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Abstract
The bowmouth guitarfish (Rhina ancylostomus) is a unique and understudied species of
wedgefish with a distribution spanning the Indo-Pacific Oceans. Due to targeted and
bycatch fisheries, this species is experiencing serious declines across its range. It is now
considered among the most threatened species of elasmobranch. Despite this, species-
specific management is limited, particularly around primary fishing hotspots. This is in
part due to knowing very little about fundamental population processes. Here, we com-
bine mitochondrial and single nucleotide polymorphism (SNP) data to carry out the first
genetic assessment of R. ancylostomus across the Northwest Indian Ocean. We detect
genetic differentiation across the northwest range, shaped by both oceanographic bar-
riers and intrinsic dispersal constraints, and uncover a cline in genetic variation from
east to west. These findings emphasise the importance of maintaining habitat connec-
tivity while also identifying regions that may require heightened protection. In doing so,
our study provides a critical baseline for conservation planning of R. ancylostomus and
highlights the value of genomic data in elasmobranch conservation.
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Introduction 

Characterising genetic diversity and population structure across extant species’ ranges is 
crucial for both in situ and ex situ conservation management (Hohenlohe et al., 2021). However, 
for many threatened species, such baseline information is severely lacking (Borgelt et al., 2022; 
Hochkirch et al., 2021; Tella et al., 2013). This compromises both the development and 
effectiveness of conservation actions. For example, the appropriate geographic scale of 
management largely depends on the extent to which populations are connected across space 
(Lowe & Allendorf, 2010; Mills & Allendorf, 1996; Mönkkönen & Reunanen, 1999). Discrete 
populations exchanging limited genetic information will benefit from local or regional scale 
management and may warrant delineation as conservation units (Moritz, 1999; Palsbøll et al., 
2007). In contrast, populations connected by dispersal will require a more coordinated approach 
across larger spatial scales. 

Large marine organisms exhibit varying patterns of genetic connectivity (Bailleul et al., 2018; 
Bernard et al., 2021, 2025; Pirog et al., 2019). Pelagic species with high dispersal capabilities 
frequently display high levels of gene flow across continuous distributions (Palumbi, 2003; Waples, 
1998). This presents a challenge for conservation since it is not always clear where to delineate 
management units (Turbek et al., 2023). For example, individuals at opposite ends of a distribution 
may display distinct genetic and phenotypic variation yet remain connected by populations 
continuously distributed across space (Burri et al., 2016; Devitt et al., 2011; Irwin et al., 2005). 
Conversely, species exhibiting high site-fidelity and restricted movement are more likely to develop 
genetic differentiation between populations. If certain populations become small and isolated, they 
face increased vulnerability to exploitation, primarily due to heightened risks of inbreeding and loss 
of adaptive potential resulting from reduced genetic variation (Kimura et al., 1963; Lande, 1993; 
Lande & Shannon, 1996). From observational monitoring alone, it can be virtually impossible to 
identify such populations, especially in a marine environment. 

Genetic and genomic tools provide a fantastic opportunity to explore the landscape of genetic 
diversity and differentiation (Bertola et al., 2024; Funk et al., 2012; Stapley et al., 2010) and are 
increasingly being applied to elusive marine megafauna (Kelley et al., 2016). For example, recent 
work has uncovered contrasting patterns of genetic diversity in two recently diverged manta ray 
(Mobulidae) species (Humble et al., 2025), signals of inbreeding in great hammerhead sharks 
(Sphyrna mokarran) (Stanhope et al., 2023) and subtle stock structure in blue shark (Prionace 
glauca) – a species previously thought to comprise a single global population (Nikolic et al., 2023). 
These insights have the potential to influence management through highlighting populations in 
need of prioritisation, contributing to non-detriment findings under the Convention on International 
Trade of Endangered Species of Wild Flora and Fauna (CITES) and informing fisheries 
management (Casey et al., 2016; Domingues et al., 2018). 

Guitarfish and wedgefish are among the most vulnerable and understudied groups of 
elasmobranchs (Dulvy et al., 2014; Kyne et al., 2020; Moore, 2017; Pytka et al., 2023). Their mostly 
coastal and in-shore habitat overlaps with much of the world’s most intensive fishing activities 
making them highly susceptible to bycatch (Jabado, 2018; White et al., 2013; Pytka et al. 2023), 
while international demand for their sought-after fins and thorns drive targeted exploitation (Clarke 
et al., 2006; Pytka et al., 2023). Consequently, ‘shark-like rays’ have been listed on Appendix II of 
CITES which seeks to regulate commercial trade, including of their derivative products. Among the 
most valuable fins on the market are those of the bowmouth guitarfish (Rhina ancylostomus), an 
evolutionarily distinct wedgefish (Gumbs et al., 2024) with the most widespread and continuous 
distribution of all shark-like rays (Figure 1). This species is listed as Critically Endangered on the 
IUCN Red List of Threatened Species and is particularly susceptible to population decline due to 
its slow growth, late maturity, and low fecundity (Kyne et al., 2019). Despite this, R. ancylostomus 
receives little to no species-specific management across its entire range, putting the species at 
serious risk of extinction. 
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Here, we carry out the first genetic assessment of R. ancylostomus across the Northwest Indian 
Ocean. We use a combination of mitochondrial and single nucleotide polymorphism (SNP) 
markers to build an atlas of genetic variation in order to address the following questions: (i) to what 
extent are populations genetically connected across the distribution; (ii) what are the levels of 
genetic variation at both mitochondrial DNA and SNPs and how is this partitioned among 
populations; and (iii) what are the implications of our findings for conservation management. 

Material and methods 

Sampling and DNA extraction 
Fin clips were collected from 70 R. ancylostomus individuals from five geographic locations 

across the Northwest Indian Ocean: Saudi Arabia (n = 4), United Arab Emirates, Persian Gulf (n = 
40), Oman (n = 12), Sri Lanka (n = 9) and Bangladesh (n = 5) (Figure 1). In all cases, samples 
were obtained from specimens captured in fisheries and stored in 99% ethanol at -22°C. Total 
genomic DNA was extracted using the Qiagen DNeasy® Blood and Tissue Kit following 
manufacturer protocols and quantified using both a Qubit dsDNA Broad Range Assay and running 
on a 1% agarose gel. 

 

Figure 1 - Geographic distribution of R. ancylostomus (dark blue) visualised 
together with the locations of samples used in this study. Sampling location points 
are distinguished by colour and scaled by the number of samples. The sample from 
Taiwan represents the R. ancylostomus mitochondrial genome assembly 
downloaded from NCBI and included in our mitochondrial DNA analysis. Further 
details are provided in Table S1. 

Mitochondrial sequencing 
Two regions of the mitochondrial genome were targeted for sequencing: cytochrome oxidase I 

(COI) and the control region (CR). A 650 bp region of the COI was amplified using universal primers 
FishF2 (5’ TCGACTAATCATAAAGATATCGGCAC 3’) and FishR2 (5’ 
ACTTCAGGGTGACCGAAGAATCAGAA 3’) (Ward et al., 2005). PCRs were carried out using 10 
μl DreamTaq Green PCR Master Mix (2X) (ThermoFisher Scientific), 6 μl nuclease free water, 1 
μl of each primer and 2 μl of template DNA. The following PCR profile was used for amplification: 
initial denaturation of 3 min at 95°C; 35 cycles of 30 sec at 95°C, 30 sec at 55°C, and 30 sec at 
72°C, followed by a final extension of 5 min at 72°C. To amplify the CR, we designed a new set of 
primers (RACR_F: 5’ TGGGCTGGCGAGAAATAACC 3’, RACR_R: 5’ 
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TTTTCGTTTCGACCCAGGGG 3’) in Geneious Prime v11.0.14.1 using the R. ancylostomus 
mitogenome as a reference (GenBank accession number KU721837.1). PCRs were carried out 
using the same volumes as above, together with the following amplification profile: initial 
denaturation of 1 min at 95°C; 35 cycles of 30 sec at 95°C, 30 sec at 58°C, and 30 sec at 70°C, 
followed by a final extension of 5 min at 70°C. The target product size for the CR fragment was 
560 bp. PCR products were run on a 1.5% agarose gel to determine if amplification was successful. 
Successful amplicons were purified using the Exo-CIP Rapid PCR Cleanup Kit (New England 
BioLabs®) and sent for bi-directional Sanger sequencing with Eurofins Genomics. 

Sequences were manually checked and edited using Geneious v1.2.3. Forward and reverse 
reads for each individual and each mitochondrial DNA (mtDNA) target region were de novo 
assembled into consensus sequences. Prior to further processing, each COI and CR consensus 
sequence was blasted to the NCBI non-redundant reference database using megablast and an E-
value threshold of 0.05 for species identification purposes. Any sequence whose top BLAST hit 
based on sequence similarity and bit score was not R. ancylostomus was removed from the 
dataset. Remaining COI and CR consensus sequences were then multiple aligned using the 
Clustal Omega algorithm in Geneious and trimmed to the same length for downstream analysis. 
To increase the geographic scope of our analysis, we added target regions from the R. 
ancylostomus mitochondrial reference genome to each alignment. This reference sequence was 
generated using a sample originating from the Taiwan Strait (Si et al., 2016). 

SNP genotyping and filtering 

SNP genotyping was carried out by Diversity Arrays Technology (DArT) who implemented a 
reduced representation sequencing protocol (DArTseq) followed by SNP calling with the 
DARTsoft14 pipeline (Cruz et al., 2013; Kilian et al., 2012). Briefly, DNA from 65 of the samples 
identified as R. ancylostomus was digested using PstI and SphI enzymes followed by adaptor 
ligation for each individual. Enzymes were chosen by DArT for their ability to isolate highly 
informative, low copy fragments of the genome. Following competitive PCR amplification, the 
resulting library was 250 bp paired-end sequenced on an Illumina HiSeq2500. To obtain a high 
quality dataset for downstream analysis, we filtered the resulting SNP genotypes using the R 
package dartR (Gruber et al., 2018; Mijangos et al., 2022). For this, we removed SNPs with low 
reproducibility scores based on technical replicates, retained one SNP per locus to account for 
potential linkage in the dataset and removed SNPs with a read depth less than 5 or greater than 
50, and with a genotyping rate less than 80%. We then removed individuals with a call rate below 
96%, that displayed excess heterozygosity or that displayed high relatedness with any other 
individual in the dataset. To determine relatedness, we estimated KING, R0 and R1 coefficients 
(Waples et al., 2019) using NgsRelate v2 (Korneliussen & Moltke, 2015). These statistics are 
based on genome-wide patterns of identity by state sharing between two individuals. This analysis 
was carried out using a highly informative dataset whereby SNPs that deviated significantly from 
HWE with a p-value threshold of 0.001, with a minor allele frequency < 0.1 or a genotyping rate 
<0.9 had been removed using PLINK v1.90. The individual with the lowest genotyping rate from 
any pairing exhibiting high relatedness was removed from the final dataset (Figure S1). At this 
point, we applied a final filter to the data to remove any SNPs with a minor allele frequency (MAF) 
<0.03, equivalent to a minor allele count of 3. 

Population structure 

To investigate population structure using mtDNA, we generated median joining haplotype 
networks with PopART v1.7 (Leigh & Bryant, 2015) based on both the COI and CR alignments. 
Haplotype accumulation curves (HACs) were then calculated to determine how well within-species 
diversity was captured by our sampling effort. For this, we used the R package HACSim to simulate 
the number of samples required to observe the full range of haplotype variation that exists for a 
species (Phillips et al., 2020). The simulation was run for 10,000 permutations, a confidence level 
of 0.95 and at different percentage recovery rates until no additional individuals were necessary 
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for recovery of haplotypes (0.95). We further explored population differentiation by calculating 
pairwise FST between sampling locations using Arlequin v3.5.22 (Excoffier & Lischer, 2010). This 
was run separately for each mtDNA gene with 1000 permutations to estimate 95% confidence 
intervals. Finally, to measure population genetic structure both within and between groups, we ran 
an Analysis of Molecular Variance (AMOVA) using Arlequin and tested significance using 1000 
permutations. 

To investigate population structure using the SNP data, we implemented three approaches. 
First, we performed a principal components analysis using the R package adegenet (Jombart, 
2008). Second, we used the Bayesian clustering algorithm in STRUCTURE to identify the number 
of genetic clusters (K) in the dataset. STRUCTURE was run for values of K ranging from K = 1 – 
8, with ten simulations for each K and a burn-in of 50,000 iterations followed by 100,000 MCMC 
iterations. We used the admixture and correlated allele frequency models without sampling 
location information. We then used the R package pophelper (Francis, 2017) to analyse the results, 
parse the output to CLUMPP for averaging across simulations and to visualise assignment 
probabilities. The optimal K was identified based on the maximum value of the mean estimated ln 
probability of the data (Ln Pr(X | K)) (Pritchard et al., 2000) and the ΔK method (Evanno et al., 
2005). Finally, we estimated pairwise genetic differentiation between populations using the Weir 
and Cockerham FST value (Weir & Cockerham, 1984) in the R package dartR. Confidence intervals 
and p-values were estimated based on bootstrap resampling of loci within each sampling location 
1000 times (Weir & Cockerham, 1984). To account for the effects of unbalanced sampling on our 
inference of population structure (Puechmaille, 2016), we randomly downsampled the UAE 
population to eight individuals, resulting in a more uniform distribution of samples across locations. 
We recalculated MAF and removed SNPs with a MAF <0.03 before re-running PCA, STRUCTURE 
and FST as described above. Results displayed similar patterns for the subsampled dataset as the 
full dataset (Figures S7–9) and therefore those for the full dataset are presented below. 

Isolation by distance 

To investigate patterns of isolation by distance in R. ancylostomus, we explored the relationship 
between genetic and geographic distance between all pairs of populations. Geographic location 
was assigned to each individual by determining the coordinates of the coastline directly adjacent 
to the fisheries landing site in which the sample was collected. Although this is not the true location 
of where the individual was caught, it represents a fair approximation given the coastal nature of 
the species. Genetic distances were based on COI-based pairwise FST estimates as calculated 
above. We determined geographic distances based on a least-cost path analysis using the R 
package marmap (Pante & Simon-Bouhet, 2013). A minimum depth constraint of -10 metres was 
applied to ensure no paths were overland. Significance between genetic and geographic distance 
matrices was then calculated using distance-based Moran’s eigenvector maps (dbMEM) by 
redundancy analysis (RDA, Legendre et al., 2015). Geographic distances were transformed into 
dbMEMs using the R package adespatial, and genetic distances were decomposed into principal 
components using the R function prcomp. RDA was then performed using the R package vegan, 
with significance tested using 1000 permutations. 

Genetic diversity and heterozygosity 

Genetic diversity estimates were calculated for the mtDNA data using the software DnaSNP 
v6.12.03 (Rozas et al., 2017) at both a species and sampling location level. For the SNP data, we 
assessed levels of genetic variation by estimating multi-locus heterozygosity for each individual 
using the R package inbreedR (Stoffel et al., 2016)
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Results 

Mitochondrial sequencing 

Out of a total of 70 samples, 66 were confirmed in a BLAST search using COI and / or CR 
sequences to originate from R. ancylostomus. The remaining four samples were identified as tiger 
shark (Galeocerdo cuvier), painted sweetlips (Diagramma pictum), starry puffer (Arothron 
stellatus) and Pseudomonas campi and were removed from further analysis. These results are 
likely due to mislabelling of samples. Of the 66 confirmed R. ancylostomus samples, a total of 63 
successfully amplified at COI, and 65 successfully amplified at the CR. Final filtered alignment 
lengths were 674 bp for COI and 512 bp for the CR. Analysis of mitochondrial haplotypes revealed 
a total of eleven unique sequences for COI and three for the CR, including the sequence originating 
from the mitochondrial reference genome. Of these, ten and two haplotypes were newly 
discovered, respectively (Table 1). All measures of genetic diversity were consistently higher for 
COI compared to the CR (Table 1). 

Table 1 - Genetic diversity measures for R. ancylostomus calculated from COI and 
CR sequences generated as part of this study. 

Indices COI CR 

Number of sequences 63 65 

Number of segregating sites (S) 18 4 

Number of haplotypes (H) 10 3 

Haplotype diversity (Hd) 0.65028 0.49135 

Nucleotide diversity (pi) 0.00377 0.00181 

 

SNP genotyping 

A total of 19,436 SNPs were genotyped in 65 individuals using the DARTsoft14 pipeline. After 
quality filtering, the final dataset contained 3,533 SNPs in 49 individuals from across all sampling 
locations (Saudi Arabia = 2, Oman = 8, UAE = 33, Sri Lanka = 5, Bangladesh = 1). For a full 
breakdown of the number of SNPs and individuals removed at each filtering step, see Table S2. 

Population structure 

Haplotype networks for both gene regions revealed a noticeable geographic signal from west 
to east of the sampling range (Fig 2A–B). This pattern was more distinct for COI, where a greater 
number of haplotypes were observed overall. In particular, we observed no haplotype sharing 
between locations at the extremes of the sampling range while Sri Lanka, which was intermediate, 
shared haplotypes with every location except for Taiwan. We also observed geographic signal 
among samples collected in Sri Lanka, where individuals originating from the west coast shared 
no haplotypes with those originating from the east coast. 
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Figure 2 - Mitochondrial-based population differentiation and isolation by distance 
in R. ancylostomus. Median-joining mitochondrial haplotype network for (A) CR and 
(B) COI sequences. Colours reflect geographic origin, node size is proportional to 
the number of individuals displaying each haplotype and hashed lines indicate the 
number of nucleotide substitutions between haplotypes. (C) Pairwise FST estimates 
between sampling locations based on COI. Population abbreviations: BAN, 
Bangladesh; SL, Sri Lanka; UAE, United Arab Emirates; OMAN, Oman; SA, Saudi 
Arabia. (D) Relationship between genetic (COI based FST) and geographic distance 
as calculated by least-cost path analysis for all pairwise population comparisons. 
Solid lines and shaded areas reflect the regression slopes and standard errors, 
respectively, based on a linear model. 

Based on haplotype accumulation curves (Figure S2), our COI dataset represents around 85% 
of the haplotype diversity in the species. An additional 63 and 132 individuals would be required 
to recover 95% and 99% of the haplotype diversity respectively (Figure S2A–B). For the CR, our 
sample size of 65 individuals was sufficient to recover both 95% and 99% of the haplotype 
diversity in the species (Figure S2C–D). 

Population differentiation 

To further explore levels of differentiation, we carried out an AMOVA and calculated pairwise 
FST using both mitochondrial gene regions. AMOVA revealed that most of the observed variation 
is partitioned within populations for both COI and the CR (Table 2). However, there was also 
significant evidence of variation at a population level, with 29.07% and 25.58% of the variation 
occurring between populations for COI and CR respectively. Pairwise FST estimates ranged from 
0.04–0.75 for COI and from -0.18–0.76 for the CR (Figure 2C and Table S3). Significant differences 
were observed between Bangladesh and all other populations for both COI and CR (Table S3). 
This was also the case for Sri Lanka at COI. In contrast, no comparisons between populations in 
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the Arabian Peninsula were found to be significant suggesting an effect of geographic proximity. 
In line with this, although no significant relationship was observed between pairwise FST and 
geographic distance (adjusted R2 = 0.79, P = 0.075) there was a clear tendency for populations 
separated by greater distances to display higher genetic differentiation indicating a signal of 
isolation by distance (Figure 2D). 

Table 2 - Summary of analysis of molecular variance (AMOVA) for COI and CR 
sequences in R. ancylostomus. Variation is partitioned among and within 
populations and a p-value is significant if <0.05. 

Source of variation Degrees of freedom Sum of squares Variance components Percentage of variation 

COI 

Among populations 4 5.170 0.10593 29.07 

Within populations 58 14.989 0.25843 70.93 

Total 62 20.159 0.36435  

Fixation index (FST) 0.29072 

p-value <0.0001 

CR 

Among populations 4 3.607 0.06939 25.58 

Within populations 60 12.116 0.20193 74.42 

Total 64 15.723 0.27133  

Fixation index (FST) 0.25576 

p-value 0.00098 

 

SNP results 

Analysis of SNP data revealed a similar yet more pronounced pattern of population structure 
across the sampling range. In the PCA analysis, samples from most sites clustered apart along 
PC1 (Figure 3A). In particular, individuals from Oman and Saudi Arabia clustered separately from 
those originating from the UAE (Persian Gulf), with a deeper split observed between samples 
originating from the Red Sea, Arabian Sea and the Persian Gulf, and those originating from Sri 
Lanka and Bangladesh. No clustering was observed between sampling locations along PC2 
(Figure 3A) or PC3 (Figure S3). These patterns were in part mirrored by the STRUCTURE analysis 
in which an optimal value of K = 2 was inferred based on ΔK and log likelihood values (Figure 3B, 
Figure S4–5). Clusters correspond to the east and west proximities of the sampling range with all 
individuals from Oman and Saudi Arabia being assigned to Cluster I with q > 0.85, and individuals 
from Sri Lanka and Bangladesh being assigned to Cluster II with q > 0.81. Individuals from 
intermediate locations in the UAE displayed admixture between inferred clusters (Cluster I mean 
q = 0.53; Cluster II mean q = 0.47) suggesting some degree of gene flow across the range. Pairwise 
FST estimates ranged from 0.01–0.27 and tended to be higher between populations separated by 
greater distances, in line with our mitochondrial analysis (Figure S6). All estimates including 
Bangladesh had larger confidence intervals than those without, most likely due to the small sample 
size of this population. 
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Figure 3 - SNP-based population structure and diversity in R. ancylostomus. (A) 
Scatterplot showing individual variation in principal components (PC) one and two 
derived from principal components analysis. The amount of variance explained by 
each PC is shown in parentheses. Blue circles correspond to individuals from Oman, 
pink from Saudi Arabia, green from the UAE, purple from Sri Lanka and yellow from 
Bangladesh (B) Individual assignment to genetic clusters based on STRUCTURE 
analysis for K = 2 using 3,565 SNPs and 49 individuals. Each horizontal bar 
represents a different individual and the relative proportion of the different colours 
indicate the probabilities of belonging to each cluster. Individuals are separated by 
sampling locations as indicated in Figure 1. (C) Variation in multi-locus 
heterozygosity among populations. Centre lines of boxplots reflect the median, 
bounds of the boxes extend from the first to the third quartiles, and upper and lower 
whiskers reflect the largest and smallest values but no further than 1.5 x the 
interquartile range from the hinge. Population abbreviations: BAN, Bangladesh; SL, 
Sri Lanka; UAE, United Arab Emirates; OMAN, Oman; SA, Saudi Arabia 

Genetic diversity 

To explore the landscape of genetic variation, we calculated genetic diversity estimates across 
sampling locations. Haplotype and nucleotide diversity at COI were highest for individuals 
originating from Sri Lanka and Bangladesh (Table 3). Individuals from the UAE and Oman had 
intermediate levels of diversity, while the lowest levels of diversity were observed in Saudi Arabia 
where only one haplotype was detected. Similar patterns were observed at the CR except that 
Bangladesh displayed the lowest variation and Saudi Arabia was intermediate. 
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Table 3 - Genetic diversity measures for each R. ancylostomus sampling location 
calculated from COI and CR sequences. 

Indices COI CR 

Location BAN SL UAE OMAN SA BAN SL UAE OMAN SA 

Number of 
sequences 

4 9 36 10 4 4 9 37 11 4 

Number of 
segregating sites 
(S) 

2 16 3 1 0 0 3 1 1 1 

Number of 
haplotypes (H) 

2 6 4 2 1 1 2 2 2 2 

Haplotype 
diversity (Hd) 

0.50 0.83 0.50 0.47 0 0 0.50 0.43 0.33 0.50 

Nucleotide 
diversity (pi) 

0.0015 0.0092 0.0008 0.0007 0 0 0.0029 0.0008 0.0006 0.0010 

 

When comparing individual heterozygosity calculated from SNP data, we detected a noticeable 
decrease in variation from east to west of the sampling range (Figure 3C). In line with findings from 
the mtDNA analysis, individuals originating from Saudi Arabia and Oman displayed the lowest 
levels of variation, with little overlap in heterozygosity values between any of the other populations. 
Individuals from Sri Lanka and Bangladesh displayed the highest levels of variation. 
Unsurprisingly, the greatest variance in heterozygosity was observed in individuals originating from 
the UAE, likely driven by its high sample number. 

Discussion 

Rhina ancylostomus are among the most threatened elasmobranch species. While some 
international measures are in place to reduce pressure on this species, national and regional 
management is hindered in part due to gaps in our understanding of population connectivity and 
genetic variation. We used a combination of mitochondrial and SNP data to shed light on 
population processes in and around the Northwest Indian Ocean. Our findings have implications 
for both in situ and ex situ management and conservation planning and provide a solid baseline 
with which to build our knowledge of this threatened and understudied species. 

Our results first highlighted an unexpected difference in haplotype variation between COI and 
the CR. Across many vertebrates, the CR is the most polymorphic region of the mitochondrial 
genome (McMillan & Palumbi, 1997; Saccone et al., 1991; Zhang et al., 1995) making it a common 
marker for investigating intraspecific variation (Avise, 1995). It was therefore somewhat surprising 
to observe lower levels of variation at the CR than at COI across multiple R. ancylostomus 
populations. However, in many teleost fish it is well established that the CR evolves at a similar 
rate to the whole mitochondrial genome (Bernatchez & Danzmann, 1993; Shedlock et al., 1992; 
Zhu et al., 1994), and similar patterns have more recently been observed in other elasmobranch 
species (Boomer et al., 2012; Castillo-Páez et al., 2014; Dudgeon et al., 2009). While it is possible 
we inadvertently targeted a conserved sequence domain, our findings indicate this pattern could 
extend into numerous shark and ray families. A possible driver of low CR variation includes 
functional constraints for a particular base composition and therefore selection against transition 
mutations (Apostolidis et al., 1997; Bernatchez & Danzmann, 1993). Further work comparing 
complete gene regions and whole mitogenomes across species and populations will shed light on 
the extent and mechanisms of mitochondrial evolutionary rate variation in elasmobranchs. 
Nevertheless, those interested in intraspecific variation in related species will benefit from targeting 
highly variable regions of the mitochondrial genome such as COI and NADH2 (Naylor et al., 2012). 
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To explore patterns of intraspecific variation, we supplemented our mtDNA with SNP 
genotypes. Both marker sets highlighted some degree of genetic variation across the Northwest 
Indian Ocean, largely between individuals from Saudi Arabia, Oman and the UAE, and those from 
Sri Lanka, Bangladesh and Taiwan. The Indian Ocean Barrier is an established barrier to gene 
flow, particularly for coastal elasmobranchs (Hirschfeld et al., 2021), and likely contributes to the 
large-scale differences observed here. At the same time, SNP-based structure and PCA analysis 
suggested finer-scale clustering associated with sampling location. Such patterns may also reflect 
the species’ intrinsic dispersal limitations, with restricted movement leading to gradual shifts in 
allele frequencies across the range. However, it is important to acknowledge that sample 
acquisition from this endangered species is challenging, resulting in limitations to our sampling 
design. In addition to the locations sampled as part of this study, R. ancylostomus occurs along 
the coastlines of all countries in between, including eastern Saudi Arabia, Iran, India, and Pakistan 
(Kyne et al., 2019, Figure 1). Uneven sampling in a continuously distributed species can lead to 
the presence of artificial clusters due to spatial autocorrelation in allele frequencies (Chambers & 
Hillis, 2020; Perez et al., 2018). Population structure observed in our dataset may therefore be 
driven by gaps in our sampling distribution as opposed to true population boundaries. We therefore 
interpret the observed structure as arising from a combination of extrinsic barriers such as the 
Indian Ocean Barrier and intrinsic dispersal constraints, producing a pattern of isolation by distance 
across much of the range assessed here. 

The distribution of R. ancylostomus extends beyond the Northwest Indian Ocean, down the 
coast of East Africa in one direction (including offshore islands such as the Seychelles and 
Reunion), and across to South East Asia, Australia and the East China Sea in the other (Kyne et 
al., 2019). While our study provides a significant advance in our understanding of the species, 
sampling constraints prevented assessment across its full range, limiting our ability to characterise 
the complete landscape of genetic variation. Building on the patterns observed in the Northwest 
Indian Ocean, two scenarios seem plausible across the broader distribution. First, decreasing 
genetic similarity with increasing genetic distance may extend across the entire range, consistent 
with the continuous nature of the species distribution and the intrinsic dispersal constraints that 
likely drive isolation by distance. There are a handful of examples demonstrating such patterns in 
coastal sharks, including the lemon shark (Negaprion brevirostris), sandbar shark (Carcharhinus 
plumbeus) and Caribbean reef shark (Carcharhinus perezi, Ashe et al., 2015; Bernard et al., 2017; 
Pember et al., 2023), although complete distributions are rarely assessed. Yet, even under such 
scenarios, adaptive loci may show signatures of differentiation despite clinal variation at neutral 
loci (Turbek et al., 2023). Second, extrinsic barriers to gene flow can lead to breakpoints in patterns 
of isolation by distance. For example, deep water trenches and strong ocean currents have been 
shown to restrict movements and limit gene flow in many coastal elasmobranchs (Dudgeon et al., 
2009; Hirschfeld et al., 2021; Humble et al., 2025; Schultz et al., 2008). Given its propensity for 
shallow inshore environments, we anticipate barriers to gene flow beyond the Northwest Indian 
Ocean will likely give rise to population differentiation in R. ancylostomus. Nevertheless, one record 
exists of an individual caught by a purse seiner in pelagic waters between the African continent 
and the Seychelles (Forget & Muir, 2021) suggesting the species may be capable of longer 
distance movements. Further sampling and investigation across the entire species range, while 
challenging, will be crucial to disentangle the relative roles of dispersal limitation and 
oceanographic barriers in shaping population structure. 

In addition to investigating population structure, we also explored the landscape of genetic 
variation among populations. Findings from SNP data, and to some extent mitochondrial 
haplotypes, highlighted a decline in variation from east to west of the sampling range. Such a 
pattern may have emerged as a result of species range expansion, a process which inherently 
impacts diversity as repeated founder events drive the loss of low frequency alleles (Le Corre & 
Kremer, 1998; Peter & Slatkin, 2013). While we cannot infer the true geographic origin of the 
species, we hypothesise this may have occurred somewhere in the Indo-Malayan archipelago. 
This region has extraordinary levels of biodiversity and is thought to act as a centre of origin and 
survival for many marine species (Evans et al., 2016), including some coastal elasmobranchs 
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(Maisano Delser et al., 2019; Walsh et al., 2022). With this in mind, we cautiously expect 
populations further east of the sampled range to harbour higher levels of genetic diversity and 
those along the east African coast to harbour lower levels. In line with this, Saudi Arabia and Oman 
displayed the lowest levels of individual variation in our study. Further sampling in these regions, 
particularly at range edges, will be crucial to validate our results and to explore this hypothesis in 
more detail. Genetic variation is fundamental not only for buffering the intrinsic impacts of 
population decline but for enabling populations to adapt to extrinsic pressures (Bonnet et al., 2022; 
Lai et al., 2019). Given the intensity of fishing pressure across the Arabian Sea and its adjacent 
waters (Jabado et al., 2018; Jabado & Spaet, 2017; Spaet & Berumen, 2015) our results paint a 
worrying picture for the future of the species in this region. 

Conservation implications and future directions 
Guitarfish and wedgefish are notoriously neglected in conservation management (D’Alberto, 

2022; Kyne et al., 2019; Pytka et al., 2023). While some local and national fisheries management 
measures can provide indirect benefits, there are few species-specific measures in place. By 
advancing our understanding of R. ancylostomus populations, our results provide fundamental 
information for guiding targeted management and conservation planning for the species. We 
uncover genetic differentiation across the Northwest Indian Ocean that is likely explained by both 
intrinsic dispersal constraints and extrinsic barriers to gene flow. Such processes are common in 
coastal marine taxa, producing gradual clines in allele frequencies in some areas but more distinct 
breaks where oceanographic barriers, such as the Indian Ocean Barrier, restrict connectivity. 
These dynamics complicate the designation of discrete management units (Turbek et al., 2023) 
but highlight the importance of maintaining habitat connectivity across the species’ northern range, 
combined with local and national fisheries management. The former is crucial for maximising 
genetic diversity and buffering the impacts of local exploitation while the latter recognizes how 
fisheries management ultimately works in practice. We also identify regions with markedly lower 
genetic variation that should warrant heightened protection. Recently designated Important Shark 
and Ray Areas (ISRAs) in the Western Indian Ocean (Jabado et al., 2024) not only identify these 
locations but partly capture the continuous coastal distribution of R. ancylostomus and should 
therefore help kickstart the development of appropriate area-based conservation management. 

Our findings also have implications for ex situ management. Rhina ancylostomus is one of few 
wedgefish species routinely held in aquarium collections across the globe (Smith et al., 2017). 
Through building an atlas of genetic variation for a key part of the species range, we provide a 
valuable reference for determining the breadth of variation present in the ex situ collection. Due to 
the risks associated with small population size in captivity, such knowledge is crucial for breeding, 
movement and supplementation decisions (Frankham et al., 2002; Lacy, 1987). While there are 
excellent examples of well managed terrestrial collections (Farquharson et al., 2022; Humble et 
al., 2023; Witzenberger & Hochkirch, 2011), the use of genetic information in ex situ management 
of marine species significantly lags behind. Rhina ancylostomus therefore presents an excellent 
opportunity to integrate ex situ and in situ genetic management in an aquatic species under a One 
Plan approach to conservation (Pritchard et al., 2012; Redford et al., 2012; Schwartz et al., 2017). 
Nevertheless, we acknowledge the potential existence of sub-populations in areas of the species 
range not assessed here. If R. ancylostomus becomes a candidate for restoration or reintroduction, 
this information will be fundamental for establishing and managing an insurance population, 
identifying release sites and selecting individuals for release. We therefore strongly advocate for 
further sampling and investigation – particularly around East Africa and South East Asia – in order 
to support holistic and coordinated conservation management of this unique and threatened 
species. 
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