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Abstract
Introgression, the incorporation of foreign variants through hybridization and repeatedbackcross, is increasingly being studied for its potential evolutionary consequences, oneof which is adaptive introgression (AI). In recent years, several statistical methods havebeen proposed for the detection of loci that have undergone adaptive introgression.Most of these methods have been tested and developed to infer the presence of Ne-anderthal or Denisovan AI in humans. Currently, the behaviour of these methods whenfaced with genomic datasets from evolutionary scenarios other than the human lineageremains unknown. This study therefore focuses on testing the performance of the meth-ods using test data sets simulated under various evolutionary scenarios inspired by theevolutionary history of human, wall lizard (Podarcis) and bear (Ursus) lineages. These lin-eages were chosen to represent different combinations of divergence and migrationtimes. We study the impact of these parameters, as well as migration rate, populationsize, selection coefficient and presence of recombination hotspots, on the performanceof threemethods (VolcanoFinder, Genomatnn andMaLAdapt) and a standalone summarystatistic (Q95(w, y)). Furthermore, the hitchhiking effect of an adaptively introgressedmutation can have a strong impact on the flanking regions, and therefore on the dis-crimination between the genomic windows classes (i.e. AI/non-AI). For this reason, threedifferent types of non-AI windows are taken into account in our analyses: independentlysimulated neutral introgression windows, windows adjacent to thewindow under AI, andwindows coming from a second neutral chromosome unlinked to the chromosome un-der AI. Our results highlight the importance of taking into account adjacent windows inthe training data in order to correctly identify the window with the mutation under AI.Finally, our tests show that methods based on Q95 seem to be the most efficient for anexploratory study of AI.
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Introduction
Hybridisation is the reproduction of individuals belonging to differentiated gene pools. As

long as reproductive isolation remains incomplete, hybridisation and backcrossing can lead to in-
trogression, i.e. the incorporation of genetic material from a donor population into the genome
of a recipient population (Anderson and Hubricht, 1938). Mallet (2005) estimated that hybridisa-
tion occurs in over 25% of plant species and 10% of animal species, and more evidence of inter-
specific hybridisation and introgression has emerged since then in plants and animals following
the advent of high-throughput sequencing technologies (Taylor and Larson, 2019; Twyford and
Ennos, 2012). Indeed, the barriers between species are not completely impermeable, allowing
genetically distinct species to be maintained over time in the presence of gene flow (Harrison
and Larson, 2014; Suarez-Gonzalez et al., 2018). While interspecific introgression is increasingly
recognised as an important process in the evolution of biodiversity, its prevalence (in terms of
the proportion of species involved) and importance (in terms of the proportion of the genome
that is affected) remain poorly understood (Edelman and Mallet, 2021).

Hybridization and introgression have many potential evolutionary outcomes. They can lead
ultimately to the accumulation of deleterious mutations (Adavoudi and Pilot, 2022), or to the
loss of genetic diversity by the merging of the two parent species (Runemark et al., 2019), or
even to the extinction of the parent species through genetic swamping (Todesco et al., 2016).
Introgression can also allow the acquisition of alleles that increase the fitness of carrier individu-
als, a process known as adaptive introgression (AI; Burke and Arnold, 2001; Kim and Rieseberg,
1999). Although there are few examples to date, adaptive introgression is thought to occur in
both animals and plants (e.g. Burgarella et al., 2019; Hedrick, 2013). In some cases, adaptive in-
trogression could even play an important role in the speciation process as proposed in Darwin’s
finches (Grant and Grant, 2019) or butterflies of the genus Heliconius (Pardo-Diaz et al., 2012;
Rosser et al., 2024).

Proving the presence of adaptive introgression in a species is challenging, because evidence
is needed to support that the genomic regions involved come from another species and either
that they provide a selective advantage on the fitness of the individuals carrying them or that
they exhibit signs of positive selection in the recipient species (Burgarella et al., 2019; Suarez-
Gonzalez et al., 2018). The first studies of adaptive introgression looked independently for in-
trogression and for selection signals in genetic sequences. However, the signals left by adaptive
introgression in genetic sequences can be quite distinct from signals left by neutral introgression
or by selective sweeps of non-introgressed variants (Burgarella et al., 2019; Racimo et al., 2015;
Setter et al., 2020; Taylor and Larson, 2019). For this reason, classification methods have been
developed to detect genomic signatures specific to adaptive introgression (Gower et al., 2021;
Racimo et al., 2017; Setter et al., 2020; Zhang et al., 2023). These methods aim at identifying ge-
netic patterns specific to adaptive introgression, such as summary statistics focusing on excess
of allele sharing between the introgressed population and the introgressing population (Racimo
et al., 2017), genomic scans identifying patterns of diversity specific to adaptive introgression
(Setter et al., 2020) or machine learning algorithms trained on data simulated under adaptive
introgression scenarios (Gower et al., 2021; Zhang et al., 2023).

Most of these methods have been developed and tested on human genetic data to iden-
tify potentially adaptively introgressed regions caused by ancient hybridization among groups
of humans: Homo sapiens, Homo neanderthalensis and Denisovans (human evolutionary models
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reviewed in Racimo et al., 2015). In addition, methods using machine learning algorithms have
been trained only on genetic datasets simulated under human scenarios. The behaviour and per-
formance of these methods on organisms with evolutionary scenarios distant from the human
lineage are therefore unknown. Using a simulation-based inference method trained on a partic-
ular biological model to infer a biological process on another model could degrade the method’s
performances. The signals left by adaptive introgression depend on life history traits and evolu-
tionary history of the biological model. The history of connections between populations, their
sizes and divergence times, as well as the availability for sampling of introgressing, introgressed
and non-introgressed populations, and the strength of selection are features specific to the bio-
logical model and the study, which influence the signature of AI in the genome and therefore the
performance of the methods. In the case of non-model species, the knowledge of demographic
history and genomic parameters such as mutation and recombination rates is often limited. For
these species, it is difficult to choose the scenario under which genetic data should be simulated
to train machine learning methods to detect AI, and more generally to define a score thresh-
old differentiating regions under AI from other regions. Indeed, most current studies trying to
detect AI in non-model species use VolcanoFinder (Setter et al., 2020), the only method that
does not require the definition of an evolutionary model or data of the introgressing species (Liu
et al., 2022; Pawar et al., 2023; Wang et al., 2023) to be applied on a given data set. However,
some authors have suggested that alternative simulation-based methods are robust to misspec-
ification of demographic history (Gower et al., 2021; Zhang et al., 2023). It is thus important to
assess the robustness of these methods on genetic data generated by evolutionary histories not
explored in the training set.

Furthermore, as these methods have been published recently, no study has compared their
performance since the original articles. One aim of our work is therefore to compare the per-
formance of published adaptive introgression detection methods in relation to evolutionary pa-
rameters possibly affecting this detection: migration time and rate, strength of selection on the
introgressed allele, effective population size, recombination rate, and divergence time between
taxa. To do so, we simulated genetic datasets under a diversity of evolutionary scenarios inspired
by the life history traits of three case studies: humans, wall lizards (Podarcis) and bears (Ursus).
We set the human demographic scenario as our reference, and used it to evaluate the impact
of variation in migration rate and effective population sizes as well as heterogenous recombina-
tion rate on classification performance. The Podarcis hispanicus complex includes at least eight
species that inhabit the Iberian Peninsula where they are sympatric or parapatric, meeting in
narrow contact zones (Pinho et al., 2009; Renoult et al., 2009). Various levels of genomic and
mitochondrial introgression have been identified between several species (Caeiro-Dias et al.,
2021; Pinho et al., 2009; Renoult et al., 2009; Yang et al., 2021). Their divergence times are on
the order of a million generations (Kaliontzopoulou et al., 2011), much older than divergence be-
tween humans and neanderthals dating from less than 20,000 generations (Prüfer et al., 2014).
Scenarios based on the Podarcis evolutionary history thus allow us to examine the impact of the
divergence time between donor and recipient populations. Human migration times are relatively
recent (∼2,000 generations) and a similar timing of gene flow has been proposed for Podarcis
(gene flow was made possible by the post-glacial expansion of populations, Pinho et al., 2011).
prompting us to consider an additional scenario with older migration. Introgression between po-
lar bears (Ursus maritimus) and brown bears (Ursus arctos) occurred between 10,000 and 32,000
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generations ago (Lan et al., 2022; Liu et al., 2014). We thus devised a third scenario inspired by
this case to evaluate the effect of migration time on the detection of AI.

In this study, we perform simulation tests of the performance of four different existing AI
classification methods: VolcanoFinder (Setter et al., 2020), MaLAdapt (Zhang et al., 2023) and
Genomatnn (Gower et al., 2021) and the summary statistic Q95(w , y) (Racimo et al., 2017). Each
method has been developed, trained (for simulation-based methods), and evaluated for a dif-
ferent type of non-AI windows (i.e. genomic windows that do not carry AI alleles, see below).
Gower et al. (2021) uses neutral introgression windows simulated independently of AI windows,
while Zhang et al. (2023) uses windows that do not carry the mutation under AI but share the
same demographic and adaptive history (i.e. generated by the same simulation), and that can
be physically linked to the AI-windows or not. Methods that do not require training, such as
VolcanoFinder, also use different non-AI window classes for tests.

As the aim of all these classificationmethods is to specifically identify windows carrying intro-
gressed advantageous mutations, the types of non-AI windows used in the train set to achieve
this objective is extremely important. Testing for the presence of AI in a genetic dataset com-
posed of windows adjacent to the AI window using a method not trained with this type of
window may result in the identification of false positives, because hitchhiking can lead to the
identification of false AI signals in such adjacent windows. Therefore, we also explore the im-
pact of intra- and inter-chromosomal hitchhiking on performance, by taking into account in the
test sets adjacent windows linked to the window carrying the mutation under AI, as well as a
second chromosome harbouring only neutral windows but potentially affected by hitchhiking.
Indeed, although hitchhiking is mainly considered as the selective effect of an advantageous al-
lele on genetic variation at adjacent neutral alleles linked to it (Maynard Smith and Haigh, 1974),
which we call intra-chromosomal hitchhiking in this article, its effect extends to other chromo-
somes, an effect named here inter-chromosomal hitchhiking. This hitchhiking follows from any
initial statistical association between a selected allele and alleles at physically unlinked loci, in
particular the associations created by the immigration event as well as their persistence in the
first generations following immigration.

We thus evaluate the performance of four AI classification methods to detect genomic re-
gions containing an allele under various scenarios of AI inspired by demographic models of the
human, wall lizard and bear lineages, to illustrate the impact of varying a parameter of interest,
and compared how the four testedmethods are robust to different types of non-AIwindows.Our
results highlight the differences among the methods, and provide a guideline on what method to
use for the study of adaptive introgression. Our simulation tests suggest that the simple genome
scan method based on one of the Racimo et al. (2017) summary statistics generally has better
performance in the classification of genomic regions under adaptive introgression than all other
more complex methods in most of the scenarios considered.

Material and methods
Adaptive introgression model

We simulate genetic data under an adaptive introgression model where a beneficial allele
is transferred by gene flow from a donor population to a recipient population. The full model
is composed of five populations (Figure 1): an outgroup population (O), a recipient population
(R), a non-introgressed sister population of the recipient one (RS), a donor population (D), and a
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non-introgressing sister population of the donor one (DS). The donor’s sister population is used
in our study as a stand-in for the donor population to mimic empirical situations when the latter
is unknown or where genomic data are not available from it (Setter et al., 2020). Genetic data
sampled from different combinations of these populations are used by the evaluated methods.
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Figure 1 – Demographic model used in this study. Anc_O_I = Outgroup and Ingroup an-cestral population,O =Outgroup population, I = Ingroup population,Anc_D_DS = Donorand non-introgressing ancestral population, Anc_R_RS = Recipient and non-introgressedancestral population. DS = sister to the donor population (non-introgressing population),D = Donor population (introgressing population), R = Recipient population (introgressedpopulation), RS = Recipient sister population (non-recipient population), TD1 = Diver-gence time betweenO and I,TD2 = Divergence time between Anc_D_DS and Anc_R_RS,
TD3 = Divergence time between D and DS, TD4 = Divergence time between R and RSand, Tm = migration generation time. The arrows and triangles with a white backgroundrepresent divergence events between populations, the red arrow represents the migra-tion event.

Population sizes are constant throughout the duration of the simulation and fixed to a sin-
gle value N for all populations. At the end of the simulation, a given number of individuals is
sampled in each population, except the donor one. Except for reference scenarios of neutral in-
trogression (NI) for which we consider a single chromosome, we simulate diploid genomes with
two chromosomes, of length 1Mb each, where neutral mutations can occur at a mutation rate µ

and (intra-chromosomic) recombination events at a rate r , both rates being expressed per base
per gamete (i.e. per generation). The different chromosomes are simulated by setting a recom-
bination rate of 0.5 between the two genomic regions defining them. To simulate an adaptive
introgression event, a single beneficial mutation (with selection coefficient s) is positioned at
the centre of one of the two haploid genomes of a single individual within the ancestral donor
population (Anc_D_DS in Figure 1). The beneficial mutation is then potentially transferred from
the donor population to the recipient population during a single generation of migration, with an
immigration rate m. The selection coefficient for the advantageous mutation does not change
over time or between populations (i.e. s is the same for Anc_D_DS, D, DS and R). Simulation
are discarded when the selected mutation is lost in AI scenarios, or when no genetic material is
introgressed in NI scenarios.
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Demographic parameters values are chosen to produce demographic scenarios inspired by
the evolutionary history of the human, Podarcis or Ursus lineages (Table 1). Variable parameter
values among all the scenarios are shown in Table 2. Each demographic scenario is used to test
the impact on performance of varying a specific parameter. The Human demographic model is
used to define the reference scenario (i.e. scenario with which the performances of the other
scenarios are compared), whose event times are inspired by the "PapuansOutOfAfrica_10J19"
model from the library for population genetic simulation, stdpopsim (Adrion et al., 2020). In this
scenario, Homo neanderthalensis and Homo sapiens are the donor and recipient species, respec-
tively, and Pan troglodytes the outgroup. For the reference scenario, µ is set to 1.2×10−8 mutation
per base per gamete, the recombination rate is set to the same value as the mutation rate; m
and N are set tom = 10−2 and 10, 000 respectively, and s is set to 10−2, to simulate intermediate
selection. In other human scenarios, the values of a single parameter are modified, in order to
test the impact of the variation of this specific parameter on performance. The other human
scenarios are therefore built to test the impact of variation in immigration rate (m = 10−1 and
10−3), small effective population sizes (N = 200) and the presence of recombination hotspots.
Hotspots are simulated as areas with high recombination rates (r = 5 × 10−7) over a 1kb span,
occurring within each 100kb window (similarly to observed patterns reviewed by Myers et al.,
2006). Outside these hotspots, the recombination rate is lower (r = 4 × 10−9), maintaining the
average recombination rate to 1.2 × 10−8. In the first hotspot scenario, the hotspot located in
the window under AI is positioned 20kb away from the mutation under selection, while in the
second scenario, the mutation is situated at the centre of the hotspot.

The Podarcis scenarios are designed to test the impact of an ancient divergence between the
D and R populations (TD2), inspired by the potentially adaptive introgression found between thespecies Podarcis carbonelli (D) and Podarcis bocagei (R; Caeiro-Dias et al., 2021, 2023; Gaczorek
et al., 2023; Pinho et al., 2009), which are thought to have diverged 2.24 million generations
ago (5.6 million years ago, Kaliontzopoulou et al., 2011). In this scenario, Podarcis muralis was
chosen as the outgroup species. The Podarcis scenarios alsomade it possible to assess the impact
of selection strength, test sets are generated with different selection coefficients representing
strong, intermediate and weak selection scenarios (s values of 10−1, 10−2 and 10−3).

Finally, the scenario based on bear demographic events shows the impact of an earlier mi-
gration time than that used for the human scenarios. The genus Ursus was chosen because an
introgression event between the polar bear and the brown bear occurring between 10,000 and
32,000 generations ago (100,000 and 320,000 years ago) has previously been inferred (Lan et
al., 2022; Liu et al., 2014). In this scenario, the American black bear (Ursus americanus) is the
outgroup species, the polar bear (Ursus maritimus) the donor species and the brown bear the
recipient species (Ursus arctos). For both Podarcis and Ursus scenarios, the values of m, N , µ and
r are identical to the reference human scenario, to allow the comparison of results.

We use a combination of forward and backward (coalescent) simulators to generate the ge-
netic data. First, msprime (Baumdicker et al., 2022; Kelleher et al., 2016) simulates backward in
time the ancestral recombination graph (ARG) of the whole population from the divergence of
populations ancestral to the donor and recipient populations (i.e., at time TD2 in Figure 1), un-
til the most recent common ancestor. SLiM (Haller and Messer, 2019) is then used to simulate,
forward in time and starting from msprime’s ARG, the more recent section of the evolutionary
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scenario which includes selection, i.e. from TD2 until present. SLiM’s ARG of the individuals sam-
pled in current populations is used by msprime to add neutral mutations to generate the sample
polymorphism.

For most scenarios, sample sizes are set to 99, 108, 2 and 2 for the recipient population,
the non-introgressed population, the sister population of the donor, and the outgroup popula-
tion, respectively, corresponding to the values used by the tested simulation-based classification
methods (Genomatnn and MaLAdapt, Gower et al., 2021; Zhang et al., 2023). However, these two
methods used samples from the donor population for their train and test set where we used sam-
ples from the sister population of the donor. In order to test the impact of sample size, a test
set was simulated under the reference human scenario, with balanced samples of 30 individuals
per population. Haplotypic and genotypic matrices for all samples are then obtained from the
ARG with mutations, using the tskit (Ralph et al., 2020) and scikit-allel packages (Miles
et al., 2024). As forward simulations can be highly time-consuming, a scaling factor of 10 was
applied to all parameter values (exceptm, since migration occurs as a one-time event limited to a
single generation in which the same proportion of the population is replaced by migrants in the
original and scaled models) to drastically reduce simulation times: s , µ and r are multiplied by the
scaling factor, and the times of events and N are divided by the scaling factor (as in Gower et al.,
2021; Hoggart et al., 2007; Zhang et al., 2023). Although the use of a scaling factor on selection
coefficient and population size can bias the forward simulation results (Dabi and Schrider, 2024),
its use in our analysis is justified not only by the fact that simulating the test sets under the Po-
darcis scenario without it would be extremely time-consuming (i.e. over 100 times longer than
with the scaling factor, representing hundreds of thousands of CPU hours), but also because
the simulation-based classification methods (Genomatnn and MaLAdapt) used it to generate their
training set. Table S1 compares the parameter values used to train the simulation classification
methods (MaLAdapt and Genomatnn) and our test sets.
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Methods to detect adaptive introgression
The performance of four adaptive introgression classification methods: VolcanoFinder (Set-

ter et al., 2020), MaLAdapt (Zhang et al., 2023) and Genomatnn (Gower et al., 2021) and a method
based on the summary statistic Q95(w , y) (Racimo et al., 2017) are evaluated in this work. All of
them are classificationmethods whose objective is to detect regions of the genome that harbour
a beneficial mutation originating from the donor population (AI region).

The Q95(w ,y ) statistic (Racimo et al., 2017) is one of the first summary statistics developed
to specifically capture the signal of adaptive introgression in genetic data. This summary statis-
tic can be calculated for both phased and unphased genotypes. It gives the 95% quantile of
the distribution of derived allele frequencies in the recipient population, for alleles that have a
frequency equal to or higher than y in the donor population and lower than w in the sister popu-
lation of the recipient population. This summary statistic (named Q95 thereafter), with w = 0.01

and y = 1, and computed on 50kb non-overlapping windows, is used here as a score value to
detect adaptive introgression.

VolcanoFinder (Setter et al., 2020) is the first adaptive introgression classificationmethod to
have been developed. This method aims to identify adaptive introgressed alleles recently fixed in
the recipient population, considering only the genetic information from the introgressed popula-
tion. It uses an optional outgroup population to polarize the alleles and does not require phased
haplotypes. For a given genomic position, VolcanoFinder calculates a composite likelihood ratio
for the site frequency spectrum (SFS) around that focal site, comparing an AI model and a refer-
ence SFS acting as empirical null model. In our tests, we used the SFS of the whole chromosome
as reference. To compute the composite likelihoods, VolcanoFinder can estimate the strength
of selection and the genetic differentiation between the recipient and donor populations or use
user-specified fixed values.We choose to let VolcanoFinder infer them, as recommended in Set-
ter et al. (2020).We set the interval between each tested site to 1000bp. The scores per position
given by the method (i.e. the composite likelihood ratio) are further converted into a single score
per 50kb window, corresponding to the highest score observed in the window considered. To
obtain a relative score (i.e. between 0 and 1 as for the other methods), the score of each window
is then divided by the maximum score observed among all windows and all analysed datasets
for a given scenario.

Genomatnn (Gower et al., 2021) is a simulation-based classification method that uses a deep
learning algorithm (convolutional neural network, CNN), trained on 100kbwindows simulated in-
dependently under different scenarios with samples from the donor, recipient and recipient’s sis-
ter populations, to detect adaptive introgression. Genomatnn gives a probability for each 100kb
tested window to have been affected by an adaptive introgression event and can use both
phased and unphased data. The training set includes sequences simulated under adaptive in-
trogression, neutral introgression and classical selective sweep scenarios, and is used to classify
genomic regions (windows) as AI or non-AI. We used two pre-trained CNNs (Nea_to_CEU_af-
0.25_2918410235.hdf5 and Nea_to_CEU_af-0.05_2250018620.hdf5) described in the article
presenting the method and corresponding to CNNs trained on simulations filtered so that the
frequency of the beneficial allele in the recipient population was greater than or equal to 5% and
25% (respectively Genomatnn_0.05 and Genomatnn_0.25 thereafter; Gower et al., 2021).We use
these originally trained CNNs to test their robustness when using test datasets simulated under
a different demographic scenario. We also re-trained Genomatnn with balanced sample sizes of
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30 individuals per population without changing other parameters for the test of the effect of
sample sizes. For this, 100,000 datasets were simulated under each AI, neutral introgression
and classical selective sweep processes with the Genomatnn pipeline.

MaLAdapt (Zhang et al., 2023) is also a simulation-based classification method and uses a ma-
chine learning (ML) algorithm (extra tree classifier, Geurts et al., 2006), trained on simulations
of a 5Mb chromosome phased genome under different scenarios with samples from the donor,
recipient and recipient’s sister populations, to classify genomic regions (50kb windows) as AI
or non-AI. For each window, MaLAdapt computes a score corresponding to the probability that
the window has experienced an AI event. Contrary to Genomatnn, MaLAdapt is not trained on
raw sequences, but on a set of summary statistics calculated on each window. These summary
statistics were chosen by Zhang et al. (2023) to capture patterns of genetic diversity, linkage
disequilibrium and population differentiation, that are informative about introgression, selection
and adaptive introgression. Contrarily to Zhang et al. (2023), we use non-overlapping windows
and do not consider the presence of exons in the genome. The number of exons per window,
a summary statistic used by Zhang et al. (2023), has been removed because this information is
only available for annotated genome, which is rarely the case for non-model species. Further-
more, its use rests on simulations assuming that selection only takes place in exons, which is
not consistent with evidence of selection outside exons (Jo and Choi, 2015). This assumption
should systematically lead to the classification of windows without exon as non-AI windows and
thus artificially improve the method’s performance. We also do not compute Kelly (1997)’s ZnSsummary statistic, because it is computationally intensive to calculate and because ZnS does not
carry pertinent information according to the classification importance score of the extra-tree
classifier algorithm of MaLAdapt (Zhang et al., 2023). Re-using the original simulated training
set from Zhang et al. (2023), we retrained two extra-tree classifiers without the two statistics
mentioned above, one with the Q95(0.01, 1.0) statistic and the other without (respectively MaL-
Adapt_Q95 and MaLAdapt_noQ95 thereafter), which are equivalent to models 4 and 6 from Zhang
et al. (2023) but without ZnS and number of exons. Summary statistics from train and test sets
are standardised using their mean and variance computed on the training set (whereas Zhang
et al., 2023, used the mean and variance computed on the analysed test set).

Inferenceswere thus carried out on non-overlapping 50kbwindows (for VolcanoFinder MaL-
Adapt and the method based on Q95) or 100kb windows (for Genomatnn), and using phased
genotypes of the donor’s sister population, recipient and recipient’s sister populations for Genom-
atnn and MaLAdapt or from the recipient population only for VolcanoFinder.

Method performance evaluation
To identify candidate AI-windows, the four methods select windows whose score is higher

than a given threshold. The threshold values need to be defined for each data set, as they de-
pend on the sampling scheme and evolutionary history of the samples. Here, we varied the score
threshold value used to classify the windows as AI or non-AI and computed true and false pos-
itive rates to generate receiver operating characteristic (ROC) curves for the different types of
non-AI windows and calculate the area under the ROC curve (AUC, Bradley, 1997). The use of
these evaluation metrics (ROC and AUC) allows us to avoid defining score thresholds for each
method that would only be relevant for a given scenario and sampling scheme.
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For all methods tested, we define a region being under adaptive introgression as a window
containing the advantageous mutation originating from the donor population (named AI win-
dow). But the definition of the “reference” non-adaptive introgression (non-AI) regions (i.e. the
null model) differs for the different classification methods: (i) VolcanoFinder does not assume
a specific null model in terms of evolutionary history but rather defines an empirical null model
from the genome-wide SFS of the sampled individuals in the recipient population; (ii) Genom-
atnn uses a train set including, as non-AI windows, neutrally introgressed (NI) windows and non-
introgressedwindowswith a beneficial site (classic sweep) with a class ratio of 1:1:1 (AI:NI:classic
sweep), simulated independently of each other; and (iii) MaLAdapt uses (1) all windows of the
5Mb chromosome other than the one carrying the advantageous mutation (referred to here as
adjacent windows) as non-AI windows, so that AI and adjacent non-AI windows are jointly sim-
ulated and can be physically linked, (2) selective sweep windows simulated independently of
the AI windows. The AI:non-AI class ratio of the final training set is 1:2. By including adjacent
windows as non-AI windows in its training sets, MaLAdapt treats as non-AI some windows that
have undergone hitchhiking and therefore potentially do not have the same genetic diversity as
neutral introgression windows simulated independently of the AI window. Indeed, depending
on the strength of selection, recombination and demographic events, the hitchhiking effect of
the advantageous mutation can have a strong impact on the evolution of the frequency and dis-
tribution of linked neutral alleles. In the context of adaptive introgression analysis, hitchhiking
certainly has an effect on inference and may notably lead, for example, to the detection of false
AI signals on windows adjacent to the beneficial allele. Furthermore, the effects of hitchhiking
may extend to other chromosomes than the one carrying the mutation, as even free recombina-
tion (r = 1/2) might not immediately suppress the inter-chromosomal linkage disequilibrium in
the first generations after the introgression of the beneficial haplotype. None of the AI classifica-
tion methods tested here take this inter-chromosomal hitchhiking into account in the definition
of its training set nor their sensitivity with respect to such hitchhiking in the (simulated) data has
been tested.

To examine the effect of different forms of hitchhiking on the distribution of scores com-
puted by each method, we included neutral windows affected by intra- or inter-chromosomal
hitchhiking in the test sets. The train sets were not modified in this respect relative to the origi-
nal definitions of the methods (the definition of the Genomatnn train set ignores hitchhiking; for
MaLAdapt, it includes intra-chromosomal hitchhiking; the two other methods are not machine-
learning methods with a train-set concept). The effect of inter-chromosomal hitchhiking is as-
sessed by simulating genomes containing two chromosomes of 1Mb each, the first one carrying
the introgressed adaptive mutation and the second one being fully neutral, and by comparing
scores for windows from the second chromosome to scores within the first one. The effect of
intra-chromosomal hitchhiking is assessed by examining the variation in distribution of scores
for windows at different distances from the adaptive mutation on a 1Mb chromosome. Last, we
also generated test sets of a 1Mb chromosome simulated without any selection (so containing
only neutral introgression windows) to represent Genomatnn types of neutral non-AI windows.

For each scenario explored, we simulated one test set of 200 simulated data. We represent
the distributions of scores over the 200 replicates as function of the distance to the beneficial
mutation when relevant (i.e. not for the chromosome 2 and independent neutral chromosome,
where hitchhiking affects the test sets).
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Results
We compare the performance of the four methods described above, initially in our human

reference case and then in relation to seven factors of variation: the strength of selection (s),
the migration rate (m), the population size (N ), the recombination rate heterogeneity (r ), the di-
vergence time between the D and the R population (TD2) and the migration time (Tm). Thosecomparisons are reported for different types of non-AI windows: windows simulated indepen-
dently under a neutral introgression scenario (NI), neutral windows not physically linked to the
beneficial mutation (i.e. on the second chromosome, chro2), or neutral windows on the same
chromosome as the beneficial mutation (i.e. adjacent windows). The consideration of those three
different classes of non-AI window classes allows us to evaluate false positive rates (FPR) in dif-
ferent regions of the genome and in the case of complete absence of AI. ROC curves (Figure 2
and S1 for adjacent windows, Figure 3 and S2 for independent neutral introgression windows
and Figure S3 for second chromosome windows) and AUC (Table S3 to S5) express the expected
performance of eachmethod and ease the comparisons between them. On the other hand, plots
of scores along the chromosomes are used to explore in more details the effects of hitchhiking
on their performance (Figure 4 and Figure 5, and Figure S4 to Figure S11).
Human reference scenario
ROC curves

The ROC curves in Figure 2a shows the comparison of the performance of the methods
under the human reference scenario when the non-AI windows are adjacent windows. Q95
(AUC = 0.978) appears to be the method with the best performance, closely followed by MaL-
Adapt_Q95 (AUC = 0.975), MaLAdapt_noQ95 (AUC = 0.968). Genomatnn_0.25 (AUC = 0.921)
and Genomatnn_0.05 (AUC = 0.899) show poorer results and VolcanoFinder (AUC = 0.641)
performances are much worse than all others.

All methods, except VolcanoFinder, perform better when non-AI windows are independent
neutral introgressed (NI) windows (Figure 3a and Table. S4) rather than adjacent windows. MaL-
Adapt_Q95 shows a performance comparable to that of theQ95 (AUC= 0, 996 for bothmethods).
The performance of MaLAdapt_noQ95 varies in the sameway as MaLAdapt_Q95 but with the same
or poorer AUC values, for most of the scenarios considered. The ranking of all methods remains
the same as for adjacent windows (Q95 equal to MaLAdapt then Genomatnn followed by Volcano-
Finder). In addition, the differences in AUC between the methods are much smaller than for the
test sets with adjacent windows (except for VolcanoFinder).

Finally, considering the second neutral chromosome as non-AI windows (Figure S3) does not
change the relative performance of the methods, which is similar to classification performance
against the NI windows.
Score distribution among window classes

Figure 4 shows the variation of the score values of the different methods as a function of
the distance to the window under AI. The expected pattern of decrease of the score with the
distance, due to decreasing hitchhiking, is found for all methods except VolcanoFinder. Accord-
ingly, AUC values increase with distance from the AI window for those methods. Both score
and AUC variation patterns varies depending on the methods considered, showing much more
spread out distributions of the score for Genomatnn thanQ95 and MaLAdapt(Figure 4), withmany
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large score values present at larger distances. This results in a slower increase of the AUC for
Genomatnn. On the opposite, VolcanoFinder’s scores are relatively constant for all distances,
with only a slight increase at the window under AI (Figure 4d).

As expected, due to intra-chromosomal hitchhiking, the scores of adjacent windows are dis-
tinct from those of NI windows, with higher mean scores even for the most distant windows.
Conversely, inter-chromosomal hitchhiking seems to only have almost no effect, as the distribu-
tions of scores for the second chromosome windows are extremely close to those for the NI
windows.
Old divergence has a strong effect on performance (Podarcis)
ROC curves

When the divergence between the donor and recipient populations is much older than that
of the human lineage (i.e. Podarcis scenario with intermediate selection), the performance of the
methods increases, except for Genomatnn_0.05 and VolcanoFinder (Figure 2b, Figure 3b and
Figure S3b). Relative method performances stay the same, but MaLAdapt and Q95 sometimes
show similar performance. With chro2 or NI windows as non-AI windows, both reach the AUC
values of a perfect classifier (AUC = 1).
Score distribution among window classes

Under such old divergence, the scores also decrease with distance from the AI window due
to hitchhiking, but only a little faster than under the human reference scenario. Accordingly, all
methods reach AUC values close to 1 for shorter distances, except, as before, for VolcanoFinder
(Figure 5d) and Genomatnn_0.05 (Figure S4d). The pattern differences between methods are
similar to the previous cases, but Genomatnn (Figure 5c) show a stronger score decline than under
a more recent divergence, with very high scores around the introgressed mutation followed by
an abrupt fall around 0.36 cM. At short distances, Q95 performs better than all other methods.

VolcanoFinder shows opposite patterns of variation with an increase of scores with dis-
tance from the AI window (Figure 5d, but also performs extremely poorly under this scenario as
previously shown by the ROC curves.

Finally, score values for the NI and chro2 windows scores are lower than for a more recent
divergence but also lower than the scores of themost distant windows (0.6 cM) to the AI window
on the first chromosome.
Strength of selection has a strong effect on performance (Podarcis)
ROC curves

Under the two Podarcis scenarios with a stronger and a weaker selection strength (Figure 2c
and Figure 2d), most methods perform less well and the order of method performance changed
a little compared to the reference human scenario when the non-AI windows are adjacent win-
dows. A moderate to strong decrease in performance is observed for all methods under a strong
selection strength, except for VolcanoFinder for which performance is better than under any
other scenario considered in this study (AUC= 0.961). In this situation, VolcanoFinder even out-
performs Q95 (AUC = 0.944). Contrarily, Genomatnn_0.05 performs very poorly under strong
selection (AUC = 0.051) and Genomatnn_0.25 is not better than a random classifier (AUC = 0.5).
Under aweak selection strength, the drop in performance is evenmore important for all methods,
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Figure 2 – ROC curve for adaptive introgression classificationmethods for 200 test setssimulated under human, Podarcis and Ursus scenarios with a chromosome containing amutation under various selection strength and adjacent windows as non-AI windows.True positive window = window with AI mutation, False positive windows = adjacentwindows.

with a best AUC = 0.76 for Q95. Interestingly, this is the only scenario where Genomatnn_0.05
outperforms Genomatnn_0.25, all other methods showing the same performance order than for
intermediate selection strength (and the reference human scenario).

In contrast, when NI and chro2 windows are used as non-AI windows, all the methods per-
form better when selection is strong than in the presence of intermediate selection. All Q95,
MaLAdapt and Genomatnn_0.25 methods reached AUC values equal to one. For weak selection,
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Figure 3 – ROC curve for adaptive introgression classification methods for 200 testsets simulated under human, Podarcis and Ursus scenarios with a chromosome contain-ing a mutation under various selection strength and independent neutral introgressionwindows as non-AI windows. True positive window = window with AI mutation, Falsepositive windows = Independent neutral introgression (NI).

however, ROC curves for all methods show poorer performance than for intermediate selection,
almost identical to the case of weak selection with adjacent windows as non-AI windows.
Score distribution among window classes

Under strong selection, a stronger hitchhiking effect increases the score values of all adjacent
windows compared to intermediate selection for Q95, MaLAdapt and Genomatnn. The decay of
the scores with distance to the AI site is thus much weaker and remains observable only for
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Q95 (Figure 5e) and MaLAdapt (Figure 5f). This stronger effect of hitchhiking thus increases the
distance required for the methods to differentiate between AI and non-AI windows. For Genom-
atnn (Figure 5g), both the AI window and adjacent one show large score values, greatly reducing
its performances compared to intermediate selection (with only a very small increase of AUCs
with distance and a low maximum value of AUC = 0.73). As seen for the ROC curves and unlike
all other scenarios, VolcanoFinder is the best performing method under this strong selection
and strong divergence scenario, showing perfect discrimination (AUC value of 1) for shorter
distances to the AI window than Q95 (0.48 cM versus 0.54 cM).

Under strong selection, the scores of NI windows are much lower than those of the win-
dow under AI and adjacent ones for all methods, except VolcanoFinder, resulting in a perfect
classification of the AI/non-AI windows for Q95, MaLAdapt and Genomatnn_0.25 (Figure 5).

Inter-chromosomal hitchhiking is observed under strong selection and leads to larger scores
for windows on the second chromosome than for NI windows for all methods. This effect is
minimal for Genomatnn_0.25 (Figure 5g) but stronger for Genomatnn_0.05, (Figure S4f), with
the second chromosome harbouring high score values typical of AI windows. Those high chro2
scores greatly reduce the performance of Genomatnn_0.05 when chro2 windows are used as
non-AI, compared to NI windows (AUC = 0.66 against 0.90, respectively). A reduction of per-
formance is also observed for VolcanoFinder with chro2 windows, but to a much lesser extent
(AUC = 0.93 against 0.90, respectively). For MaLAdapt and Q95, the scores on the second chro-
mosome are also higher than the scores for NI windows but still much lower than AI window
scores (Figure 5e and Figure 5f), resulting in good performances.

When selection is weak (Figure 5 and Figure S4), scores of the AI window aremuch lower and
the signal decaywith distance is barely visible forQ95, MaLAdapt and Genomatnn_0.05 except for
the closest adjacent windows (Figure 5i, Figure 5j and Figure S4h), showing that the hitchhiking
effect is very weak but present. For Q95, MaLAdapt and Genomatnn_0.05, a weak selection thus
leads to an increase of AUC values with the distance from the AI site, but the AUCs never reach
1 for adjacent windows (maximum value reached by Q95: AUC = 0.84). For VolcanoFinder
(Figure 5l), the pattern of inverted score values previously observed for the Podarcis scenario
with intermediate selection is still present, leading to very low AUC values. For Genomatnn_0.25,
the distributions of scores for the AI windows and adjacent windows are almost identical, also
resulting in low AUC values.

Scores of NI and chro2 windows are relatively similar due to the limited hitchhiking effect
under weak selection, and thus lead to similar performances of all methods compared to results
on adjacent windows.

Old migration moderately reduces performance (Ursus)
ROC curves

The scenario with an old migration time (Ursus, Tm = 15, 000 generations, Figure 2e) leads
to a reduction in performance for all the methods and all types of non-AI windows compared
to the human reference scenario. This is the only case where the Q95 is not one of the best
performing methods, outperformed by MaLAdapt and Genomatnn.
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Score distribution among window classes
The AI window show lower scores for MaLAdapt and Q95 with this older migration event

(Figure S5a and Figure S5e) than those with a more recent migration (i.e. the reference human
scenario and the Podarcis one with the same intermediate selection strength). Adjacent windows
havemuchmore spread out distributions than those observed for the reference scenario for both
methods. For Genomatnn the opposite effects are observed (Figure S5d), with distribution spread
out for the AI window, and reduced towards low values for adjacent windows.

With an old migration event, NI and chro2 windows show score patterns similar to those of
the most distant adjacent windows for Q95, MaLAdapt, and Genomatnn.

For all AI and non-AI windows types, the distributions of score values are similar for Volcano-
Finder (Figure S5f), showing even less difference between AI and non-AI windows than ob-
served for the reference scenario.
Small effective population sizes strongly reduces performance (human)
ROC curves

ROC curves for the human scenario with small population sizes show the poorest perfor-
mance for almost all methods among all the scenarios considered in this study (Figure 2f). Q95,
MaLAdapt and Genomatnn show similar poor performances, with all AUC values less than 0.75

for adjacent windows. Those poor performances are also found with NI windows Figure S2e)
but chro2 leads to better performances (except for VolcanoFinder, (Figure S3f)). With chro2
windows as non-AI windows, the performance of all methods is only slightly lower than in the
reference scenario (e.g. AUC = 0.988 for this scenario compared to 0.996 for the reference sce-
nario, for Q95). For this scenario, based on AUC values, Genomatnn_0.05 becomes one of the
best methods with Q95, outperforming MaLAdapt with NI and chro2 windows as non-AI win-
dows.
Score distribution among window classes

Bimodal score distributions, without intermediate values, are observed for Q95 and MaL-
Adapt for adjacentwindowswhen population sizes are small (Figure S6). For Genomatnn, adjacent
windows show higher values than those under the reference human scenario (Figure S6d).

Under such small population sizes, NI windows behave like adjacent windows for all methods.
On the contrary, window scores from chro2 contrast completely with those for adjacent and NI
windows and are lower than those of NI and adjacent windows, for all the methods. This is the
scenario where the chro2 and NI windows have the most distinct score distributions.

As for the old migration scenario, the distributions of score values are similar for all AI and
non-AI windows types for VolcanoFinder when population sizes are small (Figure S6f).
Migration rate has moderate effect on performance (human)
ROC curves

When themigration rate is high (human scenario withm = 10−1, Figure S1a), a slight increase
in performance is observed for Q95, MaLAdapt and VolcanoFinder with adjacent windows as
non-AI windows compared to low and intermediate migration levels. On the opposite, a slight
improvement is observed for Genomatnn when the migration rate is low (human scenario with
m = 10−3, Figure S1b) compared to high and intermediate migration levels. With both NI and
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chro2 windows as non-AI windows, Q95 and MaLAdapt are also very close to a perfect classifier
(AUC= 0.999) for both low and highmigrations rates, whereas Genomatnn’s performance remains
slightly better with intermediate and low migration rates than with high migration.
Score distribution among window classes

Increasing the migration rate tends to shift the score distribution of all non-AI windows to-
wards higher values, especially for Genomatnn (Figure S7). For Q95 and MaLAdapt AI window
scores also increase (Figure S7e and Figure S7a), but not for Genomatnn (Figure S7d). Contrar-
ily, a small migration rate (Figure S8) leads to a decrease in both scores of the adjacent and AI
windows for Q95 and MaLAdapt (Figure S8c and Figure S8a). For Genomatnn, only the AI win-
dows have slightly higher scores and adjacent window scores are similar to those of the human
reference scenario.

In the case of strong migration, NI and chro2 windows show higher scores than in the refer-
ence scenario, but with lower mean values than those of adjacent windows. For low migration,
theNI and chro2windows have score values similar to those observed for the reference scenario.
Hotspots has a little effect on the performance (human)
ROC curves

The presence of a recombination hotspot at 20kb from the beneficial mutation tends to
slightly reduce the performance of all methods when adjacent windows are used as non-AI win-
dows (Figure S1c), except Genomatnnwhose performance increases slightly (AUC= 0.933 against
0.921 with and without hotspots, respectively). Conversely, with NI and chro2 windows as non-
AI windows (Figure S2c and S3i), the AUC of all methods except VolcanoFinder increases only
by a few thousandths.

When the hotspot is on the advantageous mutation (Figure S1d), all performance drops
slightly for all types of non-AI window (e.g. AUC = 0.966 against 0.978 with and without the
hotspot, respectively, for Q95).
Score distribution among window classes

The presence of a recombination hotspot distant by 20kb from the beneficial mutation has
no major impact on the distribution of scores in the AI and non-AI windows (Figure S9). Only
adjacent windows close to the window under AI tend to have higher maximum values. This
pattern is also present and stronger when the hotspot is in the AI mutation zone. Under this
latter scenario, AI window scores also tend to decrease (Figure S10). Hotspots have no effect
on the second chromosome window scores and only a little effect on NI windows, apart from a
small increase in the maximum values, causing the distributions of the NI windows to be slightly
higher than those of chro2 for both hotspot scenarios.
Balanced sample size slightly improves performance (human)
ROC curves

For all types of non-AI windows, balanced sample sizes, with more individuals from the
donor populations and fewer individuals from the recipient ones compared to the reference
human samples sizes, improve the performance of Q95, MaLAdapt, VolcanoFinder and Genom-
atnn_0.25 but decrease that of Genomatnn_0.05 (Figure S1e, S2e and S3k).
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Score distribution among window classes
Balanced sample sizes do not affect much the score distributions for the different window

types, except a slight decrease of the scores of adjacent windows away from the beneficial mu-
tation for Q95, MaLAdapt and Genomatnn_0.25 and slightly higher score values for AI windows
for all methods (Figure S11). With balanced sample sizes, MaLAdapt’s and Q95’s performances
are indistinguishable for all types of non-AI windows considered.
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(d) VolcanoFinder

Figure 4 – Score values of 200 test sets for the different windows considered underhuman reference scenario with intermediate selection strength (s = 10−2). Scores fromthe first chromosome are represented as function of the distance (cM) of the windows tothe site under selection (0 indicates the window containing it), followed by scores fromthe second neutral chromosome (“chro 2”) and from an independently simulated neutralchromosome (NI) for reference. The areas under the ROC curves (AUC) for each test setcontaining AI windows and each class of non-AI windows are represented by the greytriangles. Each violin plot is from at least 200 windows.

Discussion
Given our results, the use of Q95 as a genome scan statistic seems the most discriminating

method, with high power for low false positive rates. It also leads to the narrowest regions of ad-
jacent windows giving positive scores due to hitchhiking, allowing to better pinpoint the window
under selection. Q95 is the best performing method in all but one of the scenario considered
in this study, even under the weakest strength of selection or the small population size cases,
the two scenarios showing the worst performances for all methods. The only scenario for which
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(e) Q95 (Podarcis, s = 10−1)
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(f) MaLAdapt_Q95 (Podarcis, s = 10−1)
Figure 5 – Score values of 200 test sets for the different windows considered undera Podarcis scenario with variable selection strength (intermediate, strong and weak).Scores from the first chromosome are represented as function of the distance (cM) ofthe windows to the site under selection (0 indicates the window containing it), followedby scores from the second neutral chromosome (“chro 2”) and from an independently sim-ulated neutral chromosome (NI) for reference. The areas under the ROC curves (AUC) foreach test set containing AI windows and each class of non-AI windows are representedby the grey triangles. Each violin plot is from at least 200 windows.

Q95 is not the most discriminating method is when the migration event is ancient (i.e. the Ursus
scenario with the migration event at 15, 000 generations in the past). With such a long time after
migration, genetic drift will lead to the fixation of random neutral introgressed tracts generat-
ing large Q95 values and, therefore, increasing false positive rates (FPR) on all non-AI window
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(k) Genomatnn_0.25 (Podarcis, s = 10−3)
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(l) VolcanoFinder (Podarcis, s = 10−3)
Figure 5 – Continued

classes. To the extent that those results are robust, the Q95 summary statistic also appears quite
convenient as it is easy to compute without training a machine learning algorithm, in contrast to
simulation-based classification methods. Moreover, it does not require the use of phased data,
unlike MaLAdapt, for example. Finally, Q95 also showed similar or even better performance than
the other tested methods in previous comparisons (Gower et al., 2021; Racimo et al., 2017).

VolcanoFinder can be very powerful to detect AI when the mutation under AI has recently
reached fixation and when the divergence between populations D and R is ancient (Gower et al.,
2021; Setter et al., 2020; Zhang et al., 2023). For our human scenarios, the mutation under AI is
generally not fixed and the divergence time is relatively recent. For the Ursus scenario (ancient
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migration), themutation is indeed fixed but it is far too old for the AI patterns sought by Volcano-
Finder to have persisted in the sequences. Only our Podarcis scenario with strong selection cor-
responds to a scenario where VolcanoFinder can have good performance (old divergence time,
strong selection, recent migration and fixation of the mutation under AI). In previous evaluations
on scenarios departing from these characteristics, VolcanoFinder was also shown to perform
poorly compared to the other methods Gower et al. (2021) and Zhang et al. (2023). The presence
of spurious peaks of VolcanoFinder’s scores on neutral regions near chromosome ends, leading
to an increase of FPR, was also described in Setter et al. (2020).

Between the two simulation-based methods, MaLAdapt in general does better than Genom-
atnn, with a lower rate of false positives, especially in the presence of hitchhiking, in view of
our results and those of Zhang et al. (2023). This result might have been expected, as adjacent
windows are included in MaLAdapt training set but not in Genomatnn training. However, MaLAdapt
also shows high FPR for the adjacent windows closest to the mutation from the AI windows.

The main difference between our results and previous works is a better performance re-
ported by Zhang et al. (2023) for MaLAdapt and by Gower et al. (2021) for Genomatnn compared
to Q95 in some of their scenarios, for which, contrarily to most of our test scenarios, all parame-
ter values were included in their training set. The second difference that can be noted between
our results and those of Zhang et al. (2023) concerns the effect of misspecification of the mi-
gration rate. In their results at low migration (5 × 10−3) the performance of MaLAdapt increased,
but in our tests at low migration (m = 10−3) the performance decreased slightly compared to
cases of higher migration (m = 10−2, m = 10−1). Neither of the low migration rates is included
in the training set of MaLAdapt (training values being {0.01, 0.02, 0.05, 0.1}), so the slight drop in
MaLAdapt performance in our simulations could be due to stronger misspecification.

Indeed, the performance of the two simulation-based classification methods, MaLAdapt and
Genomatnn, necessarily depends on the training set. The differences in performance observed
between our tests and those in the articles describing these methods can thus be partly ex-
plained by the fact that we used the pre-trained ML models of the original publications, rather
than ML models specifically re-trained under our scenarios. Our test sets generated under vari-
ous evolutionary scenarios thus corresponds to a case of misspecification of the MaLAdapt and
Genomatnn’s models. Gower et al. (2021) showed that the performance of Genomatnn decreases
when using test sets from a different demographic model than the one considered for training,
and Q95 performed better than their method in this case. MaLAdapt’s performance also dropped
when the simulated test data were produced under parameter values of the Genomatnn train set.
Comparison between our results and their results is difficult because Zhang et al. (2023) aver-
aged the performance of the methods (i.e. the false positive rates) over different scenarios, mak-
ing it impossible to tease apart the effect of different factors (strength of selection, hitchhiking,
etc.). In addition, it is also difficult to identify the exact reason behind this discrepancy from our
results because the models used by Zhang et al. (2023) to generate test sets differ substantially
from ours. Indeed, their model includes past changes in population size, occurrence of deleteri-
ous mutations and gene structure (intro/exon). Another possible cause, presented in Zhang et al.
(2023) as a source of increased FPRs, is that MaLAdapt was trained on lower selection values
than that corresponding to our strong selection scenario (s ∈ [10−4, 10−2] and s ∈ [10−3, 10−1]

for MaLAdapt and our tests respectively), which might potentially explain the observed drop in
its performance for non-AI adjacent windows with s = 10−1.
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As discussed above, it is sometimes difficult to identify whether variations in a parameter
have a real impact onAI signalswhen the parameter values chosen are in a case ofmodelmisspec-
ification of a simulation-based inference method. To overcome the problem of misspecification,
it is often advisable to re-train themethods with training data from a demographic scenario close
to the biological model under study, or with wide ranges of parameter values when the latter
is poorly known. However, this step of generating training sets is time-consuming and requires
a great deal of computing power. In addition, the current versions of MaLAdapt and Genomatnn
do not provide user-friendly tools for producing the training data under user-specified demo-
graphic scenarios. Therefore, application of these methods under an appropriate demographic
model requires high investment by the user.

Our results show that false positive rates increase when considering non-AI window types
not taken into account in the train set. The original train set of Genomatnn considers only in-
dependent neutral introgressed windows. Accordingly, our results on independent NI windows
show coherent low false positive rates, at levels similar or only slightly higher than for Q95, but
considering adjacent windows leads to higher false positive rate. Unlike Genomatnn, MaLAdapt
took into account adjacent windows in its train set. This may explain, in part, why MaLAdapt
performs better than Genomatnn whichever the type of non-AI window considered.

Our results highlight the importance of considering different types of neutral windows dur-
ing training. The aim of all those classification methods is to specifically identify the window
carrying the mutation under AI. It is therefore necessary to take into account windows that have
undergone evolutionary processes that could lead to genetic signals similar to those of adap-
tive introgression. Independent neutral introgression is taken into account in train sets, but this
processes is not the only ones that can leave confounding signals with AI in genomes. For ex-
ample, classic selective sweep might also leave signals in the data similar to those of adaptive
introgression. However, these methods have been shown to be generally robust to this form of
selection (Gower et al., 2021; Racimo et al., 2017; Zhang et al., 2023), except VolcanoFinder
which seems to have a moderate probability of classifying as AI the windows presenting strong
selective sweeps (Setter et al., 2020). Finally, depending on the strength of the selection ap-
plied to the AI mutation and the number of migrants, the effect of hitchhiking can leave an AI
signal on adjacent windows linked to the mutation. As seen in our results, the effect of hitch-
hiking can even extend, to a lesser extent, to other chromosomes, i.e. not carrying the mutation
under AI. Our results thus also highlight the importance of taking into account intra- and inter-
chromosomal hitchhiking in the train set.

The parameters that have the greatest impact on the performance of the methods in our
test sets appear to be the strength of the selection (s), the divergence times between the donor
and recipient populations (TD2), the migration time (Tm) and the population sizes (N ). This con-
clusion is limited by the necessarily finite number of scenarios explored in this work and other
processes could influence the performance of the methods. While we have not explored the
performance of the methods under other demographic scenarios, such as bottlenecked popula-
tions or bidirectional introgression, our simulations provide some insight through the observed
effects of genetic drift and differentiation between D and R. Another factor that has not been
included in the published methods nor in our tests is spatial population structure, which could
lead to false introgression signals in the genome due to incomplete lineage sorting (Tournebize
and Chikhi, 2025). It is therefore important to take these confounding processes into account
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in the train set or during robustness tests in order to quantify and possibly limit their impact on
the classification performances.

The use of classification methods implies the need to define a threshold for classification
scores. This threshold can be defined for a given train set but can be difficult to define when
trying to control the error rate when the proportions of positive cases in the analysed set differ
from those in the train set. In this respect, binary classification problems for multiple windows in
a genome are comparable to multiple hypothesis testing problems. The hypothesis tested here
for each window is that there is no adaptive introgression within it. For genomic scan onmultiple
windows, it may be more specifically relevant to control the false discovery rate (FDR), i.e. the
proportion of false positives among all positives detected.

Various strategies have been developed to control the FDR, such as methods based on the
availability of p-values for each window (Benjamini and Hochberg, 1995), or empirical Bayes
procedures requiring the distribution of some “score” for each window under the null hypothesis
(Efron, 2010; Storey, 2003). All these methods require the distribution of classification scores (or
p-values) under the null model to be known, so it may be necessary to run simulations under the
null model, even for scoring methods that do not require training (such as Q95). Some of the
methods to control the FDR require independence among windows scores, which is not the
case for our inferences because the presence of AI windows affects the distribution of scores in
adjacent non-AI windows through hitchhiking. For this reason, an FDR method that takes data
dependency into account would be required (Heller and Rosset, 2021; Tang and Zhang, 2007).
Here, it might be further necessary to control the error rate among non-AI windows even in the
presence of some AI window(s) in a genome, which may raise distinct problems in controlling
error rates.

For such reasons, it might be necessary to first infer a single measure of AI at the genomic
level (rather that at the level of individual windows), such as an overall adaptive effect of AI
representing a cumulative effect of adaptive mutations in different windows, and then to use
windows-based criteria measures of adaptive effect to identify the windows likely to contribute
to the genomic level measure of AI. It is possibly in this context that thewindows-basedmethods
evaluated in this paper could be best used.

Acknowledgements
We would like to thank Graham Gower for his availability, help and advice in using Genom-

atnn. Wewould also like to thank Xinjun Zhang for giving us permission to use her scripts and for
answering all our questions about MaLAdapt. Finally, wewould also like to thank SylvainMousset
for his help and advice on using VolcanoFinder.

We would also like to thank the recommander, Amandine Cornille and all the reviewers,
Thibault Leroy, Lukas Metzger and Fernando Racimo whose suggestions and comments helped
improve this manuscript.

Preprint version 3 of this article has been peer-reviewed and recommended by Peer Com-
munity In Evolutionary Biology (https://doi.org/10.24072/pci.evolbiol.100835; Cornille,
2025).

24 Jules Romieu et al.

Peer Community Journal, Vol. 5 (2025), article e95 https://doi.org/10.24072/pcjournal.617

https://doi.org/10.24072/pci.evolbiol.100835
https://doi.org/10.24072/pcjournal.617


Funding
This work was funded by the Agence Nationale de la Recherche (project INTROSPEC ANR-

19-CE02-0011), by theOccitanie Regional Council’s program “Key challenge BiodivOc”managed
by the University of Montpellier (DevOCGen project), and by recurrent funding from INRAE
and CNRS. Part of this work was carried out by using the resources of the national INRAE MI-
GALE (Migale bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) and GENOTOUL
(Bioinfo Genotoul, https://doi.org/10.15454/1.5572369328961167E12) bioinformatics HPC
platforms, as well as the local Montpellier Bioinformatics Biodiversity (MBB, supported by the
LabExCeMEBANR-10-LABX-04-01) andCBGPHPCplatform services. Thiswork also benefited
from an ERJ (junior research team) grant to J.R. and G.C. by the LabEx CeMEB ANR-10-LABX-
04-01.

Conflict of interest disclosure
The authors declare that they have no financial conflicts of interest in relation to the content

of the article. The authors declare the following non-financial conflict of interest: M.dN., R. L.
and F.R. are recommenders for PCI Evol. Biol.

Data, script, code, and supplementary information availability
Scripts and code are available online (https : / / doi . org / 10 . 5281 / zenodo . 14181497;

Romieu et al., 2024a).
Supplementary information is available online (https://doi.org/10.5281/zenodo.14205482;

Romieu et al., 2024b).

References
Adavoudi R, Pilot M (2022). Consequences of hybridization in mammals: a systematic review.

Genes 13. 50. https://doi.org/10.3390/genes13010050.
Adrion JR, Cole CB, Dukler N, Galloway JG, Gladstein AL, Gower G, Kyriazis CC, Ragsdale AP,

TsambosG, Baumdicker F, Carlson J, Cartwright RA,Durvasula A, Gronau I, KimBY,McKenzie
P, Messer PW, Noskova E, Ortega-Del Vecchyo D, Racimo F, et al. (2020). A community-
maintained standard library of population genetic models. eLife 9, e54967. https://doi.
org/10.7554/eLife.54967.

Anderson E, Hubricht L (1938). Hybridization in Tradescantia. III. The evidence for introgressive
hybridization. American Journal of Botany 25. 396–402. https://doi.org/10.1002/j.1537-
2197.1938.tb09237.x.

Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos G, Zhu S, Eldon B, Eller-
man EC, Galloway JG, Gladstein AL, Gorjanc G, Guo B, Jeffery B, Kretzschumar WW, Lohse
K, Matschiner M, Nelson D, Pope NS, Quinto-Cortés CD, et al. (2022). Efficient ancestry and
mutation simulation with msprime 1.0. Genetics 220, iyab229. https://doi.org/10.1093/
genetics/iyab229.

Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological)
57. 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

Jules Romieu et al. 25

Peer Community Journal, Vol. 5 (2025), article e95 https://doi.org/10.24072/pcjournal.617

10.15454/1.5572390655343293E12
https://doi.org/10.15454/1.5572369328961167E12
https://doi.org/10.5281/zenodo.14181497
https://doi.org/10.5281/zenodo.14205482
https://doi.org/10.3390/genes13010050
https://doi.org/10.7554/eLife.54967
https://doi.org/10.7554/eLife.54967
https://doi.org/10.1002/j.1537-2197.1938.tb09237.x
https://doi.org/10.1002/j.1537-2197.1938.tb09237.x
https://doi.org/10.1093/genetics/iyab229
https://doi.org/10.1093/genetics/iyab229
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.24072/pcjournal.617


Bradley AP (1997). The use of the area under the ROC curve in the evaluation of machine learn-
ing algorithms. Pattern Recognition 30, 1145–1159. https://doi.org/10.1016/S0031-
3203(96)00142-2.

Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y, Berthouly-
Salazar C (2019). Adaptive introgression: an untapped evolutionarymechanism for crop adap-
tation. Frontiers in Plant Science 10. 4. https://doi.org/10.3389/fpls.2019.00004.

Burke JM, Arnold ML (2001). Genetics and the fitness of hybrids. Annual Review of Genetics 35.
31–52. https://doi.org/10.1146/annurev.genet.35.102401.085719.

Caeiro-Dias G, Brelsford A, Kaliontzopoulou A, Meneses-Ribeiro M, Crochet PA, Pinho C (2021).
Variable levels of introgression between the endangered Podarcis carbonelli and highly diver-
gent congeneric species. Heredity 126. 463–476. https://doi.org/10.1038/s41437-020-
00386-6.

Caeiro-Dias G, Brelsford A,Meneses-RibeiroM, Crochet PA, PinhoC (2023). Hybridization in late
stages of speciation: Strong but incomplete genome-wide reproductive isolation and ‘large
Z-effect’ in a moving hybrid zone. Molecular Ecology 32. 4362–4380. https://doi.org/10.
1111/mec.17035.

Cornille A (2025). Performance evaluation of adaptive introgression classification methods. Peer
Community in Evolutionary Biology. https://doi.org/10.24072/pci.evolbiol.100835.

Dabi A, Schrider DR (2024). Population size rescaling significantly biases outcomes of forward-
in-time population genetic simulations. Genetics 229, iyae180. https://doi.org/10.1093/
genetics/iyae180.

Edelman NB, Mallet J (2021). Prevalence and adaptive impact of introgression. Annual Review of
Genetics 55. 265–283. https://doi.org/10.1146/annurev-genet-021821-020805.

Efron B (2010). Large-scale inference: empirical Bayesmethods for estimation, testing, and prediction.
Cambridge University Press. https://doi.org/10.1017/cbo9780511761362.

Gaczorek TS, Chechetkin M, Dudek K, Caeiro-Dias G, Crochet PA, Geniez P, Pinho C, Babik W
(2023). Widespread introgression of MHC genes in Iberian Podarcis lizards.Molecular Ecology
32. 4003–4017. https://doi.org/10.1111/mec.16974.

Geurts P, Ernst D, Wehenkel L (2006). Extremely randomized trees. Machine Learning 63, 3–42.
https://doi.org/10.1007/s10994-006-6226-1.

Gower G, Picazo PI, Fumagalli M, Racimo F (2021). Detecting adaptive introgression in human
evolution using convolutional neural networks. eLife 10. e64669. https://doi.org/10.
7554/eLife.64669.

Grant PR, Grant BR (2019). Hybridization increases population variation during adaptive radia-
tion. Proceedings of the National Academy of Sciences 116. 23216–23224. https://doi.org/
10.1073/pnas.1913534116.

Haller BC, Messer PW (2019). SLiM 3: Forward genetic simulations beyond the Wright–Fisher
model. Molecular Biology and Evolution 36, 632–637. https://doi.org/10.1093/molbev/
msy228.

Harrison RG, Larson EL (2014). Hybridization, introgression, and the nature of species bound-
aries. Journal of Heredity 105, 795–809. https://doi.org/10.1093/jhered/esu033.

Hedrick PW (2013). Adaptive introgression in animals: examples and comparison to new mu-
tation and standing variation as sources of adaptive variation. Molecular Ecology 22. 4606–
4618. https://doi.org/10.1111/mec.12415.

26 Jules Romieu et al.

Peer Community Journal, Vol. 5 (2025), article e95 https://doi.org/10.24072/pcjournal.617

https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.3389/fpls.2019.00004
https://doi.org/10.1146/annurev.genet.35.102401.085719
https://doi.org/10.1038/s41437-020-00386-6
https://doi.org/10.1038/s41437-020-00386-6
https://doi.org/10.1111/mec.17035
https://doi.org/10.1111/mec.17035
https://doi.org/10.24072/pci.evolbiol.100835
https://doi.org/10.1093/genetics/iyae180
https://doi.org/10.1093/genetics/iyae180
https://doi.org/10.1146/annurev-genet-021821-020805
https://doi.org/10.1017/cbo9780511761362
https://doi.org/10.1111/mec.16974
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.7554/eLife.64669
https://doi.org/10.7554/eLife.64669
https://doi.org/10.1073/pnas.1913534116
https://doi.org/10.1073/pnas.1913534116
https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1093/jhered/esu033
https://doi.org/10.1111/mec.12415
https://doi.org/10.24072/pcjournal.617


Heller R, Rosset S (2021). Optimal control of false discovery criteria in the two-group model.
Journal of the Royal Statistical Society Series B: Statistical Methodology 83, 133–155. https:
//doi.org/10.1111/rssb.12403.

Hoggart CJ, Chadeau-Hyam M, Clark TG, Lampariello R, Whittaker JC, De Iorio M, Balding
DJ (2007). Sequence-level population simulations over large genomic regions. Genetics 177,
1725–1731. https://doi.org/10.1534/genetics.106.069088.

Jo BS, Choi SS (2015). Introns: The functional benefits of introns in genomes. Genomics & Infor-
matics 13. 112–118. https://doi.org/10.5808/GI.2015.13.4.112.

Kaliontzopoulou A, Phino C, Harris DJ, Carretero MA (2011). When cryptic diversity blurs the
picture: a cautionary tale from Iberian and North African Podarcis wall lizards. Biological Jour-
nal of the Linnean Society 103, 779–800. https://doi.org/10.1111/j.1095-8312.2011.
01703.x.

Kelleher J, Etheridge AM, McVean G (2016). Efficient coalescent simulation and genealogical
analysis for large sample sizes. PLOS Computational Biology 12. e1004842. https://doi.
org/10.1371/journal.pcbi.1004842.

Kelly JK (1997). A test of neutrality based on interlocus associations. Genetics 146, 1197–1206.
https://doi.org/10.1093/genetics/146.3.1197.

Kim SC, Rieseberg LH (1999). Genetic architecture of species differences in annual sunflowers:
implications for adaptive trait introgression. Genetics 153, 965–977. https://doi.org/10.
1093/genetics/153.2.965.

Lan T, Leppälä K, Tomlin C, Talbot SL, Sage GK, Farley SD, Shideler RT, Bachmann L, Wiig Ø,
Albert VA, Salojärvi J, Mailund T, Drautz-Moses DI, Schuster SC, Herrera-Estrella L, Lindqvist
C (2022). Insights into bear evolution from a Pleistocene polar bear genome. Proceedings of
the National Academy of Sciences 119, e2200016119. https://doi.org/10.1073/pnas.
2200016119.

Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M, Bab-
bitt C, Wray G, Li J, He W, Wang Z, Fu W, Xiang X, Morgan CC, Doherty A, O’Connell MJ,
McInerney JO, et al. (2014). Population genomics reveal recent speciation and rapid evolu-
tionary adaptation in polar bears. Cell 157, 785–794. https://doi.org/10.1016/j.cell.
2014.03.054.

Liu S, Zhang L, Sang Y, Lai Q, Zhang X, Jia C, Long Z,Wu J,Ma T,Mao K, Street NR, Ingvarsson PK,
Liu J,Wang J (2022). Demographic history and natural selection shape patterns of deleterious
mutation load and barriers to introgression across Populus genome. Molecular Biology and
Evolution 39, msac008. https://doi.org/10.1093/molbev/msac008.

Mallet J (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution 20,
229–237. https://doi.org/10.1016/j.tree.2005.02.010.

Maynard Smith J, Haigh J (1974). The hitch-hiking effect of a favourable gene. Genetics Research
23, 23–35. https://doi.org/10.1017/S0016672300014634.

Miles A, pyup.io bot, Rodrigues MF, Ralph P, Kelleher J, Schelker M, Pisupati R, Rae S, Millar T
(2024). cggh/scikit-allel: v1.3.8 (v1.3.8). https://doi.org/10.5281/zenodo.10876220.

Myers S, Spencer C, Auton A, Bottolo L, Freeman C, Donnelly P, McVean G (2006). The dis-
tribution and causes of meiotic recombination in the human genome. Biochemical Society
Transactions 34, 526–530. https://doi.org/10.1042/bst0340526.

Jules Romieu et al. 27

Peer Community Journal, Vol. 5 (2025), article e95 https://doi.org/10.24072/pcjournal.617

https://doi.org/10.1111/rssb.12403
https://doi.org/10.1111/rssb.12403
https://doi.org/10.1534/genetics.106.069088
https://doi.org/10.5808/GI.2015.13.4.112
https://doi.org/10.1111/j.1095-8312.2011.01703.x
https://doi.org/10.1111/j.1095-8312.2011.01703.x
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1093/genetics/146.3.1197
https://doi.org/10.1093/genetics/153.2.965
https://doi.org/10.1093/genetics/153.2.965
https://doi.org/10.1073/pnas.2200016119
https://doi.org/10.1073/pnas.2200016119
https://doi.org/10.1016/j.cell.2014.03.054
https://doi.org/10.1016/j.cell.2014.03.054
https://doi.org/10.1093/molbev/msac008
https://doi.org/10.1016/j.tree.2005.02.010
https://doi.org/10.1017/S0016672300014634
https://doi.org/10.5281/zenodo.10876220
https://doi.org/10.1042/bst0340526
https://doi.org/10.24072/pcjournal.617


Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, McMillan WO,
Jiggins CD (2012). Adaptive introgression across species boundaries in Heliconius butterflies.
PLOS Genetics 8. e1002752. https://doi.org/10.1371/journal.pgen.1002752.

PawarH, RymbekovaA, Cuadros-Espinoza S, HuangX,ManuelM, Valk T, Lobon I, Alvarez-Estape
M, Haber M, Dolgova O, Han S, Esteller-Cucala P, Juan D, Ayub Q, Bautista R, Kelley JL,
Cornejo OE, Lao O, Andrés AM, Guschanski K, et al. (2023). Ghost admixture in eastern
gorillas. Nature Ecology & Evolution 7. 1503–1514. https://doi.org/10.1038/s41559-023-
02145-2.

Pinho C, Kaliontzopoulou A, Carretero MA, Harris DJ, Ferrand N (2009). Genetic admixture be-
tween the Iberian endemic lizards Podarcis bocagei and Podarcis carbonelli: evidence for lim-
ited natural hybridization and a bimodal hybrid zone. Journal of Zoological Systematics and Evo-
lutionary Research 47. 368–377. https://doi.org/10.1111/j.1439-0469.2009.00532.x.

Pinho C, Kaliontzopoulou A, Harris DJ, Ferrand N (2011). Recent evolutionary history of the
Iberian endemic lizards Podarcis bocagei (Seoane, 1884) and Podarcis carbonelli Pérez-Mellado,
1981 (Squamata: Lacertidae) revealed by allozyme andmicrosatellite markers. Zoological Jour-
nal of the Linnean Society 162, 184–200. https://doi.org/10.1111/j.1096-3642.2010.
00669.x.

Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sud-
mant PH, Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann
M, Meyer M, Ongyerth M, Siebauer M, et al. (2014). The complete genome sequence of a
Neanderthal from the Altai Mountains. Nature 505. 43–49. https://doi.org/10.1038/
nature12886.

Racimo F, Marnetto D, Huerta-Sánchez E (2017). Signatures of archaic adaptive introgression in
present-day human populations.Molecular Biology and Evolution 34, 296–317. https://doi.
org/10.1093/molbev/msw216.

Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E (2015). Evidence for archaic adaptive
introgression in humans. Nature Reviews Genetics 16. 359–371. https://doi.org/10.1038/
nrg3936.

Ralph P, Thornton K, Kelleher J (2020). Efficiently summarizing relationships in large samples:
A general duality between statistics of genealogies and genomes. Genetics 215, 779–797.
https://doi.org/10.1534/genetics.120.303253.

Renoult JP, Geniez P, Bacquet P, Benoit L, Crochet PA (2009). Morphology and nuclear mark-
ers reveal extensive mitochondrial introgressions in the Iberian wall lizard species complex.
Molecular Ecology 18. 4298–4315. https://doi.org/10.1111/j.1365-294X.2009.04351.
x.

Romieu J, Camarata G, André-Crochet P, NavascuésM, Leblois R, Rousset F (2024a). IntroAdapt-
Methods: Scripts for “Performance evaluation of adaptive introgression classification meth-
ods”. https://doi.org/10.5281/zenodo.14181498.

Romieu J, Camarata G, Crochet PA, Navascués M, Leblois R, Rousset F (2024b). Supplementary
Information for "Performance evaluation of adaptive introgression classification methods".
Version 2. https://doi.org/10.5281/zenodo.14205482.

Rosser N, Seixas F, Queste LM, Cama B, Mori-Pezo R, Kryvokhyzha D, NelsonM,Waite-Hudson
R, Goringe M, Costa M, Elias M, Mendes Eleres de Figueiredo C, Freitas AVL, Joron M, Kozak

28 Jules Romieu et al.

Peer Community Journal, Vol. 5 (2025), article e95 https://doi.org/10.24072/pcjournal.617

https://doi.org/10.1371/journal.pgen.1002752
https://doi.org/10.1038/s41559-023-02145-2
https://doi.org/10.1038/s41559-023-02145-2
https://doi.org/10.1111/j.1439-0469.2009.00532.x
https://doi.org/10.1111/j.1096-3642.2010.00669.x
https://doi.org/10.1111/j.1096-3642.2010.00669.x
https://doi.org/10.1038/nature12886
https://doi.org/10.1038/nature12886
https://doi.org/10.1093/molbev/msw216
https://doi.org/10.1093/molbev/msw216
https://doi.org/10.1038/nrg3936
https://doi.org/10.1038/nrg3936
https://doi.org/10.1534/genetics.120.303253
https://doi.org/10.1111/j.1365-294X.2009.04351.x
https://doi.org/10.1111/j.1365-294X.2009.04351.x
https://doi.org/10.5281/zenodo.14181498
https://doi.org/10.5281/zenodo.14205482
https://doi.org/10.24072/pcjournal.617


K, Lamas G, Martins ARP, McMillan WO, Ready J, Rueda-Muñoz N, et al. (2024). Hybrid spe-
ciation driven by multilocus introgression of ecological traits. Nature 628. 811–817. https:
//doi.org/10.1038/s41586-024-07263-w.

Runemark A, Vallejo-Marin M, Meier JI (2019). Eukaryote hybrid genomes. PLOS Genetics 15.
e1008404. https://doi.org/10.1371/journal.pgen.1008404.

Setter D, Mousset S, Cheng X, Nielsen R, DeGiorgio M, Hermisson J (2020). VolcanoFinder: Ge-
nomic scans for adaptive introgression. PLOS Genetics 16. e1008867. https://doi.org/10.
1371/journal.pgen.1008867.

Storey JD (2003). The positive false discovery rate: a Bayesian interpretation and the q-value.
The Annals of Statistics 31. 2013–2035. https://doi.org/10.1214/aos/1074290335.

Suarez-Gonzalez A, Lexer C, Cronk QCB (2018). Adaptive introgression: a plant perspective. Bi-
ology Letters 14. 20170688. https://doi.org/10.1098/rsbl.2017.0688.

TangW, Zhang CH (2007). Empirical Bayes methods for controlling the false discovery rate with
dependent data. In: Institute of Mathematical Statistics Lecture Notes - Monograph Series. Insti-
tute ofMathematical Statistics, pp. 151–160. https://doi.org/10.1214/074921707000000111.

Taylor SA, Larson EL (2019). Insights from genomes into the evolutionary importance and preva-
lence of hybridization in nature. Nature Ecology & Evolution 3. 170–177. https://doi.org/
10.1038/s41559-018-0777-y.

Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn MA,
Caseys C, Bock DG, Rieseberg LH (2016). Hybridization and extinction. Evolutionary Applica-
tions 9. 892–908. https://doi.org/10.1111/eva.12367.

Tournebize R, Chikhi L (2025). Ignoring population structure in hominin evolutionary models can
lead to the inference of spurious admixture events. Nature Ecology & Evolution 9, 225–236.
https://doi.org/10.1038/s41559-024-02591-6.

Twyford AD, Ennos RA (2012). Next-generation hybridization and introgression. Heredity 108.
179–189. https://doi.org/10.1038/hdy.2011.68.

Wang Y, Wang Y, Cheng X, Ding Y, Wang C, Merilä J, Guo B (2023). Prevalent introgression un-
derlies convergent evolution in the diversification of Pungitius sticklebacks.Molecular Biology
and Evolution 40, msad026. https://doi.org/10.1093/molbev/msad026.

Yang W, Feiner N, Pinho C, While GM, Kaliontzopoulou A, Harris DJ, Salvi D, Uller T (2021).
Extensive introgression and mosaic genomes of Mediterranean endemic lizards. Nature Com-
munications 12. 2762. https://doi.org/10.1038/s41467-021-22949-9.

Zhang X, Kim B, Singh A, Sankararaman S, Durvasula A, Lohmueller KE (2023). MaLAdapt reveals
novel targets of adaptive introgression from Neanderthals and Denisovans in worldwide hu-
man populations.Molecular Biology and Evolution 40, msad001. https://doi.org/10.1093/
molbev/msad001.

Jules Romieu et al. 29

Peer Community Journal, Vol. 5 (2025), article e95 https://doi.org/10.24072/pcjournal.617

https://doi.org/10.1038/s41586-024-07263-w
https://doi.org/10.1038/s41586-024-07263-w
https://doi.org/10.1371/journal.pgen.1008404
https://doi.org/10.1371/journal.pgen.1008867
https://doi.org/10.1371/journal.pgen.1008867
https://doi.org/10.1214/aos/1074290335
https://doi.org/10.1098/rsbl.2017.0688
https://doi.org/10.1214/074921707000000111
https://doi.org/10.1038/s41559-018-0777-y
https://doi.org/10.1038/s41559-018-0777-y
https://doi.org/10.1111/eva.12367
https://doi.org/10.1038/s41559-024-02591-6
https://doi.org/10.1038/hdy.2011.68
https://doi.org/10.1093/molbev/msad026
https://doi.org/10.1038/s41467-021-22949-9
https://doi.org/10.1093/molbev/msad001
https://doi.org/10.1093/molbev/msad001
https://doi.org/10.24072/pcjournal.617

