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Abstract
The widespread use of High-Throughput Sequencing (HTS) for detection of plant viruses and
sequencing of plant virus genomes has led to the generation of large amounts of data and of
bioinformatics challenges to process them. Many bioinformatics pipelines for virus detection
are available, making the choice of a suitable one difficult. A robust benchmarking is needed for
the unbiased comparison of the pipelines, but there is currently a lack of reference datasets
that could be used for this purpose. We present 7 semi-artificial datasets composed of real
RNA-seq datasets from virus-infected plants spiked with artificial virus reads. Each dataset
addresses challenges that could prevent virus detection. We also present 3 real datasets show-
ing a challenging virus composition as well as 8 completely artificial datasets to test haplotype
reconstruction software. With these datasets that address several diagnostic challenges, we
hope to encourage virologists, diagnosticians and bioinformaticians to evaluate and benchmark
their pipeline(s).
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Introduction 

Viruses are responsible for epidemics in a wide variety of crops and pose a major threat to agriculture 
and food security worldwide (Domingo & Holland, 1997). RNA viruses are the most common virus group 
infecting plants. Within their host, they exhibit a high level of genetic diversity that is mainly due to the low 
fidelity of their RNA-dependent RNA polymerases, their high mutation rates, their short generation times 
and large population sizes (Elena & Sanjuán, 2007). The constant maintenance of genetic diversity within 
the virus population allows it to adapt quickly to changing environments, for instance by overcoming plant 
resistance genes or emerging in a new host (García-Arenal & McDonald, 2003; Longdon et al., 2014). Being 
able to perform a reliable and accurate diagnostic is therefore crucial to implement effective management 

practices, reduce disease spread and prevent epidemics. Traditional diagnostic methods include 
transmission electron microscopy (TEM), which allows to visualize viral particles, but also serological and 
molecular methods such as Enzyme-Linked ImmunoSorbent Assay (ELISA), Polymerase Chain Reaction 
(PCR), Reverse Transcription PCR (RT-PCR) or quantitative PCR (qPCR), which allow the detection and/or 
quantification of a particular virus species or strain. While these methods show high sensitivity, specificity 
and reproducibility, they rely on our knowledge and characterization of the virus as well as the availability 
of antibodies or specific primers (Massart et al., 2014). Moreover, they are extremely sensitive to the 
presence of genetic variants, which appear frequently in RNA virus populations through mutations, 
recombination or reassortment. 

 
In the last decade, High-Throughput Sequencing (HTS) has revolutionized plant virus discovery and 

diagnosis (Maree et al., 2018; Massart et al., 2014). The main advantage of this technology is that it allows 
a complete characterization of the virus populations infecting a plant, without any a priori knowledge of 
the infecting viruses. Current HTS platforms can ascertain the molecular sequences of large quantities of 
nucleic acid fragments at a very low base pair price, allowing the simultaneous sequencing of many 
samples. The increased use of HTS in the diagnostic field has led to the generation of massive amounts of 
data and resulted in computational and bioinformatics challenges to process them (i.e. storage, processing 
speed, bioinformatics competence) (Olmos et al., 2018). Many bioinformatics pipelines for plant virus 
detection have been developed, from easy-to-use commercial software to command line tools (for review, 
see Blawid et al., 2017; Jones et al., 2017). A typical diagnostic pipeline will do quality control, pre-
processing of the reads (e.g. quality filtering/trimming, adapter removal, optional merging of forward and 
reverse reads), an optional plant host removal and/or assembly step, taxonomic classification of reads or 

contigs (mapping, sequence/domain similarity searches or k-mer based approaches against virus or more 
general databases) and finally - if necessary - haplotype reconstruction. Dedicated software combining all 
analyses steps exist, such as VirAnnot (Lefebvre et al., 2019), Virusdetect (Zheng et al., 2017), Virfind (Ho 
& Tzanetakis, 2014), Virtool (Rott et al., 2017), IDseq (Kalantar et al., 2020), Galaxy (Afgan et al., 2018) with 
for example Kodoja as plug-in (Baizan-Edge et al., 2019), Truffle (Visser et al., 2016), but also more general 
commercial software, such as CLC Genomics Workbench and Geneious Prime. Most of them aim to 
improve virus detection and/or reduce processing time, but the high number of pipelines available 
complicate the choice of the most appropriate for a given goal or environment. Moreover, the sequence 
analysis strategy can have a significant influence on the ability to detect viruses from identical datasets, as 
shown by a large-scale performance testing involving 21 plant virology laboratories (Massart et al., 2019). 
Performing a robust benchmarking is therefore essential for the unbiased comparison of the pipelines 

(Escalona et al., 2016; Jones et al., 2017). 
 
In plant disease diagnostics, validation of the bioinformatics pipelines used for the detection of viruses 

in HTS datasets is at its infancy and there is currently a lack of reference datasets generated for 
benchmarking purposes. The development of such datasets is a key step in the standardization of 
bioinformatics protocols, since it allows objective comparison between pipelines. These observations have 
led to the creation of the Plant Health Bioinformatics Network (PHBN), an Euphresco network project 
aiming to build a community network of bioinformaticians/computational biologists working on plant 
health. One of the objectives of this project is to help researchers to compare and validate their virus 
detection pipelines by creating open access reference datasets. In this study, we first identified the major 
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challenges that can occur when detecting and identifying plant viruses in Illumina RNA-seq data. Next, we 
selected 3 real datasets and created 7 semi-artificial and 9 completely artificial datasets that can be used 
by the plant virology community as a starting point for testing and benchmarking pipelines to tackle some 
of the identified challenges. 

Creation of the datasets 

Two main kinds of reference datasets can be used: real and artificial ones. Working with real datasets 
offers the benefit of providing real life scenarios which are close to those encountered by plant pathologists 
and diagnosticians. However, the use of such purely empirical data has limitations since it is impossible to 
know with an absolute certainty the “true” value that should be used to benchmark the performance of 

the pipelines (Escalona et al., 2016). Artificial datasets do not have this drawback since their composition 
is totally controlled and known. However, completely artificial datasets are often unrealistic and too 
simple, and may thus fail to represent accurately the complexity of real HTS datasets. In order to overcome 
the drawbacks of these two approaches, we have chosen to create semi-artificial datasets composed each 
of a real HTS dataset from virus-infected plants spiked with additional in-silico generated viral reads. The 
artificial component of these semi-artificial datasets is totally known, but the datasets are still complex and 
close to real-life situations. We also developed and propose some real and some completely artificial 
datasets, which can be used for specific purposes as explained bellow. A detailed description of the 
procedure used to generate each kind of dataset is given in Text S1.  

 
As a starting point for the creation of the datasets, we identified the main challenges when detecting 

and identifying plant viruses in Illumina RNA-seq data (Figure 1). Next, we gathered existing RNA-seq 
datasets which were thoroughly characterized. A total of 8 real RNA-seq datasets from virus/viroid-infected 
plants obtained using Illumina technology were chosen in order to cover as much as possible host plant 
diversity (fruit trees, vegetables and biological indicator plants), pathogen diversity (RNA and DNA viruses,  
viroids) and sequencing options (reads length ranging from 50 to 301 bp between each dataset, number of 
reads per dataset from 65,177 to 49,052,832 reads, and single-end or paired-end reads) (Table S1). For 
each real dataset, the presence of the viruses/viroids identified was confirmed by PCR and/or ELISA. Five 
of these real datasets were used to create 7 semi-artificial datasets (Datasets 1, 2, 3, 4, 5, 6 and 10) (Table 
1, Figure 1), either by adding artificial reads of a virus/viroid (already present or not in the dataset) or by 
removing part of the real viral reads. The artificial viral reads were synthesized using the ART software 
(Huang et al., 2012) which allows the generation of artificial next-generation sequencing reads showing the 

same quality score as the reads from a real dataset. For each semi-artificial dataset, similar headers have 
been assigned to the artificial and real reads, and both types of reads have been mixed in each FASTA file. 
The three other real datasets (Datasets 7, 8 and 9) were already showing a challenging viral composition 
(presence of a defective variant, presence of a cryptic virus and presence of several genomic segments 
showing different concentrations) and have not been modified. Each dataset was developed or selected to 
address one of the identified challenges that could prevent virus detection or a correct virus identification 
from HTS data (i.e. low viral concentration, new viral species, non-complete virus genome, etc) (Figure 1). 

 
In addition, eight fully artificial datasets (Datasets 11-18), composed only of viral reads were also 

created. These datasets can be used to test haplotype reconstruction software, the goal being to evaluate 
the ability to reconstruct all the isolates present in a dataset. Viral haplotype reconstruction is one of the 

most challenging problem in bioinformatics. For instance, a recent study shows that most of the commonly 
used haplotype reconstruction software perform poorly when they are used on an artificia l HIV-1 virus 
population showing high genetic diversity (Eliseev et al., 2020). Viral haplotype reconstruction being a hard 
task, we have generated completely artificial datasets, which already constitute a useful and challenging 
resource. They are also the first datasets composed of plant RNA viruses and developed for this purpose 
since earlier artificial datasets always focused on human and animal viruses (Schirmer et al., 2014). Each 
artificial dataset consists of a mix of several isolates from the same viral species showing different 
frequencies. The virus species have been selected to be as divergent as possible. Therefore, the selected 
viruses have (i) a DNA or RNA genome, (ii) a single or double-stranded genome, (iii) a linear, circular and/or 
segmented genome, and (iv) show a genome length ranging from 2.8 to 17.1 kb. For each isolate, artificial 
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viral reads of 150 bp have been synthesized using the ART software (Huang et al., 2012) from NCBI 
reference genomes and no single nucleotide polymorphisms (SNPs) have been added.  

 
Note that all the datasets were sequenced or simulated using an Illumina four-channels system (either 

HiSeq or Miseq), except the datasets 9 and 10 which were sequenced on an Illumina two-channels system 
(NextSeq) (Table 1). Recently, a technological bias corresponding to erroneous guanine base calls has been 

revealed when using the two-channels system (De‐Kayne et al., 2020). Users should therefore be aware 
that the use of their pipelines on datasets from two-channels system after benchmarking with our datasets 
(mainly generated with four-channels system) may require additional steps in order to identify this 
potential bias. 

Availability and description of the datasets 

A GitLab repository (https://gitlab.com/ilvo/VIROMOCKchallenge) is available and provides a complete 
description of the composition of each dataset, the methods used to create them, a link to download them 
and their goals. The datasets themselves are stored in Dryad (https://doi.org/10.5061/dryad.0zpc866z8).  
We provide here a quick summary of the composition of the datasets and the challenges they address 
(Table 1). 

 
- Dataset 1: The challenge addressed is the detection of several virus strains showing different 

concentrations, some being very low. In this case, one or more strains can be missed, especially if the 
sample has not been enriched in viral sequences (Barzon et al., 2013; Knierim et al., 2019). The real dataset 

is composed of mixed infections of citrus tristeza virus (CTV), citrus vein enation virus (CVEV), citrus 
exocortis viroid (CEVd), citrus viroid III (CVd-III) and hop stunt viroid (HSVd) on citrus. Artificial reads for 
three CTV strains (JQ911663 – strain T68, KU883267 – strain S1 and MH323442 – strain T36) have been 
added to the dataset at different read depth. 

 
- Dataset 2: The challenge addressed is the identification of different types of mutations at different 

frequencies. The viral populations infecting a plant are usually composed of closely related virus genotypes, 
differing by a few SNPs (substitution) or indels (insertion or deletion) and at differing relative 
concentrations. Some variants can be missed depending on their frequencies, the bioinformatics strategy 
or the presence of sequencing errors (Lefterova et al., 2015). The same real data set from a naturally 
infected citrus as in dataset 1 has been used with the addition of artificial reads for the CTV MH323442 

isolate, using 5 nearly identical sequences of this isolate, each differing by 1 substitution, 1 base deletion 
and 1 base insertion. Artificial reads for the unmutated MH323442 isolate have also been added to the 
dataset 2. The reads for the various MH323442 variants have been added at different frequencies.  

 
- Dataset 3: The challenge addressed is the detection of several viral/viroid species showing different 

frequencies and incomplete virus genome coverage. The assembly process can result in incomplete 
genome sequences, making virus identification challenging (Boonham et al., 2014), in particular when the 
whole genome is not completely covered, or when a genomic segment is absent or is covered by a low 
number of reads in the case of a multipartite virus. The real dataset corresponds to a mixed infection of 
grapevine rupestris vein feathering virus (GRVFV), grapevine rupestris stem pitting-associated virus 
(GRSPaV), grapevine leafroll-associated virus 2 (GLRaV2), hop stunt viroid (HSVd) and grapevine yellow 

speckle viroid 1 (GYSVd1) on grapevine. Reads assigned to GRSPaV, GRVFV and GLRaV2 have been 
randomly removed in order to obtain incomplete virus genome coverage for these 3 viruses. 

 
- Dataset 4: The challenge addressed is the detection of closely related viroids. Closely related 

virus/viroid species within a genus can share high nucleotide identities, leading to taxonomic assignation 
problems and complicating the identification of the virus/viroid (Thekke-Veetil et al., 2018). The real 
dataset is composed of mixed infections of grapevine red blotch virus (GRBV), grapevine rupestris stem 
pitting-associated virus (GRSPaV), hop stunt viroid (HSVd) and grapevine yellow speckle viroid 1 (GSYVd1) 
on grapevine (Reynard et al., 2018). Artificial reads of grapevine yellow speckle viroid 2 (GYSVd2) isolate 
DQ377131 have been added to the dataset. This reference shows a pairwise nucleotide identity of 73.9% 
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with the consensus sequence of the naturally present GYSVd1, a portion of the two genomes being very 
similar while the other part show more variability. 

 
- Dataset 5: The challenge addressed is the detection of a recombinant strain and one of its parents in 

mixed infection. HTS samples can be infected by genetically close parental and recombinant strains. During 
the assembly process, it can sometimes be challenging to assemble and detect recombinant genomes while 

avoiding to create artificial ones, in particular when using short-sequence reads (Martin et al., 2011). The 
real dataset contains reads of two potato virus Y (PVY) isolates belonging to different strains (an isolate 
belonging to the NTN recombinant strain and the N605 isolate belonging to the N strain). Artificial reads 
to a further two isolates have been added, the parental isolate AY884983 (N strain), and isolate EF026076, 
a recombinant between isolates belonging to the N and O strains (Hu et al., 2009). Both isolates show an 
overall pairwise nucleotide identity of 88.2% but the 5’ part of their genomes (first ~2,000 nucleotides) are 
almost identical. 

 
- Dataset 6: The challenge addressed is the detection of a new PVY strain that does not exist in the 

database, within a dataset already involving other PVY strains. Novel viruses can be detected by homology 
searches with databases. Nevertheless, viral sequences that are too divergent from known viruses might 

not be detected by this such searches. Other approaches like homology-independent algorithms may be 
needed to fully characterize such new viruses (Wu et al., 2015). The real dataset is the same as dataset 5. 
It has been spiked with artificial reads from the FJ214726 PVY isolate, which was selected because it is 
among the most divergent PVY isolates available in GenBank (maximum 84% nucleotide identity with any 
other available PVY isolate). The amino acid sequence of the polyprotein of FJ214726 was obtained and 
then reverse translated into a nucleotide sequence using the online EMBOSS Backtranseq tool (Madeira et 
al., 2019). Thanks to the degeneracy of the genetic code, the nucleotide sequence thus obtained was 
different from the original FJ214726 sequence. Non-synonymous substitutions were further manually 
added to the new artificial sequence, increasing divergence from any known PVY isolate. The final artificial 
sequence shows only 71.8% nucleotide identity and 98.9% amino acid identity with FJ214726 and was used 
to generate the artificial reads finally added to the dataset. The artificial genomic sequence is available in 

the GitLab repository for comparison purposes. 
 
- Dataset 7: The challenge addressed is the detection of both a defective and a normal length variant 

from the same sample. Related viral variants infecting a sample and showing similar genome portions can 
be particularly difficult to distinguish. The real dataset is composed of two variants of tomato spotted wilt 
virus (TSWV) from tobacco. The genome of TSWV consists of 3 negative single-stranded RNA segments 
named S, M and L. The variants diverge only for the L genomic segment, one being full length (8,913 bp) 
and the other being a shorter defective form (2,612 bp) missing the genomic region from genome position 
760 to 7,060 bp. The real dataset shows already a challenging composition, and has therefore not been 
spiked with artificial viruses. 

 

- Dataset 8: The challenge addressed is the detection of a low concentration persistent virus. The real 
dataset is composed of Pelargonium flower break virus (PFBV) and Chenopodium quinoa mitovirus 1 
(CqMV1), a virus from Chenopodium which is localized in mitochondria and presents only one ORF that 
encodes the RNA-dependent RNA polymerase (Nerva et al., 2019). The cryptic virus CqMV1 represents a 
low proportion of reads (around 0.5%). The real dataset shows already a challenging composition, and has 
therefore not been spiked with artificial viruses. 

 
- Dataset 9:  The challenge addressed is the detection of all the genomic segments of a virus with each 

segment having a different concentration. The real dataset is composed of Pistacia emaravirus B (PiVB), a 
newly discovered Emaravirus from the pistachio tree (Buzkan et al., 2019). The viral genome is composed 
of seven distinct negative-sense, single-stranded RNAs, showing different frequencies in the dataset. The 
real dataset shows already a challenging composition, and has therefore not been spiked with artificial 

viruses. 
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- Dataset 10: The challenge addressed is the detection of a new viral strain that does not exist in the 

database, thus adding a ’virus’ that is not already present in the dataset (in contrast to the challenge 
addressed in dataset 6). The real dataset is composed of plum bark necrosis stem pitting-associated virus 
(PBNSPaV) from Prunus. A new artificial isolate of plum pox virus (PPV) has been created as described 
above for the creation of the artificial PVY isolate in dataset 6. The new artificial PPV strain has finally been 

added to the dataset, and its sequence has been made available as well to be able to compare resulting 
assemblies with it. 

 
- Datasets 11 to 18 can be used to test the ability to reconstruct haplotypes from mixed infections of 

virus isolates belonging to the same virus species. They are completely artificial datasets and their 
composition is summarized in Table 1. 

The VIROMOCK challenge 

The goal of all these reference datasets is to allow to perform an objective comparison of bioinformatics 
pipelines used to detect and analyse viruses. At first, researchers can use these datasets to check whether 
their current pipelines are behaving as expected, and how modifying some parameters can affect their 
pipeline performance depending on the challenge investigated. Second, it can be interesting for 
researchers to compare their results with those of other labs/pipelines. Third, using the datasets in 
different pipelines will assess their potential value as benchmarking datasets. For this purpose, we propose 
to organize a “VIROMOCK challenge”. It is envisioned as a dynamic challenge to attract the community of 

bioinformatics and plant virologists to engage in evaluating their pipelines and at the same time evaluating 
the usefulness and robustness of the proposed benchmarking datasets. In the frame of this challenge, 
researchers are encouraged to provide feedback on the results they obtained for each dataset they analyse 
and on the difficulties they may have encountered. This can simply be done by completing a Google 
spreadsheet added to each dataset page of the GitLab repository. Then, the results will be compiled for 
each dataset, helping to identify which pipelines perform best in approximating the real composition of 
the datasets and providing an idea about the robustness of the parameters used. If researchers agree, the 
compiled results will be open access on the GitLab repository for each dataset, allowing an easy and 
objective comparison of the results.  

Conclusion 

The two main bottlenecks slowing down the adoption of HTS in plant health diagnostics are (i) the lack 
of consensus on the standardization of the data analysis and (ii) the lack of expertise of some laboratories. 
Within the frame of PHBN project, we have generated semi-artificial, real and artificial reference datasets 

in order to help to overcome these bottlenecks. Firstly, the diversity of the challenges addressed by these 
datasets will allow to benchmark the bioinformatics pipelines used by different laboratories. Secondly,  
these datasets can also be viewed as open source training materials. They could be extremely valuable for 
laboratories with little experience, allowing them to improve their skills. Currently, there are many 
pipelines available, but many laboratories do not know where to start when it comes to the analysis of 
their HTS data in the context of virus detection. This represents a big challenge, especially in situations 
where HTS and data analysis are newly established or not part of the routine activities.  These datasets will 
help them to either validate their pipelines or choose the most suitable one for their analyses.  

Data accessibility 

Datasets are available at: https://doi.org/10.5061/dryad.0zpc866z8 
Complete descriptions of the datasets are available at https://gitlab.com/ilvo/VIROMOCKchallenge and 

the archived version at time of publication is available at https://doi.org/10.5281/zenodo.5746666. 
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