anderson and Kurtz, 2015), as illustrated in the ex-
ample below:

A

λ1
2C + D

λ
3

B ,
λ4

D

λ5
λ
2

(1)

The nodes (e.g., A) are complexes, the edges represent reactions between complexes, and λi :
Z4

≥0 → R≥0, i = 1, ... , 4, are the transition rates. The vector of molecular counts of the species,
x = (xA, xB , xC , xD) ∈ Z4

≥0, is the state of the system. If a reaction occurs, say, A −−→ 2C + D ,
then theMarkov chain jumps from the current state (xA, xB , xC , xD) to a new state (xA−1, xB , xC+
2, xD + 1); one molecule of A is consumed, and two molecules of C and one of D are produced.

The recent popularity of SRNs in the life sciences has lead to a deep interest in the existence
and form of stationary distributions (Anderson and Cotter, 2016; Anderson et al., 2010; Cappel-
letti and Wiuf, 2016). Analytical results are limited to birth-death processes, finite state spaces,
detailed- and complex-balanced systems with mass-action kinetics (Anderson et al., 2010; Kelly,
2011), and some special cases (Bibbona et al., 2020; Engblom, 2009; Hoessly, 2021). In this pa-
per, we discuss complex-balanced stationary distributions with general kinetics (transition func-
tions). Complex-balanced systems have their origin in Boltzman’s work on detailed- (and cyclic)
balanced systems, and have been the subject of much scrutiny (Anderson and Cotter, 2016; An-
derson et al., 2010; Cappelletti and Joshi, 2018; Cappelletti and Wiuf, 2016; Hong et al., 2023,
2021; Kelly, 2011): a stationary distribution π is complex-balanced if the probability flux out of
a state through a complex equals the flux into the state through the same complex, that is, if

π(x)
∑

y ′ : η→y ′
λη→y ′(x) =

∑

y : y→η

π(x + ϕ(y)− ϕ(η))λy→η(x + ϕ(y)− ϕ(η)),

holds for all complexes and states (Cappelletti and Joshi, 2018; Cappelletti andWiuf, 2016). The
function ϕmaps complexes to their stoichiometric coefficients, e.g., ϕ(A) = (1, 0, 0, 0) and ϕ(2C+

D) = (0, 0, 2, 1), and the difference ϕ(y)− ϕ(η) is the net molecular gain in the reaction η −−→
y . The existence of a complex-balanced stationary distribution implies the reaction graph is a
disjoint union of strongly connected components (in the example, there is one such component)
(Cappelletti and Wiuf, 2016).

A main contribution of this paper is to construct a cleaving operation on reaction graphs that
decomposes a strongly connected reaction graph of an SRN into a reaction graph of a dynami-
cally equivalent SRN consisting of disjoint cycles only (a cyclic SRN). The construction is iterative,
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by splitting nodes with multiple incoming edges into multiple nodes with single incoming edges,
and underlies the proof of Theorem 17 in particular. In order to formulate the procedure, we ex-
tend the definition of a ‘classical’ SRN and allow multiple representations of the same complex
and reaction (potentially with different labels) in the digraph. Importantly, the cleaving operation
preserves complex-balancedness: A cyclic SRN is complex-balanced if and only if the original
SRN is. All statements in the paper are valid for classical SRNs as well as SRNs according to the
new definition, since the classical definition is just a special case of the new definition.

The cleaving operation might be of independent interest. Furthermore, it is not restricted to
reaction graphs of SRN, but works on any strongly connected digraph with real labels, such as
reaction graphs of deterministic reaction networks, with few changes. These changes relate to
the discrete nature of the dynamics of SRNs versus the continuous nature of the dynamics of
deterministic SRNs.

In addition, we contribute the following:
• We characterise complex-balanced distributions of a reaction network with arbitrary ki-
netics through conditions on the cycles of its reaction graph
• We provide a novel sufficient condition, extending Hong et al. (2023, Theorem 4.1), that
implies existence of a complex-balanced distribution
• Its necessity is also established when certain conditions are met, e.g. for mass-action
kinetics and if the reaction graph is cyclic
• We give examples of SRNs for which we can find a stationary distribution by means of
cycle decomposition

Consider the SRN in (1) that contains two cycles, A −−→ 2C + D −−→ B −−→ A and
A −−→ D −−→ B −−→ A. Splitting A and B into two nodes each, (A, 1), (A, 2), and (B, 1),
(B, 2), respectively, results the following SRN,

(2) (A, 1)

λ
′
1

2C + D
λ ′
3

(B, 1)
λ′
5

(A, 2)

λ
′
2

D λ ′
4

(B, 2),λ′
6

where (A, 1) and (A, 2) are considered different complexes with the same stoichiometric coeffi-
cients, ϕ((A, 1)) = ϕ((A, 2)) = (1, 0, 0, 0), and likewise for (B, 1) and (B, 2). The λ′

i ’s are kineticsto be defined, such that the SRN is dynamically equivalent to the original. In principle, this is
not difficult, as one might take λ′

i = λi for i = 1, ... , 4, and choose arbitrary λ′
5 and λ′

6 with
λ′
5 + λ′

6 = λ5. However, this assignment does not necessarily preserve the complex-balanced
property. If we choose λ′

i = λi for i = 1, ... , 4,
λ′
5(x) =

λ1(x + eA − eB)λ5(x)

λ1(x + eA − eB) + λ2(x + eA − eB)
1{x ′ : x ′

B≥1}(x),

λ′
6(x) =

λ2(x + eA − eB)λ5(x)

λ1(x + eA − eB) + λ2(x + eA − eB)
1{x ′ : x ′

B≥1}(x),

where eA = (1, 0, 0, 0) and eB = (0, 1, 0, 0), then the original SRN (1) is complex-balanced if and
only if the cleaved SRN (2) is complex-balanced (see the section ‘Stochastic reaction networks’
for the definition of cleaved SRNs). Theorem 17 states the general procedure to decompose a
strongly connected reaction graph into disjoint cycles.
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Graph decomposition techniques have been used to study deterministic reaction networks.
Node balanced steady states generalise complex-balanced steady states and are based on reac-
tion graphs permitting multiple copies of the same complex (Feliu et al., 2018). Cyclic decompo-
sitions without dynamical equivalence have been constructed in Gopalkrishnan (2013) and Horn
and Jackson (1972). A gluing operation was proposed in Hoessly (2021).

The paper is organised as follows. In the section ‘Complex-balanced stationary distributions’,
we discuss the main results of the paper; with applications given in the section ‘Examples’. In the
section ‘Stochastic reaction networks’, we provide background on graphs and reaction networks
and derive properties of decomposed reaction networks. In the section ‘Cleaving SRNs with
weakly reversible digraphs’, building on the previous section, we introduce the cleaving operation
that is used to decompose stochastic complex-balanced reaction networks into disjoint cycles.
Finally, proofs are in the section ‘Proofs’.

Complex-balanced stationary distributions
Let (N ,λ) be an SRN, where N = (C,R) is a digraph of complexes and reactions, and λ a

labelling (kinetics) of the reactions (see the section ‘Stochastic reaction networks’ for the pre-
cise definition), and let Γ ⊆ Zn

≥0 be a (closed) irreducible component of (N ,λ). We assume the
following compatibility condition by default, which states that a reaction might ‘fire’ only if the
molecules of the source complex are available:
Condition 1. For y −−→ y ′ ∈ R and x ∈ Γ, λy→y ′(x) > 0 if any only if x ≥ ϕ(y).
Definition 1. A probability distribution π on Γ is a
(i) stationary distribution of (N ,λ), if for all x ∈ Γ,

π(x)
∑

y→y ′∈R
λy→y ′(x) =

∑

y→y ′∈R
π

(
x − ϕ(y ′) + ϕ(y)

)
λy→y ′

(
x − ϕ(y ′) + ϕ(y)

)
,

where we set π(x) = 0 and λy→y ′(z) = 0 if z /∈ Zn
≥0 (same below).

(ii) complex-balanced distribution of (N ,λ), if for all complexes η ∈ C, and all x ∈ Γ,
π(x)

∑

y ′ : η→y ′∈R
λη→y ′(x) =

∑

y : y→η∈R
π

(
x + ϕ(y)− ϕ(η))λy→η

(
x + ϕ(y)− ϕ(η)).(3)

(iii) detailed-balanced distribution of (N ,λ), if for all complexes y , y ′ ∈ C, and for all x ∈ Γ,
π(x)λy→y ′(x) = π

(
x + ϕ(y ′)− ϕ(y))λy ′→y

(
x + ϕ(y ′)− ϕ(y)),

where λy→y ′ ≡ 0 if y −−→ y ′ ̸∈ R.
A detailed-balanced distribution is also complex-balanced, and a complex-balanced distribu-

tion is also stationary (Cappelletti and Joshi, 2018). Furthermore, complex-balancedness requires
the digraph to be weakly reversible (all connected components are strongly connected), that is,
every reaction y −−→ y ′ ∈ R belongs to a cycle γ ⊆ R (Cappelletti and Wiuf, 2016; Craciun
et al., 2020). Detailed balancedness requires the digraph to be reversible, that is, if y −−→ y ′ ∈ R
then y ′ −−→ y ∈ R.

Let L1, ... ,Lℓ be the connected components of the digraph of (N ,λ). Define
Γk = {x − ϕ(y) : x ∈ Γ, y ∈ Lk} ∩ Zn

≥0, k = 1, ... , ℓ.(4)
A main theorem is the following sufficient condition for the existence of a complex-balanced

distribution.
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Theorem 2. Assume the digraph of (N ,λ) is weakly reversible with ℓ connected components. Further,
suppose for each k = 1, ... , ℓ and y → y ′ ∈ Lk , that the kinetics factorises as

λy→y ′(x) =
κy→y ′

mk(x − ϕ(y))g(x)
, x ≥ ϕ(y), x ∈ Γ,(5)

where g : Γ→ R>0 andmk : Γk → R>0, k = 1, ... , ℓ, are functions, and κy→y ′ > 0 is a constant, such
that for all complexes η ∈ C,

∑

y ′ : η→y ′∈R
κη→y ′ =

∑

y : y→η∈R
κy→η.(6)

If 0 < M :=
∑

x∈Γ g(x) <∞, then the distribution
π(x) =

1

M
g(x),

is complex-balanced for (N ,λ).
If the Markov chain is positive recurrent on Γ, then π (and g up to a normalising constant) is

unique. Hence, also mk is unique up to a constant. If the Markov chain is transient and explo-
sive, there might be several stationary distributions, hence the choice of g and mk might not be
unique.

Theorem 2 extends the condition presented in Hong et al. (2023, Theorem 4.1), where the
mk ’s are required to be identical. The condition is also necessary is some cases:
Proposition 3. Assume the digraph of (N ,λ) is weakly reversible with ℓ connected components. Fur-
ther, suppose that λy→y ′(x) = αy→y ′λy (x) for x ∈ Γ and y −−→ y ′ ∈ R, where αy→y ′ > 0 is a
constant. Then, a probability distribution π on Γ is complex-balanced for (N ,λ), if and only if there
exist non-negative functionsmk , k = 1, ... , ℓ, such that

π(x) = κy→y ′
[
λy→y ′(x)mk(x − ϕ(y))

]−1
,(7)

for all y −−→ y ′ ∈ R, y ∈ Lk , and x ∈ Γ with x ≥ ϕ(y), where κy→y ′ > 0 satisfy (6).
It seems surprisingly difficult to prove Proposition 3. We rely on Theorem 17 and the decom-

position procedure developed in the section ‘Cleaving SRNs with weakly reversible digraphs’.
This procedure provides a dynamically equivalent SRN with a digraph that consists of disjoint
cycles only, while preserving the complex-balanced property.

In particular, Proposition 3 includes the case of stochastic mass-action kinetics,
λy→y ′(x) = αy→y ′

x!

(x − y)!
, αy→y ′ > 0, x ≥ y ,

and 0 for x ̸≥ y (with x! =
∏n

i=1 xi ), where
(8) g(x) =

cx

x!
, mk(x) =

x!

cx
, κy→y ′ = αy→y ′cy ,

for some c ∈ Rn
>0 (with cx =

∏n
i=1 c

xi
i ). Also, the kinetics proposed in Anderson and Cotter (2016)and Anderson and Nguyen (2019) fulfil the assumptions of Proposition 3, and the form of the

complex-balanced distributions could thus be found from the proposition. Other examples of
kinetics fitting the framework of the assumptions of Proposition 3 are stochastic Hill kinetics
type I/II, and stochastic Michaelis-Menten kinetics (Anderson et al., 2010; Hoessly, 2021).

The correspondence between the two sets of constants in (8) and the requirement (5) are
essential. For stochastic mass-action kinetics, the set of αy→y ′ , y → y ′ ∈ R, with this property

Linard Hoessly et al. 5

Peer Community Journal, Vol. 5 (2025), article e87 https://doi.org/10.24072/pcjournal.614

https://doi.org/10.24072/pcjournal.614


has co-dimension (also known as the deficiency) δ = |C| − ℓ − s , where |C| is the number of
complexes, and s the dimension of the space spanned by ϕ(y ′)−ϕ(y), y → y ′ ∈ R (Craciun et al.,
2009; Feinberg, 2019). The same holds for general kinetics (presented without proof):
Lemma 4. Assume the digraph of (N ,λ) is weakly reversible with ℓ connected components. Further,
suppose the kinetics factorises as

λy→y ′(x) =
αy→y ′

mk(x − ϕ(y))g(x)
, x ≥ ϕ(y), x ∈ Γ,

where g : Γ → R>0 and mk : Γk → R>0 are functions, and αy→y ′ > 0 is a constant, such that there
is c ∈ Rn

>0 fulfilling
∑

y ′ : η→y ′∈R
αη→y ′cη =

∑

y : y→η∈R
αy→ηc

y , for all η ∈ C.

Then, ĝ(x) := cxg(x), m̂k(x) :=
mk (x)
cx and κy→y ′ := αy→y ′cy , y −−→ y ′ ∈ R fulfil (5) and (6), and

π(x) =
ĝ(x)

M̂
=

cxg(x)

M̂
, x ∈ Γ,

is complex-balanced for (N ,λ), provided M̂ =
∑

x∈Γ ĝ(x) <∞. The set of αy→y ′ , y −−→ y ′ ∈ R, for
which this holds has co-dimension δ = |C| − ℓ− s .
Proposition 5. Assume the digraph of (N ,λ) consists of ℓ disjoint cycles. Then, a probability distri-
bution π on Γ is complex-balanced for (N ,λ), if and only if there exist functions mk : Γk → R>0,
k = 1, ... , ℓ, such that for y −−→ y ′ ∈ Lk , and x ∈ Γ with x ≥ ϕ(y), we have

π(x) =
[
λy→y ′(x)mk(x − ϕ(y))

]−1
.(9)

We will show in Theorem 17 that any SRN with a weakly reversible digraph is complex-
balanced if and only if it can be decomposed into an SRN consisting of cycles only, such that
Theorem 2 holds. Thus, the cyclic SRN is also complex-balanced. In principle, one can therefore
always use Proposition 5 to determine the stationary distribution of a complex-balanced SRN
by this cyclic decomposition.

In general, one might be able to decompose the digraph of an SRN into disjoint cycles while
preserving dynamical equivalence in many ways, as already alluded to in example (2). However,
the difficulty does not lie in preserving dynamical equivalence, but in preserving the complex-
balance property. Theorem 17 provides one way of achieving this.
Example 6. Consider the mass-action SRN,

(10) C ,
2

1

A
2
1

B
1
2

and let Γ be an irreducible component. Then, π(x) = MΓ
x! , whereMΓ > 0 a normalisation constant,

is the unique complex-balanced distribution for (10) (Anderson et al., 2010, Theorem 4.1). A
dynamically equivalent SRN, decomposed according to Theorem 17, with five disjoint cycles
and mass-action kinetics is (details omitted):

(A, 1)
α1

α2
(B, 1), (B, 2)

α3

α4
(C , 2), (A, 3)

α5

α6
(C , 3),
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(C , 4)

α
7

(A, 4)

α8

(B, 4)
α9

and (C , 5),
α
10

(A, 5)

α11

(B, 5)
α12

where α1, ... ,α12 are rate constants satisfying α1 = · · · = α6 = 1 − β, α7 = α8 = α9 = β, and
α10 = α11 = α12 = β + 1, with β ∈ (0, 1) arbitrary. Then, the cyclic SRN is complex-balanced.
The procedure in the section ‘Cleaving SRNs with weakly reversible digraphs’ results in β = 1

15 .
Example 7. Not all decompositions into cycles preserve the property of being complex-balanced.
Consider the mass-action SRN,
(11) A

3−−⇀↽−−
3

B.

The following system with mass-action kinetics
(12) (A, 1)

1−−⇀↽−−
2

(B, 1), (A, 2)
2−−⇀↽−−
1

(B, 2),

and ϕ((A, i)) = A and ϕ((B, i)) = B for i = 1, 2, is a cleaved SRN of (11). The probability
distribution π(x) = MΓ

x! , where MΓ is a normalising constant, is a complex-balanced distribution
for (11) on any irreducible component Γ (Anderson et al., 2010, Theorem 4.1); hence also a
stationary distribution. But π is not a complex-balanced distribution of (12); only a stationary
distribution.

We end the section with a version of Theorem 2 for detailed-balanced SRNs. It is sufficient
to consider only cycles of length two:
Proposition 8. Assume the digraph of (N ,λ) is reversible. Then, a probability distribution π on Γ is
detailed-balanced if and only if there exist functionsmy→y ′ : Γy ,y ′ → R>0 for all y −−⇀↽−− y ′ ∈ R, such
thatmy→y ′ = my ′→y and

λy→y ′(x) = [my→y ′(x − ϕ(y))π(x)]−1,(13)
where Γy ,y ′ = ({x − ϕ(y) : x ∈ Γ} ∪ {x − ϕ(y ′) : x ∈ Γ}) ∩ Zn

≥0.

Examples
We present some examples to illustrate the results. Most reaction networks used in appli-

cations in biophysics, cellular biology and systems biology are not weakly reversible, let alone
reversible. To remedy this, various techniques of network translation have been invented, that
is, ways to transform a non-weakly reversible reaction network into a dynamically equivalent
weakly reversible reaction network (Hong et al., 2023, 2021; Johnston, 2014; Tonello and John-
ston, 2018). For example, one might add or delete species in equal numbers on both sides of a
reaction, or split a reaction into two while preserving the total reaction rate. We will make use
of these techniques too.

The main aim is to illustrate Theorem 2. The one-node cleaving procedure used to prove
Proposition 3, is generally very laborious to apply (as there might be many cycles and nodes
are cleaved one by one). We give one example of the procedure. In many cases, it seems more
appropriate to adopt a manual approach to cleaving.
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Michaelis-Menten kinetics
Consider an enzyme-regulated mechanism for product formation with Michaelis-Menten ki-

netics (Cornish-Bowden, 2012):
S + E ∗ λ1−−⇀↽−−

λ2
P + E , 0

λ3−−⇀↽−−
λ4

E .

A substrate S is converted into a product P reversibly by means of an active enzyme E ∗, which
is then converted to its ‘inactive’ form E . The enzyme might further be supplied from the sur-
roundings and degraded. The reactions happen in a density-regulated manner:

λ1(x) =
α1xSxE∗

β1 + xS
, λ2(x) =

α2xPxE
β2 + xP

, λ3(x) =
α3

β3 + xE
, λ4(x) =

α4xE
β4 + xE

,

where αi ,βi , i = 1, ... , 4, are positive constants and ΓT = {x ∈ Z4
≥0 : xS + xP = T , xE ≥ 0, xE∗ ≥

0} is an irreducible component for T ∈ N. All of the statements are applicable in this case. We
apply Lemma 4 to achieve

m1(x) =
x!∏xS

i=0(β1 + i)
∏xP

i=0(β2 + i)
,

m2(x) =
x!

(β3 + xE )
∏xS

i=0(β1 + i)
∏xP

i=0(β2 + i)
,

g(x) =

∏xS
i=0(β1 + i)

∏xP
i=0(β2 + i)

x!
,

provided β3 = β4. Since, there exists c ∈ R4
>0, such that α1cScE∗ = α2cPcE and α3 = α4cE , thenthe conditions of Lemma 4 are fulfilled, and cxg(x) normalised is a detailed-balanced distribution

for all αi > 0, i = 1, ... , 4, and β1,β2 > 0, provided β3 = β4 >. Hence, the co-dimension for the
αi -parameters is δ = |C| − ℓ− s = 4− 2− 2 = 0.
Phosphorylation mechanism

Consider a phosphorylationmechanismmodelledwithmass-action kinetics (Hong et al., 2021):
A

α1←−− B
α2−−⇀↽−−
α3

C , 2A
α4−−→ A+ B, A+ B

α5−−⇀↽−−
α6

A+ C ,

on the irreducible component ΓT = {(xA, xB , xC ) ∈ Z3
≥0 : xA + xB + xC = T , xA ≥ 1} ⊆ Z3

≥0.Here, A is a substrate with two phosphorylation sites free, B has one of these sites occupied by
a phosphate group, and C has both sites occupied. The different reactions represent different
ways phosphorylation occurs.

The SRN is not weakly reversible, so we modify it into a dynamically equivalent weakly re-
versible SRN by adding A on both sides in the first three reactions, and decomposing the SRN
according to Theorem 17. Then, this dynamically equivalent weakly reversible SRN is complex-
balanced if and only if the below SRN is:

2A
λ4−−⇀↽−−
λ1

(1,A+ B)
λ2−−⇀↽−−
λ3

(1,A+ C ), (2,A+ B)
λ5−−⇀↽−−
λ6

(2,A+ C )

λ1(x) = α1xB , λ2(x) = α2xB , λ3(x) = α3xC ,

λ4(x) = α4xA(xA − 1), λ5(x) = α5xAxB , λ6(x) = α6xAxC .

for x ∈ Γ. Condition 1 is fulfilled on ΓT . Choosing
m1(x) =

(xA + 1)!xA!xB !xC !

(α1α3)xA(α3α4)xB (α2α4)xC
, m2(x) =

(xA!)
2xB !xC !

(α1α3)xA(α3α4)xB (α2α4)xC
,

8 Linard Hoessly et al.
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κ1 = α2
1α

2
3α4, κ2 = α1α2α

2
3α4, κ3 = α1α2α

2
3α4,

κ4 = α2
1α

2
3α4, κ5 = α1α

2
3α4α5, κ6 = α1α2α3α4α6,

ensures the two components fulfil Theorem 2 with complex-balanced distribution:
πT (x) = MT

(α1α3)
xA(α3α4)

xB (α2α4)
xC

xA!(xA − 1)!xB !xC !
, x ∈ ΓT ,

provided κ5 = κ6, that is, if α3α5 = α2α6; whereMT > 0 is a constant.
The second component has the mass-action form, with the number of A’s being conserved.

Hence, the stationary distribution should take the form in (8). It also does so: treating xA as
constant, then πT has mass-action form.

We note that the factorisation of the kinetics takes the form in Lemma 4. In particular, the
co-dimension is δ = |C| − ℓ− s = 5− 2− 2 = 1, hence there is one constraint on the parameters
giving rise to complex-balanced distributions, as also found.

Modified birth-death process
The following example is a modification of a classical birth-death process that has an extra re-

action with a jump of size two (Anderson et al., 2015). More precisely, we consider the following
SRN on Γ = N0 with mass-action kinetics, which is not weakly reversible,
(14) A

α1−−⇀↽−−
α2

0
α3−−→ 2A.

To apply Theorem 2 we need to find an equivalent weakly reversible SRN. Changing the
reaction A −−→ 0 to A −−→ 0 and 2A −−→ A, then we look for a dynamically equivalent SRN of
the following form,

(15) A

λ1

λ2

0 λ
3

2A
λ4

λ2(x) = α2, λ3(x) = α3, λ4(x) + λ1(x) = α1x ,

where x denotes the number of A molecules. We will show that λ1 and λ4 are uniquely deter-
mined for any fixed α1,α2,α3 ∈ R>0 such that (15) is complex-balanced and Condition 1 is
satisfied.

The SRN (15) fulfils the ‘constant ratio’ condition in Proposition 3, hence Theorem 2 can
be applied to justify complex-balancedness. However, we prefer to decompose it into cycles to
avoid the difficulty of choosing the constants κ’s in (6) when applying Proposition 5. Cleaving
the SRN into cycles results in

(16) L1 : (A, 1)
λcyc,1−−−⇀↽−−−
λcyc,2

(0, 1), L2 :
(A, 2)

λcy
c,5

(0, 2) λ
cyc,3

(2A, 2),λcyc,4

where λcyc,i = λi for i = 2, 3, 4,
λcyc,1(x) =

α2

α2 + α3
λ1(x), and λcyc,5(x) =

α3

α2 + α3
λ1(x).
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Due to Proposition 5 and Theorem 17, the SRN (15) is complex-balanced, if and only if there
exist non-negative functions m1, m2 and g on Z≥0, such that

λcyc,1(x + 1)g(x + 1) = λcyc,2(x)g(x) = m1(x)
−1,(17)

and
λcyc,3(x)g(x) = λcyc,4(x + 2)g(x + 2) = λcyc,5(x + 1)g(x + 1) = m2(x)

−1(18)
for all x ∈ Z≥0 andM :=

∑∞
x=1 g(x) ∈ (0,∞). If we choose

m1(x) = α3m2(x)/α2,(19)
then (17) is a consequence of (18), and we only need to solve for (18). Suppose (18) holds. For
all x ≥ 1, it follows that

λcyc,3(x)

λcyc,5(x + 1)
=

λcyc,5(x)

λcyc,4(x + 1)
,

and thus,
λ1(x + 1) =

α1(α2 + α3)
2(x + 1)

(α2 + α3)2 + α3λ1(x)
.

Condition 1 gives λ4(0) = λ4(1) = 0. Thus, λ1(1) = α1 and λ1 is uniquely determined by the
recursion:

λ1(x) =





0, x = 0,

α1(α2 + α3)
2x

(α2 + α3)2 + α3λ1(x − 1)
, x > 0.

(20)
In fact, in (20), 0 < λ1(x) < α1x whenever λ1(x−1) > 0. Therefore, λ1(x) and λ4(x) = α1x−λ1(x)are in (0,α1x) for all x ≥ 2, and Condition 1 holds for λ1 and λ4. Assume g(0) = 1, then combined
with (18), we have

g(x + 1) =
λcyc,3(x)

λcyc,5(x + 1)
g(x) =

α2 + α3

λ1(x + 1)
g(x) = (α2 + α3)

x+1
( x+1∏

u=1

λ1(u)
)−1(21)

and
m2(x) = (α3g(x))

−1,(22)
for all x ≥ 0. With λ1, m1 m2 and g defined as in (20), (19), (22) and (21), respectively, one can
verify that Theorem 2(ii) is satisfied.

To prove the existence of a complex-balanced distribution, we need to show
M :=

∞∑

x=1

g(x) <∞.

By using the recursive formula (20), we deduce that for all x ≥ 1,
λ1(x)λ1(x + 1) = (x + 1)h

(
λ1(x)

)
, where h(u) :=

α1(α2 + α3)
2u

(α2 + α3)2 + α3u
, u ∈ R≥0.

Due to (20) and the fact that 0 ≤ λ1(x) ≤ α1x , we have for x ≥ 2,
λ1(x) ≥

α1(α2 + α3)
2x

(α2 + α3)2 + α3α1(x − 1)
≥ α1(α2 + α3)

2(x − 1)

(α2 + α3)2 + α3α1(x − 1)
≥ c0 :=

α1(α2 + α3)
2

(α2 + α3)2 + α3α1
,
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where the last inequality follows from the property that x 7→ ax
c+bx is increasing on R≥0 with

arbitrary parameters a, b, c > 0. Since h is also increasing on R≥0, it holds that for all x ≥ 2,
λ1(x)λ1(x + 1) ≥ (x + 1) inf

x≥2
h

(
λ1(x)

) ≥ h(c0) > 0.

As a consequence, for x ≥ 2(α2+α3)2

h(c0)
∨ 2,

g(x + 1)

g(x − 1)
=

(α2 + α3)
2

λ1(x + 1)λ1(x)
≤ (α2 + α3)

2

(x + 1)h(c0)
<

1

2
,

and M is finite by the ratio test. Due to Proposition 5 and Theorem 17, π(x) := 1
M g(x) is the

unique complex-balanced distribution for (16) and also (15), and thus a stationary distribution for
(14). From Xu et al. (2023), the reaction network (14) is positive recurrent, hence this distribution
is the unique stationary distribution.

Stochastic reaction networks
In this section, we define SRNs and present a partial order on the space of SRNs. The main

decomposition theorem (cleaving of SRNs) will make use of this partial order.
Notation

Let R, R≥0 and R>0 be the set of real, non-negative and positive numbers, respectively. Let Z
and Z≥0 be the set of integers and non-negative integers, respectively. For x = (x1, ... , xn), y =

(y1, ... , yn) ∈ Rn, we define x ≥ y , if xi ≥ yi for all i = 1, ... , n; and x > y if x ≥ y and x ̸= y .
Furthermore, for x ∈ Rn

≥0, y ∈ Zn
≥0, the notation xy is used for ∏n

i=1 x
yi
i , and for x ∈ Zn

≥0, wewrite x! for x1! · · · xn!.
Graph theory

Consider a digraph (V, E), where V is a finite set of nodes and E ⊆ V × V is a finite set of
edges. A sub-digraph (V ′, E ′) of (V, E) is a digraph such that V ′ ⊆ V and E ′ ⊆ (V ′ × V ′) ∩ E . Two
sub-digraphs are disjoint if their sets of nodes are disjoint.

A walk is an ordered finite sequence of edges in (V, E), denoted by θ = (v1 −−→ v2, v2 −−→
v3, ... , vk−1 −−→ vk) or (v1 −−→ v2 −−→ · · · −−→ vk) for convenience. The walk is closed if
v1 = vk , and is open if it is not closed. An open walk θ is directed from v1 to vk , and links v1 and
vk , vice versa vk and v1. If all nodes are different, then θ is a path, and if all nodes are different
but v1 = vk , then it is a cycle. Paths and cycles, but not walks, might be seen as sub-digraphs.

A digraph (V , E) is connected, if for every v , v ′ ∈ V , there exist nodes v0, v1, ... , vk+1, and paths
θ1, ... , θk+1 in (V , E), such that v0 = v ′ and vk+1 = v and θi links vi−1 and vi for all i = 1, ... , k +1.
A sub-digraph (V ′, E ′) is a connected component of (V, E), if E ′ = (V ′ × V ′) ∩ E and no nodes
v ∈ V \ V ′ are linked to a node in V ′. A connected component is strongly connected if there is a
path from v to v ′ for any pair of nodes v , v ′ ∈ V ′.

The ensuing lemma then follows by definition.
Lemma 9. Let (V, E) be a digraph satisfying the following
(i) For any edge e ∈ E there is a cycle γ ⊆ E with e ∈ γ.
(ii) For any node v ∈ V there is at most one edge e ∈ E such that e = w −−→ v with w ∈ V .
Then, (V, E) consists of disjoint cycles.
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SRNs
In our context, an SRN is a pair (N ,λ), where N is a digraph (C,R) on a set S = {S1, ... , Sn}with a map

ϕ : C → ZS
≥0, ZS

≥0 =
{ n∑

i=1

ziSi : zi ∈ Z≥0, i = 1, ... , n
} ∼= Zn

≥0,

that associates to each node a non-negative integer vector. The elements of S are species, those
of C are complexes, and those of R are reactions. For a reaction r = y −−→ y ′ ∈ R, y , y ′ ∈ C, the
node y is the reactant and y ′ the product. Moreover, r is called an incoming reaction of complex
y ′, and an outgoing reaction of complex y . The vector ϕ(y) gives the species composition of a
complex y .

Furthermore,
λ = (λy→y ′ : y −−→ y ′ ∈ R), λy→y ′ : Zn

≥0 → R≥0,

is an edge-labelling of the digraph, referred to as the kinetics. The evolution of the species counts
X (t), t ≥ 0, over time is modelled as a Zn

≥0-valued CTMC, satisfying the following SDE:
X (t) = X (0) +

∑

y→y ′∈R
Yy→y ′

( ∫ t

0
λy→y ′(X (s))ds

)
(ϕ(y ′)− ϕ(y)),(23)

where Yy→y ′ , y −−→ y ′ ∈ R, is a collection of i.i.d. unit rate Poisson processes; that is, λy→y ′

is the transition intensity at which reaction y → y ′ ‘fires’. When writing (N ,λ), we implicitly
assume C,R,S,ϕ are given. On occasion, we write for brevity, N = (C,R,S,ϕ).

The two graphs (1) and (2) are SRNs. In the first, ϕ = idC , while in the second ϕ′ : C → Z4
≥0 isgiven by ϕ′((y , j)) = y for y ∈ {A,D}, j = 1, 2, and ϕ′(y) = y for y ∈ {B,C}.

Definition 10. Let (N ,λ) and (N ′,λ′) be two SRNs. If there exists a map ψ : C′ → C, such that
(i) ϕ′ = ϕ ◦ ψ, which implies C = ψ(C′) = {ψ(y) : y ∈ C′}.
(ii) R = ψ(R′) = {ψ(y) −−→ ψ(y ′) : y −−→ y ′ ∈ R′}.
(iii) For all x ∈ Zn

≥0 and all y −−→ y ′ ∈ R,
λy→y ′(x) =

∑

r∈ψ−1(y→y ′)

λ′
r (x).(24)

Then, (N ′,λ′) is a cleaved SRN of (N ,λ)with projection ψ, denoted (N ′,λ′) ⪰ (N ,λ). If only (i)-(ii)
hold, then we writeN ′ ⪰ N . Furthermore, complexes y ′ ∈ C′ for which ψ(y ′) = y ∈ C are called
copies of y .

Digraph (2) is a cleaved SRN of digraph (1) with projection ψ = ϕ′, provided (iii) is fulfilled.
‘Being cleaved’ is a partial order on the set of SRNs.
Lemma 11. Let (N ,λ), (N ′,λ′) and (N ′′,λ′′) be SRNs. Suppose (N ′,λ′) ⪰ (N ,λ) with projection
ψ, and (N ′′,λ′′) ⪰ (N ′,λ′) with the projection ψ′. Then, (N ′′,λ′′) ⪰ (N ,λ) with projection ψ ◦ ψ′.

The essential SRN (Ness,λess) of an SRN (N ,λ) is defined by Ness := (ϕ(C),ϕ(R),S, idϕ(C)),where
ϕ(C) := {ϕ(y) : y ∈ C}, ϕ(R) := {ϕ(y) −−→ ϕ(y ′) : y −−→ y ′ ∈ R},

and idϕ(C) is the identity map on ϕ(C); and
λess,y→y ′(x) :=

∑

r∈ϕ−1(y→y ′)

λr (x)
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for all y −−→ y ′ ∈ ϕ(R) and x ∈ Zn
≥0. Clearly, (N ,λ) ⪰ (Ness,λess) with projection ψ = ϕ, and

((Ness)ess, (λess)ess) = (Ness,λess).
Lemma 12. Suppose (N ′,λ′) ⪰ (N ,λ). Then, (N ′

ess,λ
′
ess) = (Ness,λess).

Let Y ,Y ′,Y ′′ be i.i.d. unit rate Poisson processes. Then, for s, t ≥ 0, Y (t+s) and Y ′(t)+Y ′′(s)

have the same distribution. Thus, we have
X (t) = X (0) +

∑

y→y ′∈ϕ(R)

Yy→y ′
( ∫ t

0
λess,y→y ′(X (s))ds

)
(y ′ − y).(25)

Every (weak) solution to (23) is also a (weak) solution to (25), and vice versa. Consequently, the
dynamics of any SRN is determined by its essential SRN as summarised in the following.
Proposition 13. Let (N ,λ) and (N ′,λ′) be such that (Ness,λess) = (N ′

ess,λ
′′
ess). Then, the dynamicsof (N ,λ) and (N ′,λ′) are equivalent, in the sense that every weak solution to (23) under (N ,λ) is

also a weak solution to (23) under (N ′,λ′), and vice versa.
Stationary distributions

Let x , x ′ ∈ Zn
≥0 be two states. Then, x leads to x ′ in (N ,λ), written x →N x ′, if there exist

reactions y1 −−→ y ′
1, ... , ym −−→ y ′

m ∈ R, such that
(i) x ≥ ϕ(y1), x − ϕ(y1) + ϕ(y ′

1) ≥ ϕ(y2), ... , x +
∑m−1

i=1 (ϕ(y ′
i )− ϕ(yi )) ≥ ϕ(ym).(ii) x +

∑m
i=1(ϕ(y

′
i )− ϕ(yi )) = x ′,

that is, the firing of the reactions in successionwill take the chain from the state x to x ′. Condition
1 ensures that if x →N x ′, then there is positive probability to jump from x to x ′, and vice versa.

The proof of the next statement is elementary and thus omitted.
Lemma 14. Let (N ,λ) and (N ′,λ′) be SRNs withNess = N ′

ess. For x , x ′ ∈ Zn
≥0, then x →N x ′ if and

only if x →N ′ x ′. As a consequence, a subset Γ ⊆ Zn
≥0 is an irreducible component of (N ,λ) if and

only if it is an irreducible component of (N ′,λ′).
The following is a consequence of Proposition 13.

Corollary 15. Let (N ,λ) and (N ′,λ′) be SRNs such that (Ness,λess) = (N ′
ess,λ

′
ess). Then, a probabil-ity distribution π is a stationary distribution on an irreducible component Γ of (N ,λ), if and only if π

is also a stationary distribution on Γ of (N ′,λ′).
For complex-balanced distributions, the one-directional implication follows from (24).

Corollary 16. Let (N ,λ) and (N ′,λ′) be SRNs such that (N ′,λ′) ⪰ (N ,λ). If a probability distribu-
tion π is a complex-balanced distribution on an irreducible component Γ of (N ′,λ′), then π is also a
complex-balanced distribution on Γ of (N ,λ).

Let (N ′,λ′) ⪰ (N ,λ) with projection ψ. For any cycle γ ⊆ R′, we say γ is simple when
projected onto the digraph ofN , if ψ(γ) is a cycle ofR = ψ(R′). Moreover, two cycles γ, γ′ ⊆ R′

are called similar if ψ(γ) = ψ(γ′), when projected onto N .
Theorem 17. Let (N ,λ) be an SRN with a weakly reversible digraph. Then, there exists a cleaved
SRN (Ncyc,λcyc) of (N ,λ) with projection ψcyc, such that the digraph of Ncyc consists of pairwisenon-similar simple cycles when projected ontoN , satisfying,
(i) For any cycle γ ⊆ Rcyc, ψcyc(γ) is a cycle inR.
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(ii) For any cycle γ ⊆ R, there exists a unique cycle γ′ ⊆ Rcyc such that ψcyc(γ
′) = γ.

(iii) A probability distribution π is a complex-balanced distribution of (N ,λ) on some irreducible com-
ponent Γ, if and of if it is one of (Ncyc,λcyc) on Γ.

Cleaving SRNs with weakly reversible digraphs
In this section, we develop an iterative procedure to show that there exists a dynamically

equivalent cleaved SRN consisting of all cycles appearing in the original SRN, while preserving
the complex-balanced property. This cleaving procedure enlarges the applicability of Theorem
2 and is key to the proof of Proposition 3.
One-node cleaving

LetN = (C,R,S,ϕ) be a weakly reversible RN with stochastic kinetics λ. Choose a complex
z ∈ C with pz > 1 incoming reactions. We provide a method to construct a cleaved SRN (N1,λ1)of (N ,λ) such that the complex-balanced property of (N1,λ1) is the same as that of (N ,λ), and
such that z is replaced by pz complexes with only one incoming reaction. Proofs are given in the
section ‘Proofs’.

The one-node cleaving involves two steps. In the first step, we give a precise definition of
N1 = (C1,R1,S,ϕ1) and the projection ψ1, while in the second step, a kinetics is assigned toN1.Step 1 is illustrated in Figure 1.

Step 1. Order the incoming reactions of z by y1 −−→ z , ... , ypz −−→ z . Define
C1 = {y : y ∈ C} \ {z} ∪ {(z , i) : 1 ≤ i ≤ pz},

and R1 = R0
1 ∪Rin

1 ∪Rout
1 , where

R0
1 = {y −−→ y ′ ∈ R : y , y ′ ∈ C \ {z}},

Rin
1 = {yi −−→ (z , i) : 1 ≤ i ≤ pz},

and Rout
1 is the collection of all directed edges (z , i) −−→ y for some i ∈ {1, ... , pz} such that

there exists a cycle γ in R and y ∈ C \ {z} with {yi −−→ z −−→ y} ⊆ γ. By weak reversibility of
N , there is at least one i such that {yi −−→ z −−→ y} is contained in a cycle of N .

We remark that {yi −−→ z −−→ y} ⊆ R does not imply {yi −−→ (z , i) −−→ y} ⊆ R1. Forexample, let R = {yi −−⇀↽−− z −−⇀↽−− y}. Then, R is weakly reversible and there is a closed walk
yi −−→ z −−→ y −−→ z −−→ yi , including {yi −−→ z −−→ y}. But {yi −−→ z −−→ y} is not in
any cycle of R, and thus {yi −−→ (z , i) −−→ y} ̸⊆ R1.

Finally, we define the labelling ϕ1 = ϕ ◦ ψ1 with ψ1 the canonical projection on C1 given by
ψ1(y) =




y , for y ∈ C \ {z},
z , for y = (z , i), i = 1, ... , pz .

(26)
Lemma 18. Let N be weakly reversible, and let N1 and ψ1 be a one-node cleaved RN of N . Then,
N1 ⪰ N with projection ψ1, andN1 is weakly reversible as well.

Step 2.We assign a kinetics λ1 to N1, such that (N1,λ1) ⪰ (N ,λ) and the complex-balanced
property is maintained. To complete the task, we introduce some notation. Let z1, z2, z3 ∈ C beany, possibly repeated, complexes such that {z1 −−→ z2 −−→ z3} ⊆ R. Denote by Γz1→z2→z3(k),
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y1 y ′
1 y1 (z , 1) y ′

1

N : z y ′
2 N 1: y ′

2

y2 y ′
3 y2 (z , 2) y ′

3

Figure 1 – One-node cleaving. The complex z is cleaved. A dashed edge, e.g., y ′
1 to y1,means that there exists a path directed from the initial to the terminal complex withoutpassing through z . Hence, since there is a cycle containing y1 −−→ z −−→ y ′

1 and y1 −−→
z −−→ y ′

2, respectively, in N , it follows that (z , 1) −−→ y ′
1 and (z , 1) −−→ y ′

2, respectively,in N1. For the same reason, (z , 2) −−→ y ′
2 and (z , 1) −−→ y ′

3 in N1. Primed and unprimedcomplexes could be the same, for example, y2 = y ′
2.

k ∈ Z>0, the collection of closed walks in R of the form
γ = {z1 −−→ z2 −−→ z3 −−→ y (1) −−→ · · · −−→ y (k) −−→ z1} ⊆ R,

satisfying {y (1), ... , y (k)} ∩ {z2} = 0. For z1 ̸= z3, define
Γz1→z2→z3(0) =




{z1 −−→ z2 −−→ z3 −−→ z1}, z3 −−→ z1 ∈ R
0, z3 −−→ z1 /∈ R,

and Γz1→z2→z1(0) := {z1 −−⇀↽−− z2}. By convention, Γz1→z2→z3(k) = 0 for k ∈ Z≥0 if {z1 −−→
z2, z2 −−→ z3} ̸⊆ R. Define

Γz1→z2→z3 = ∪∞
k=0Γz1→z2→z3(k).

Furthermore, define ρz3,z1→z2 : Zn
≥0 → R≥0 for all z1, z2, z3 ∈ C and x ∈ Zn

≥0 by

ρz3,z1→z2(x) =





λz1→z2(x + ϕ(z1)− ϕ(z3))∑
y ′′ : z1→y ′′∈R λz1→y ′′(x + ϕ(z1)− ϕ(z3))

, z1 −−→ z2 ∈ R,

0, z1 −−→ z2 /∈ R,
(27)

where by convention 0
0 = 0. Using Condition 1, for z1 −−→ z2 ∈ R, it holds that λz1→z2(x +

ϕ(z1)− ϕ(z3)) > 0 ⇐⇒ x + ϕ(z1)− ϕ(z3) ≥ ϕ(z1) ⇐⇒ x ≥ ϕ(z3). Thus,
ρz3,z1→z2(x) > 0, if and only if x ≥ ϕ(z3).(28)

Define the kinetics λ1 as:

λ1,r (x) =





λy→y ′(x), r = y −−→ y ′ ∈ R0
1,

λyi→z(x), r = yi −−→ (z , i) ∈ Rin
1 ,∑

γ∈Γyi→z→y′

∏

r ′∈γ\{z→y ′}
ρz,r ′(x)λz→y ′(x), r = (z , i) −−→ y ′ ∈ Rout

1 ,

(29)

for all x ∈ Zn
≥0. (28) implies that Condition 1 holds for (N1,λ1) as well.
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Lemma 19. Let (N ,λ) be a weakly reversible SRN, and (N1,λ1) and ψ1 be a one-node cleaved SRN(defined above) of (N ,λ). Then, (N1,λ1) ⪰ (N ,λ) with projection ψ1.
By Lemma 12 and Proposition 13, a stationary distribution of (N ,λ) is also a stationary dis-

tribution of (N1,λ1) and vice versa. Furthermore, we have preservation of complex-balanced
distributions in both directions along one-node cleavings:
Lemma 20. Let (N ,λ) be a weakly reversible SRN, and (N1,λ1) and ψ1 be a one-node cleaved SRN(defined above) of (N ,λ). Then a probability distributionπ on an irreducible component Γ is a complex-
balanced distribution of (N ,λ) if and only if it is a complex-balanced distribution of (N1,λ1) on Γ.
Example 21. We illustrate the one-node cleaving procedure on Example 6. The nodeA is cleaved.
There are two incoming reactions of A in N leading to two new nodes (A, 1) and (A, 2), R0

1 =

{B −−⇀↽−− C} and Rin
1 = {B −−→ (A, 1),C −−→ (A, 2)} in N1. Since there are two cycles in

N including B −−→ A, namely {B −−→ A −−→ B} and {B −−→ A −−→ C −−→ B}, then
{(A, 1) −−→ B, (A, 1) −−→ C} ⊆ Rout

0 . Similarly, we find {(A, 2) −−→ B, (A, 2) −−→ C} ⊆ Rout
0 ,

and thus Rout
1 = {(A, 1) −−→ B, (A, 1) −−→ C , (A, 2) −−→ B, (A, 2) −−→ C}. Consequently, the

digraph of N1 is as shown below.

N :

C

A

B

=⇒ N1 :

(A, 1) C

(A, 2).B

Concerning the kinetics of N1, let x = (xA, xB , xC ) ∈ Z3
≥0 denote the molecular counts of

the species A, B and C , respectively. Using (29), it suffices to calculate λ1,(A,i)→B and λ1,(A,i)→C ,
i = 1, 2. Consider (A, 1) −−→ B ∈ Rout

1 . The closed walks of ΓB→A→B in N are of the form
θk = {B −−→ A −−→ B −−→ C −−→ B −−→ · · · −−→ C −−→ B},

where k ≥ 0 denotes the number of occurrences of C −−→ B . As both B and C have each two
outgoing reactions in N , ρA,B→C (x) < 1 and ρA,C→B(x) < 1, and so

λ1,(A,1)→B(x) =
∞∑

k=0

ρA,B→A(x)
(
ρA,B→C (x)ρA,C→B(x)

)k
λA→B(x)

=
λA→B(x)ρA,B→A(x)

1− ρA,B→C (x)ρA,C→B(x)
.

Similarly,
λ1,(A,1)→C (x) =

λA→C (x)ρA,B→A(x)ρA,C→B(x)

1− ρA,B→C (x)ρA,C→B(x)
,

λ1,(A,2)→B(x) =
λA→B(x)ρA,B→C (x)ρA,C→A(x)

1− ρA,B→C (x)ρA,C→B(x)
,

λ1,(A,2)→C (x) =
λA→C (x)ρA,C→A(x)

1− ρA,B→C (x)ρA,C→B(x)
.

By (27), if xA ≥ 1, then ρA,B→A(x) + ρA,B→C (x) = ρA,C→A(x) + ρA,C→B(x) = 1. This implies
that λ1,(A,1)→B(x) + λ1,(A,2)→B(x) = λA→B(x), and λ1,(A,1)→C (x) + λ1,(A,2)→C (x) = λA→C (x).Therefore, (24) holds for all y −−→ y ′ ∈ R and x ∈ Z≥0. As a result, (N1,λ1) ⪰ (N ,λ).
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N0:
(z , 2)
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(z , 1)

y2

z ′

C ′
0

C0

N1:
(z , 2) (y1, 2)

(z , 1) (y1, 1)

y3

z ′

C ′
2

C2
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(z , 2) (y1, 2) (y3, 2)

(z , 1) (y1, 1)

(y3, 1)

z ′

C ′
3

C3

Figure 2 – Illustration of sequence of cleaved RNs.

Iteration
We apply the one-node cleaving procedure iteratively until every complex has at most one

incoming reaction, and the cleaved RN consists of only cycles (Lemma 9). However, as illustrated
in Figure 1, when cleaving a complex (here, z ), the number of incoming reactions of other com-
plexes (here, y ′

2) might increase. Thus, we should not expect that there is an iterative procedure
based on one-node cleaving, such that the number of complexes with multiple incoming reac-
tions is strictly decreasing.

LetN = (C,R,S,ϕ) be a weakly reversible RN and let C′ ⊆ C be the collection of complexes
in C with a single incoming reaction. Suppose that C′ ̸= C (otherwise the RN consists of disjoint
cycles, and we are done) and let C′′ = C \ C′. Write N0 = (C0,R0,S,ϕ0) for the cleaved RN of N
with projection ψ0 obtained by one-node cleaving of an arbitrary node z ∈ C′′. Define

C′
0 = {y ∈ C0 : ψ0(y) ∈ C′ ∪ {z}} = C′ ∪ {y ∈ C0 : ψ0(y) = z} and C′′

0 = C0 \ C′
0.

With Figure 1 as an example, we have {(z , 1), (z , 2), y ′
1, y

′
2, y

′
3} ⊆ C′

0, and y ′
2 has two incoming

reactions. Moreover, since z ∈ C′′ and C′′
0 = C′′ \ {z}, then C′′

0 has exactly one complex less than
C′′. R0 are the reactions of the cleaved RN of N (defined in step 1).

We next define a sequence of cleaved RNs, see Figure 2. Form ≥ 1, letNm = (Cm,Rm,S,ϕm)with projection ψm be an RN obtained by cleaving an element of C′∩Cm−1 inNm−1 with multiple
incoming reactions (againRm are the reactions of the cleaved RN of Nm−1 as defined in step 1).
Concretely, let ψm

0 = ψ0 ◦ · · · ◦ ψm,
C′
m = {y ∈ Cm : ψm

0 (y) ∈ C′ ∪ {z}} ⊆ Cm, and C′′
m = Cm \ C′

m.

If all y ∈ C′ ∩ Cm−1 ⊆ C′
m−1 have only one incoming reaction in Rm−1, then Nm = Nm−1 (and

ψm = idCm−1 ). Hence, Nm ⪰ Nm−1 with projection ψm, and Nm ⪰ N with projection ψm
0 . Theprocedure ends afterM = |C′| iterations.

Lemma 22. Every complex in C′
M ⊆ CM has only one incoming reaction inRM .
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After completing the M-th iteration, we obtain a cleaved RN NM = (CM ,RM ,S,ϕM) of N
with projection ψM , such that each complex in C′

M ⊆ CM has only one incoming reaction, and
C′′
M has one fewer complexes than C′′, namely C′′

M = C′′ \ {z}. However, the number of incoming
reactions of a complex y ∈ C′′

M might be different from the corresponding number of incoming
reactions of the complex ψM

0 (y) = y ∈ C′′ in R.
By repeating this procedure for another complex z ′ ∈ C′′

M and so forth, we eventually obtain,
after finitelymany iterations, a cleaved SRN (Ncyc,λcyc)with projectionψcyc onN . Every complex
in the cleaved SRN has only one incoming reaction. Hence, the cleaved SRN consists of disjoint
cycles (Lemma 9). Furthermore, it has the complex-balanced property if and only if (N ,λ) fulfils
it (Lemma 20).
Completion

Wemodify the cleaved SRN (Ncyc,λcyc) to obtain another cleaved SRNof (N ,λ)without non-
simple cycles and similar cycles when projected ontoN . The modification includes two steps. In
the first step, we cut and adhere non-simple cycles, and in the second step, we combine similar
cycles (for definitions see just before Theorem 17).

Suppose there exists a cycle γ ⊆ Rcyc that is not simple when projected onto N . Then, it is
of the form

γ =
{
y0 −−→ y1 −−→ · · · −−→ yk −−→ y ′

0 −−→ yk+1 −−→ · · · −−→ yk+k ′ −−→ y0
}
,

where y0 ̸= y ′
0 and ψcyc(y0) = ψcyc(y

′
0). We cut this cycle at y0 and y ′

0, then adhere each piece
with its end node. Thus, we get two cycles,

γ1 = {y0 −−→ y1 −−→ · · · −−→ yk −−→ y0},
γ2 = {y ′

0 −−→ yk+1 −−→ · · · −−→ yk+k ′ −−→ y ′
0}.

In this way, we obtain a new cleaved RN N ′
cyc = (C′

cyc,R′
cyc,S,ϕ′

cyc) of N with projection ψ′
cyc =

ψcyc, where C′
cyc = Ccyc,
R′

cyc =
(Rcyc \ {yk −−→ y ′

0, yk+k ′ −−→ y0}
) ∪ {yk −−→ y0, yk+k ′ −−→ y ′

0}.

It is natural to assign a kinetics λ′
cyc to N ′

cyc by keeping the same kinetics for the reactions also
appearing in Rcyc, and letting

λ′
cyc,yk→y0 = λcyc,yk→y ′

0
, λ′

cyc,yk+k′ →y ′
0
= λcyc,yk+k′ →y0 .

Then, (N ′
cyc,λ

′
cyc) ⪰ (N ,λ) with projection ψcyc, such that the complex-balancedness remains.

Note that (Ncyc,λcyc) and (N ′
cyc,λ

′
cyc) may not be related by ⪰.

The ‘cut-adhere’ process can be accomplished in finitely many steps until every cycle is sim-
ple when projected onto N . By abuse of notation, the final cleaved SNR is also denoted by
(Ncyc,λcyc) with projection ψcyc.

In the second step, we combine similar cycles. Suppose there are two similar cycles γ1, γ2 ⊆
Rcyc when projected onto N , that is, ψcyc(γ1) = ψcyc(γ2). We simply remove γ2 and sum the
kinetics of each reaction in γ2 to the corresponding reaction in γ1. More precisely, suppose

γ1 = {y1 −−→ · · · −−→ yk −−→ y1},
γ2 = {y ′

1 −−→ · · · −−→ y ′
k −−→ y ′

1},
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with yi ̸= y ′
i and ψcyc(yi) = ψcyc(y

′
i ) for all i = 1, ... , k . Then, we construct a new cleaved RN

(N ′
cyc,λ

′
cyc) of (N ,λ) with ψ′

cyc being a restriction of ψcyc on C′
cyc = Ccyc \ {(yj , i ′j ) : 1 ≤ j ≤ k},

where R′
cyc = Rcyc \ γ2, the labelling ϕ′

cyc is a restriction of ϕcyc on C′
cyc, and the kinetics λ′

cyc isdefined as follows,
λ′
cyc,r =




λcyc,r , r ∈ Rcyc \ (γ1 ∪ γ2),
λcyc,yj→yj+1 + λcyc,y ′

j →y ′
j+1

, r = yj −−→ yj+1 ∈ γ1.

Then (N ′
cyc,λ

′
cyc) ⪰ (N ,λ)with projection ψ′

cyc, and (N ′
cyc,λ

′
cyc) fulfils the complex-balancedness

if and only if (N ,λ) fulfils it. Here, (Ncyc,λcyc) ⪰ (N ′
cyc,λ

′
cyc).This process can be iterated finitely many times until all disjoint cycles are non-similar when

projected onto N . By abuse of notation, the resulting cleaved SRN of (N ,λ) is also denoted by
(Ncyc,λcyc) with projection ψcyc.

Proofs
Proof of Theorem 2

The proof follows the idea of Anderson et al. (2010, Theorem 4.1). By definition, to show
that π is a complex-balanced distribution, it suffices to verify that for any complex η ∈ C and any
x ∈ Γ, the following holds

g(x)
∑

y ′ : η→y ′∈R
λη→y ′(x) =

∑

y : y→η∈R
g

(
x + ϕ(y)− ϕ(η))λy→η

(
x + ϕ(y)− ϕ(η)).(30)

Due to Condition 1, we only need to prove (30) assuming x ≥ ϕ(η). Note that for any η ∈ C, all
reactions such that η is a reactant or product are in the same connected component. Assume
η ∈ Lk . Then, (5) yields for all x ∈ Γ and x ≥ ϕ(y),

∑

y : y→η∈R
λy→η

(
x + ϕ(y)− ϕ(η))g(

x + ϕ(y)− ϕ(η)) =

∑
y : y→η∈R κy→η

mk(x − ϕ(η))
,(31)

and
∑

y ′ : η→y ′∈R
λη→y ′(x)g(x) =

∑
y ′ : η→y ′∈R κη→y ′

mk(x − ϕ(η))
.(32)

Then, equality (30) follows from (6), (31) and (32). □

Proof of Proposition 3
As a consequence of Theorem 2, we only need to show one direction. Suppose that π is a

complex-balanced distribution of (N ,λ) on Γ.
Recall the assumption that λy→y ′ = αy→y ′λy on Γ for all y −−→ y ′. For any η ∈ C and r ∈ R,

the function ρη,r in (27) is a positive constant on {x ∈ Γ: x ≥ ϕ(η)}. Therefore, λ1,r in (29) fulfils
λ1,r (x) = c(r)λψ1(r)(x) for some constant c(r). After iteration and completion as described in
the section ‘Cleaving SRNs with weakly reversible digraphs’, we find a cleaved SRN (Ncyc,λcyc)of (N ,λ) with projection ψcyc, such that

λcyc,r (x) = c(r)λψcyc(r)(x),

for all r ∈ Rcyc and x ∈ Γ with positive constants {c(r ′), r ′ ∈ Rcyc}. Choose any r = (y , i) −−→
(y ′, i ′) ∈ Rcyc, where (y , i), (y ′, i ′) ∈ Ccyc, such that ψcyc(y , i) = y and ψcyc(y

′, i ′) = y ′. Suppose
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that r is in the k-th connected component (cycle) of Ncyc. Using Theorem 17 and Proposition 5,
since π is a complex-balanced distribution of (N ,λ) (and thus of (Ncyc,λcyc)) on Γ, we have

π(x) =
[
λcyc,r (x)mcyc,k(x − ϕcyc(y , i))

]−1
=

[
c(r)λy→y ′(x)mcyc,k(x − ϕ(y))

]−1
,(33)

for all x ∈ Γ. Then, the proposition follows if we can show that the ratio mj1,cyc/mj2,cyc is a
constant on Γj (see (4)) for any indices j1, j2 and j , such that the j1-th and j2-th cycles in Ncyc areboth included in the j-th connected component when projected onto N . The following lemma
follows from weak reversibility and the proof is omitted.
Lemma 23. LetN be a weakly reversible RN consisting of connected componentsL1, ... ,Ll . Suppose
Γ ⊆ Rn is an irreducible component of N . For any j ∈ {1, ... , l}, let Γj be given as in (4). Then,
Γj = {x − ϕ(y) : x ∈ Γ} ∩ Zn

≥0, where y is an arbitrary complex in Lk .
For ι = 1, 2, let rι = (yι, iι) −−→ (y ′

ι , i
′
ι) be in the jι-th cycle of Ncyc, written as rι ∈ Lcyc,jι .By convention, we assume ψcyc(rι) = yι −−→ y ′

ι . Furthermore, suppose that ψcyc(r1) and ψcyc(r2)are both in the j-th connected component of N .
Case 1) Suppose y1 = y2. By assumption, λy1→y ′

1
/λy2→y ′

2
= αy1→y ′

1
/αy2→y ′

2
is a positive con-

stant on Γ. Moreover, due to equation (33), it holds for every x ∈ Γ with x − ϕ(y1) ∈ Zn
≥0,

1 =
π(x)

π(x)
=

c(r1)λy1→y ′
1
(x)mcyc,j1(x − ϕ(y1))

c(r2)λy2→y ′
2
(x)mcyc,j2(x − ϕ(y2))

=
c(r1)αy1→y ′

1
mcyc,j1(x − ϕ(y1))

c(r2)αy2→y ′
2
mcyc,j2(x − ϕ(y2))

.

By assumption y1 = y2, and performing a change of variable z = x − ϕ(y1) = x − ϕ(y2), we get
mcyc,j1(z)

mcyc,j2(z)
=

c(r2)αy2→y ′
2

c(r1)αy1→y ′
1

,(34)
is a positive constant, for every z ∈ Γj such that z = x − ϕ(y1) with some x ∈ Γ. Taking Lemma
23 into account, the identity (34) holds for all z ∈ Γj .

Case 2) Suppose that y ′
1 = y2. Consider reaction r2 and the outgoing reaction of (y ′

1, i
′
1):

r ′
1 = (y ′

1, i
′
1) −−→ (y ′′

1 , i
′′
1 ) ∈ Lcyc,j1 . Then, by application of Case 1, we immediately get that

mcyc,j1(z)

mcyc,j2(z)
=

c(r2)αy2→y ′
2

c(r ′
1)αy ′

1→y ′′
1

,

for all z = x − ϕ(y2) = x − ϕ(y ′
1) with x ∈ Γ, and thus for all z ∈ Γj .

Case 3) Suppose y1 = y ′
2. One can verify that mcyc,j1(z)/mcyc,j2(z) is a positive constant on Γjfor every z ∈ Γj following the same lines as in Case 2.

Case 4) Suppose y ′
1 = y ′

2. Consider the reactions r ′
1 = (y ′

1, i
′
1) −−→ (y ′′

1 , i
′′
1 ) ∈ Lcyc,j1 and

r ′
2 = (y ′

2, i
′
2) −−→ (y ′′

2 , i
′′
2 ) ∈ Lcyc,j2 , where ψcyc(y

′′
ι , i

′′
ι ) = y ′′

ι for ι = 1, 2. Using Case 1,
mcyc,j1(z)

mcyc,j2(z)
=

c(r ′
2)αy ′

2→y ′′
2

c(r ′
1)αy ′

1→y ′′
1

,

for all z = x − ϕ(y ′
1) = x − ϕ(y ′

2) with x ∈ Γ, and thus for all z ∈ Γj .
Remaining cases. Since ψcyc(r1) and ψcyc(r2) are both in the j-th connected component inN ,

we can find y (1), ... , y (k) ∈ C with y (1) = y1 and y (k) = y2, such that for all i = 1, ... , k − 1, either
y (i) −−→ y (i+1) or y (i+1) −−→ y (i) inR. This yields that for some indexes q1, q′

1, ... , qk , q
′
k , we have

(y (i), qi ) −−→ (y (i+1), q′
i ) or (y (i+1), qi ) −−→ (y (i), q′

i ) in the j ′i -th connected component inNcyc forall i = 1, ... , k−1. It follows fromCases 1-4, thatmcyc,j1(z)/mcyc,j ′1
(z) = c0,mcyc,j ′i

(z)/mcyc,j ′i+1
(z) =
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ci , i = 1, ... , k − 2, and mcyc,j ′k−1
(z)/mcyc,j2(z) = ck−1 for all z ∈ Γj with some positive constants

c0, ... , ck−1. Thus, mcyc,j1(z)/mcyc,j2(z) = ck with some positive constant ck for all z ∈ Γj .Therefore, π can be written as in the form (7) with appropriate positive constants κy→y ′ .
Moreover, (6) is a direct result of (3) and (7). The proof is complete. □

Proof of Theorem 5
Under the given conditions, every complex has exactly one incoming reaction and one out-

going reaction. By Theorem 2, it is enough to show that if there is a complex-balanced stationary
distribution, then it satisfies (9). Without loss of generality, assume ℓ = 1. Then, there exists an
integer p ≥ 2, such that

R =
{
yi −−→ yi+1 : i = 1, ... , p; yk ̸= yj , 1 ≤ k < j ≤ p; yp+1 = y1

}
.

Since π is a complex-balanced distribution on Γ, then, by definition, we have,
π(x)λyi→yi+1(x) = π

(
x + ϕ(yi−1)− ϕ(yi )

)
λyi−1→yi

(
x + ϕ(yi−1)− ϕ(yi )

)(35)
for all i = 1, ... , p (by convention y0 = yp+1) and x + ϕ(y1) − ϕ(y2) ∈ Γ. We define the function
m as follows. For all x ∈ Nn

0 such that x + ϕ(y1) ∈ Γ, we let
m(x) =

[
π(x + ϕ(y1))λy1→y2(x + ϕ(y1))

]−1
,

Thus, π(x) = [λy1→y2(x)m(x − ϕ(y1))]−1 if x ∈ Γ with x ≥ y1. On the other hand, (35) yields
π(x)λy2→y3(x) = π

(
x + ϕ(y1)− ϕ(y2)

)
λy1→y2

(
x + ϕ(y1)− ϕ(y2)

)
= m(x − ϕ(y2))−1,(36)

for all x ∈ Γ with x + y1 − y2 ∈ Γ and x ≥ y2. Note that for all x ∈ Γ with x ≥ ϕ(y2), we have
x −ϕ(y2)+ϕ(y3) ∈ Γ. Thus x −ϕ(y2)+ϕ(y4) ∈ Γ as well. By iteration and the fact that yp+1 = y1,it follows that x −ϕ(y2)+ϕ(y1) ∈ Γ. Therefore, (36) holds for x ∈ Γwith x ≥ y2. This implies that
π(x) = [λy2→y3(x)m(x − ϕ(y2))]−1, for all x ∈ Γ with x ≥ ϕ(y2). Finally, by iteration, (9) holds forall yi → yi+1, i = 1, ... , p. The proof is complete. □

Proof of Proposition 8
Suppose that (13) holds. Then, for any x ∈ Γ and y −−⇀↽−− y ′ ∈ R,

π(x)λy→y ′(x) =my→y ′(x − ϕ(y))−1

=my ′→y (x − ϕ(y))−1 = π(x + ϕ(y ′)− ϕ(y))λy ′→y

(
x + ϕ(y ′)− ϕ(y))

Consequently, π is a detailed-balanced distribution for (N ,λ) on Γ.
Oppositely, suppose (N ,λ) is detailed-balanced on Γwith distribution π. For any y −−⇀↽−− y ′ ∈

R, define my→y ′ and my ′→y ′ on Γk by
my→y ′(x) :=

[
λy→y ′(x + ϕ(y))π(x + ϕ(y))

]−1
,

my ′→y (x) :=
[
λy ′→y (x + ϕ(y ′))π(x + ϕ(y ′))

]−1

Then, by definition of detailed-balanced distribution, we havemy→y ′ = my ′→y on Γk , and we aredone. □

Proof of Theorem 17
Let (Ncyc,λcyc) be the cleaved SRN obtained by the iterative one-node cleaving procedure

(described in the sections ‘One-node cleaving’ and ‘Completion’). Then, by Lemmas 9, 18 and
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22,Ncyc, we see that the digraph ofNcyc consists of disjoint cycles that are pairwise non-similar
simple cycles when projected onto N . It suffices to check (i)-(iii) for (Ncyc,λcyc).

First, (i) is a direct consequence of Ncyc ⪰ N and the fact that every cycle in Ncyc is sim-
ple when projected onto N . Next, denote by (N ∗

cyc,λ
∗
cyc) be the cleaved SRN before comple-

tion, as described in the section ‘Completion’. Then, due to Lemma 20 and an iteration argu-
ment, (iii) holds for (N ∗

cyc,λ
∗
cyc). The ‘cut-adhere’ process does not affect the validity of (iii). We

need to show that (iii) still holds after the combination process, which seems wrong as in Exam-
ple 7. Still denote by (N ∗

cyc,λ
∗
cyc) the cleaved SRN after ‘cut-adhere’ before combination. Then,

(N ∗
cyc,λ

∗
cyc) ⪰ (Ncyc,λ) ⪰ (N ,λ), and thus (iii) follows as a result of Corollary 16.

Last, we need to prove (ii). Let
γ = {y1 −−→ y2 −−→ · · · −−→ ym −−→ y1}

be a cycle in R. Let N1 = (C1,R1,S,ϕ1) be the cleaved RN of N with projection ψ1 due to one-
node cleaving of some z ∈ C. If z /∈ {y1, ... , ym}, then every reaction of the cycle is also in R1.On the other hand, without loss of generality, assume that z = y1. Then, there exists some index
i ∈ {1, ... , pz}, such that ym −−→ (z , i), and by definition of Rout

1 , we have (z , i) −−→ y2 ∈ R1 aswell. In other words, there exists a cycle
γ1 = {(z , i) −−→ y2 −−→ · · · −−→ ym −−→ (z , i)} ∈ R1.

Therefore, there exists a cycle γ1 ∈ R1, such that ψ1(γ1) = γ in any case. By iteration, there
exists a cycle γ∗

cyc ⊆ R∗
cyc, such that ψ∗

cyc(γ
∗
cyc) = γ, whereN ∗

cyc = (C∗
cyc,R∗

cyc,S,ϕ∗
cyc) denotes thecleaved RN ofN with projection ψ∗

cyc, before the completion step in section ‘Completion’. Since
γ∗
cyc is simple, it will not be affected in the ‘cut-adhere’ process. Finally, in the combination process
in section ‘Completion’, the cycle γ∗

cyc may be ‘absorbed’ by other similar cycles when projected
onto N . However, it does not influence the validity of property (ii). The proof is complete. □

Proof of Lemma 18
Wefirst prove thatN1 ⪰ N with projection ψ1. By definition, it suffices to show that (C,R) =

(ψ1(C1),ψ1(R1)). In fact, due to (26), we have
ψ1(C1) = (C \ {z}) ∪ {z} = C.

By definition of R1, we have ψ1(R1) ⊆ R. To prove the reverse inclusion, we decompose R =

R0 ∪Rin ∪Rout , whereR0 consists of reactions whose reactant and product are both in C \ {z},
and Rin and Rout consist of the incoming and outgoing reactions of z in R, respectively. Then,
ψ1(R0

1) = R0
1 = R0 and ψ1(Rin

1 ) = {yi −−→ z : 1 ≤ i ≤ pz} = Rin. Recall that N is weakly
reversible. Thus, for every y ∈ C such that z −−→ y ∈ R, there exists a cycle containing z −−→ y ,
and the incoming reaction of z in this cycle is yj −−→ z for some 1 ≤ j ≤ pz . Then, (z , j) −−→
y ∈ Rout

1 , and thus z −−→ y ∈ ψ1(Rout
1 ). This implies Rout ⊆ ψ1(Rout

1 ). Thus, N1 ⪰ N with ψ1.
Next, we show weak reversibility of N1. Suppose that y −−→ y ′ ∈ R0

1. Then, y −−→ y ′ ∈ R.
By weak reversibility ofR, there exists a cycle γ ⊆ R containing y −−→ y ′. If z /∈ γ, then γ ⊆ R0

1,and we are done. Otherwise, suppose z ∈ γ, then there exist i ∈ {1, ... , pz} and y ′ ∈ C\{z}, such
that {yi −−→ z −−→ y ′} ⊆ γ ⊆ R. As a consequence, {yi −−→ (z , i) −−→ y ′} ⊆ R1. Replacing z

by (z , i) in γ, we get a new cycle γ′ ⊆ R1. For reactions inRin
1 orRout

1 , the same idea is applicable
and the details are omitted. The proof is complete. □
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Proof of Lemma 19
Due to Lemma 18, it suffices to show that λ1 satisfies (24). In fact, by definition of λ1, weonly need to prove that

λz→y ′(x) =
pz∑

i=1

λ1,(z,i)→y ′(x)(37)
for y ′ ∈ C with z −−→ y ′ ∈ R and x ∈ Zn

≥0. Using (29) and Condition 1 on (N ,λ), then (37) is
equivalent to

1{x ′ : x ′≥ϕ(z)}(x) =
pz∑

i=1

∑

γ∈Γyi→z→y′

∏

r∈γ\{z→y ′}
ρz,r (x),(38)

which is what we will prove. First, if x ̸≥ ϕ(z), by (28), both sides of (38) are equal to zero.
Hence assume that x ≥ ϕ(z). Let X be the set of all complexes in C that are in the same

connected component as z . Then, weak reversibility, Condition 1 and (27) imply that for any
z1, z2 ∈ X ,
(i) ϕ(z1)→N ϕ(z2).
(ii) ρz,z1→z2(x) > 0 if and only if z1 −−→ z2 ∈ R.
(iii) ∑

z ′∈X
ρz,z1→z ′(x) =

∑

z ′ : z1→z ′∈R
ρz,z1→z ′(x) = 1.

This observation allows us to define a discrete time Markov chain (DTMC) on X with transition
probability Pz1(z2) = ρz,z1→z2(x) for all z1, z2 ∈ X . Moreover, the chain is irreducible with finite
state space. Therefore, it follows from Norris (1998, Theorems 1.5.6 and 1.5.7) that the chain is
recurrent, and thus,

Py ′(τz <∞) =
pz∑

i=1

∑

γ∈Γyi→z→y′

∏

r∈γ\{z→y ′}
ρz,r (x) = 1,

where τz denotes the first hitting time to state z . This proves (38) and thus completes the proof
of Lemma 19. □

Proof of Lemma 20
Due to Corollary 16 and Lemma 19, it suffices to prove one direction. Suppose that π is a

complex-balanced distribution of (N ,λ) on Γ, then we need to verify (3) for (N1,λ1). Let η ∈
C \ {z} ⊆ C1, then from (29), it follows that for any x ∈ Γ,
π(x)

∑

y ′ : η→y ′∈R1

λ1,r (x) = π(x)
( ∑

y ′ : η→y ′∈R0
1

λ1,y→y ′(x) +
pz∑

i=1

λ1,η→(z,i)(x)
)

= π(x)
( ∑

y ′ : η→y ′∈R,y ′ ̸=z

λη→y ′(x) + λη→z(x)
)
= π(x)

∑

y ′ : η→y ′∈R
λy→y ′(x).(39)

As π is complex-balanced for (R,λ) and ϕ1 = ϕ ◦ ψ1 = ϕ on C1 \ {(z , i) : i = 1, ... , pz}, we have
π(x)

∑

y ′ : η→y ′∈R
λy→y ′(x) =

∑

y : y→η∈R
π

(
x + ϕ(y)− ϕ(η))λy→η

(
x + ϕ(y)− ϕ(η))(40)

=
∑

y : y→η∈R0
1

π
(
x + ϕ1(y)− ϕ1(η)

)
λy→η

(
x + ϕ1(y)− ϕ1(η)

)

+ π
(
x + ϕ1(z)− ϕ1(η)

)
λz→η

(
x + ϕ1(z)− ϕ1(η)

)
.
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Then, (3) is a consequence of (37), (39) and (40). Next, we will show (3) for η = (z , i) with
i ∈ {1, ... , pz}. Without loss of generality, assume i = 1.

By definition, y1 −−→ (z , 1) is the only incoming reaction of (z , 1). Therefore, if x ̸≥ ϕ(z),
then Condition 1 and the fact that ϕ1 = ϕ ◦ ψ1 with ψ1 given by (26) yields
0 =

∑

y ′ : (z,1)→y ′∈Rout
1

π(x)λ1,(z,1)→y ′(x) = π
(
x+ϕ1(y1)−ϕ1((z , 1))

)
λy1→(z,1)

(
x+ϕ1(y1)−ϕ1((z , 1))

)
.

Otherwise, assume x ≥ ϕ(z). LetX be the set of all complexes in C that are in the same connected
component of z . As (N ,λ) is complex-balanced under π, then for any η ∈ X ,

0 < π(x ′)
∑

y ′ : η→y ′∈R
λη→y ′(x ′) =

∑

y : y→η∈R
π

(
x ′ + ϕ(y)− ϕ(η))λy→η

(
x ′ + ϕ(y)− ϕ(η)),

where x ′ = x + ϕ(η)− ϕ(z) ≥ ϕ(η). This yields that
1 =

∑
y : y→η∈R π

(
x + ϕ(y)− ϕ(z))λy→η

(
x + ϕ(y)− ϕ(z))

π
(
x + ϕ(η)− ϕ(z)) ∑

y ′ : η→y ′∈R λη→y ′
(
x + ϕ(η)− ϕ(z)) .

We construct an irreducible DTMC taking values in the finite state space X with transition prob-
abilities

pz1,z2 = Pz1(z2) =
π

(
x + ϕ(z2)− ϕ(z)

)
λz2→z1

(
x + ϕ(z2)− ϕ(z)

)

π
(
x + ϕ(z1)− ϕ(z)

) ∑
y ′ : z1→y ′∈R λz1→y ′

(
x + ϕ(z1)− ϕ(z)

) ,

for any z1, z2 ∈ X . Then, pz1,z2 > 0 if and only if z2 −−→ z1 ∈ R. Thus, the chain is recurrent.
With τz denoting the first hitting time to state z , we have Py1(τz <∞) = 1.

This proves (3) with η = (z , 1), if it holds that
Py1(τz <∞) =

∑
(z,1)→y ′∈R1

λ1,(z,1)→y ′(x)π(x)

π
(
x + ϕ1(y1)− ϕ1((z , 1)

)
λ1,y1→(z,1)

(
x + ϕ1(y1)− ϕ1((z , 1)

) .(41)
First, by definition it is clear that

Py1(τz <∞) = py1,z +
∑

z ′∈X \{z}
py1,z ′pz ′,z +

∞∑

k=2

∑

{z1,...,zk}⊆X \{z}
py1,z1

( k−1∏

i=1

pzi ,zi+1

)
pzk ,z

and
R =

∑
y ′∈C

∑
γ∈Γyi→z→y′

∏
r ′∈γ\{z→y ′} ρz,r ′(x)λz→y ′(x)

π
(
x + ϕ(y1)− ϕ(z)

)
λy1→z

(
x + ϕ(y1)− ϕ(z)

) ,

where R denotes that right hand side of (41). Additionally, for any z3 ∈ X , such that z1 −−→ z3 ∈
R, it follows from (27) that

pz1,z2 =
π

(
x + ϕ(z2)− ϕ(z)

)
λz2→z1

(
x + ϕ(z2)− ϕ(z)

)

π
(
x + ϕ(z1)− ϕ(z)

)
λz1→z3

(
x + ϕ(z1)− ϕ(z)

)ρz,z1→z3(x).

Consequently,
py1,z =

π(x)λz→y1(x)ρz,y1→z(x)

π
(
x + ϕ(y1)− ϕ(z)

)
λy1→z

(
x + ϕ(y1)− ϕ(z)

) ,(42)
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py1,z ′pz ′,z =
π

(
x + ϕ(z ′)− ϕ(z))λz ′→y1

(
x + ϕ(z ′)− ϕ(z))

π
(
x + ϕ(y1)− ϕ(z)

)
λy1→z

(
x + ϕ(y1)− ϕ(z)

)ρz,y1→z(x)

× π(x)λz→z ′(x)

π
(
x + ϕ(z ′)− ϕ(z))λz ′→y1

(
x + ϕ(z ′)− ϕ(z))ρz,z ′→y1(x)

=
π(x)λz→z ′(x)ρz,y1→z(x)ρz,z ′→y1(x)

π
(
x + ϕ(y1)− ϕ(z)

)
λy1→z

(
x + ϕ(y1)− ϕ(z)

) ,

and by iteration, letting z0 = y1,
py1,z1

( k−1∏

i=1

pzi ,zi+1

)
pzk ,z =

π(x)λz→zk (x)ρz,y1→z(x)
∏k

i=1 ρz,zi→zi−1(x)

π
(
x + ϕ(y1)− ϕ(z)

)
λy1→z

(
x + ϕ(y1)− ϕ(z)

) ,(43)
for all k ≥ 2. Then, (41) follows from (42)-(43) and the definition of Γy1→z→y ′ . The proof of this
lemma is complete. □

Proof of Lemma 22
IfNM−1 = NM , then by definition, every complex in C′

M−1∩C′ = C′
M∩C′ has only one incoming

reaction. On the other hand, ifNM−1 ̸= NM , then theM complexes in C′ are cleaved sequentially
in N1, ...NM , and thus C′

M ∩ C′ ⊆ CM ∩ C′ = ∅. Therefore, in either case, no complex in C′ ∩ CMhas multiple incoming reactions. We will show that if (y , i) ∈ C′
M is a copy of y ∈ C′, then (y , i)

has only one incoming reaction in NM . First, y ∈ C′ has only one incoming reaction in N , but
multiple incoming reactions inNm−1 for somem ∈ {1, ... ,M}; otherwise (y , i) is not in C′

M ⊆ CM .
Recall that when one-node cleaves a complex, only the incoming reactions of complexes that are
products of the cleaved complex might change. It follows that the multiple incoming reactions
in Rm−1 are due to the cleaving of a complex y ′ ∈ C′ ∪ {z} in Nm′ with m′ < m, that is, the
reactant of the only incoming reaction of y in R, ... ,Rm′−1. After cleaving y ′, the reactant of
each incoming reaction of y in Cm′ , ... , Cm−1 is a copy of y ′, and thus when cleaving y in Nm, thereactant (y ′, j) of the only incoming reaction of (y , i) in Rm is a copy of y ′. As in the cleaving
iteration, only complexes in C′ might be cleaved. The copy (y ′, j) is not cleaved in Nm+1, ... ,NM .
As a consequence, the incoming reactions of (y , i) will not change, namely, (y , i) has only one
incoming reaction (y ′, j) −−→ (y , i) in Rm+1, ... ,RM .

The only concern now is the cleaving of a complex y inNm with somem ∈ {1, ... ,M}, fulfilling
y −−→ (z , i) ∈ Rm−1 for some i = 1, ... , pz . The situation is illustrated in Figure 2. Consider
the RN N . Complex z has two incoming reactions, and C′ = {y1, y2}, in which each complex
has only one incoming reaction. The only cycle including y2 −−→ z included in N is {z −−→
y1 −−→ y2 −−→ z}. Thus, after cleaving z in N0, the complex (z , 1) has only one outgoing
reaction (z , 1) −−→ y1. Then, y1 is cleaved in the same manner, resulting in the cleaved RN N1.It remains to cleave the complex y2. Note that there is only one cycle including y2 −−→ (z , 1) in
N1. Therefore, after cleaving y2, the complex (z , 1) has only one incoming reaction in R2. Thisobservation allows us to complete the proof as follows.

Assume y ∈ Cm−1 ∩ C′ has multiple incoming reactions inRm−1 (for some m), y −−→ (z , 1) ∈
Rm−1, and y is cleaved in Nm.

The reaction y −−→ (z , 1) is a result of the cleaving of z in N0, that is y −−→ z ∈ R and
y −−→ (z , 1) ∈ R0 is the only incoming reaction of (z , 1) inR0. Additionally, y ∈ C′ has only one
incoming reaction in R. It follows that the multiple incoming reactions of y in Rm−1 come from
the cleaving of some complex y ′ inNm′ withm′ ∈ {0, ... ,m−1}. By iteration, we find a sequence
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of reactions
{z −−→ y (1) −−→ · · · −−→ y (k) −−→ y} ⊆ R

with k ∈ {0, ... ,m− 1}, such that for each i ∈ {0, ... , k}, complex y (i) ∈ C′ is cleaved in Nmi thatincreases the number of incoming reactions of y (i+1)in Rmi , where m0, ... ,mk are non-negativeintegers fulfilling 0 = m0 < m1 < · · · < mk ≤ m − 1, with the convention that y (0) = z . Because
{y , y (1), ... , y (k)} ⊆ C′, by definition y (i) −−→ y (i+1) is the only incoming reaction of y (i+1) in R
for all i = 0, ... , k , where y (0) = z and y (k+1) = y . Thus,

γ0 = {z −−→ y (1) −−→ · · · −−→ y (k) −−→ y −−→ z}

is the only cycle including reaction y −−→ z inN . Therefore, (z , 1) −−→ y (1) is the only outgoing
reaction of (z , 1) in R0.

Next, consider the cleaving of y (1) in Nm1 . Neither (z , 1) nor y (1) is cleaved in N1, ... ,Nm1−1,thus (z , 1) −−→ y (1) ∈ Rm1−1. Therefore, after the cleaving of y (1) in Nm1 , there is a copy
of y (1), denoted by (y (1), 1) in Cm1 such that (z , 1) −−→ (y (1), 1) ∈ Rm1 . Additionally, thisreaction is the only incoming reaction of (y (1), 1) and the only outgoing reaction of (z , 1) in
Rm1 . Similarly, since neither (y (1), 1) or (z , 1) is cleaved in Nm1+1, ... ,Nm, then it follows that
(z , 1) −−→ (y (1), 1) ∈ Rm1 is the only incoming reaction of (y (1), 1) and the only outgoing reac-
tion of (z , 1) in Rm1+1, ... ,Rm−1 as well. On the other hand, because none of y (1), ... , y (k), (z , 1)
are cleaved in N1, ... ,Nm1−1, it holds that

γ1 = {y (1) −−→ y (2) −−→ · · · −−→ y (k) −−→ y −−→ (z , 1) −−→ y (1)}.

is also the only cycle including (z , 1) −−→ y (1) in Nm1−1. Thus, (y (1), 1) −−→ y (2) is the only
outgoing reaction of (y (1), 1) in Rm1 , and thus in Rm1+1, ...Rm2−1.

By iteration, after cleaving y (k), there is a sequence
{(z , 1) −−→ (y (1), 1) −−→ · · · −−→ (y (k), 1) −−→ y} ⊆ Rmk

such that (y (i), 1) −−→ (y (i+1), 1) is the only outgoing reaction of y (i) for all i = 0, ... , k in
Rmk

, ... ,Rm−1, where y (0) = z and (y (k+1), 0) = y . This implies that the only cycle including
y −−→ (z , 1) in Nm−1 is

γ2 = {y −−→ (z , 1) −−→ (y (1), 1) −−→ · · · −−→ (y (k), 1) −−→ y}.

As a consequence, complex (z , 1) has only one incoming reaction inRm, provided y −−→ (z , 1) is
the only incoming reaction of (z , 1) inRm−1. This proves that the number of incoming reactions
of (z , 1) is one in Rm. The proof of this lemma is thus complete. □
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