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Abstract
Dispersal is key to understanding ecological and evolutionary dynamics. Dispersal mayitself evolve and exhibit phenotypic plasticity. Specifically, organisms may modulatetheir dispersal rates in response to the density of their conspecifics (density-dependentdispersal) and their own sex (sex-biased dispersal). While optimal dispersal plastic re-sponses have been derived from first principles, the genetic and molecular basis of dis-persal plasticity has not been modelled. An understanding of the genetic architectureof dispersal plasticity is especially relevant for understanding dispersal evolution dur-ing rapidly changing spatial ecological conditions such as range expansions. In this con-text, we develop an individual-based metapopulation model of the evolution of density-dependent and sex-biased dispersal during range expansions. We represent the disper-sal trait as a gene-regulatory network (GRN), which can take population density and anindividual’s sex as an input and analyse emergent context- and condition-dependent dis-persal responses. We compare dispersal evolution and ecological dynamics in this GRNmodel to a standard reaction norm (RN) approach under equilibrium metapopulationconditions and during range expansions.We find that under equilibriummetapopulationconditions, the GRN model produces emergent density-dependent and sex-biased dis-persal plastic response shapes that match the theoretical expectation of the RN model.However, during range expansion, when mutation effects are large enough, the GRNmodel leads to faster range expansion because GRNs can maintain higher adaptive po-tential. Our results imply that, in order to understand eco-evolutionary dynamics in con-temporary time, the genetic architecture of traits must be taken into account.
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Introduction
Dispersal is key to understanding both ecology and evolution since it impacts the popula-

tion dynamics of organisms and the distribution of their genes (Govaert et al., 2019; Ronce,
2007). Further, not only may dispersal evolve in response to spatio-temporal variation in fit-
ness expectations, kin structure, and inbreeding avoidance (Bowler and Benton, 2005), but it
also exhibits phenotypic plasticity. While it is recognised that dispersal can respond to the in-
ternal state (condition-dependent dispersal; Clobert et al. 2009) and the external environment
(context-dependent dispersal) of an organism (Fronhofer et al., 2018), the consequences of ac-
counting for underlying molecular and genetic processes that generate dispersal plasticity are
unclear (Saastamoinen et al., 2018). In the present study, therefore, we will outline as proof-of-
concept how accounting for the genetic basis of dispersal plasticity in models can impact our
understanding of dispersal evolution. We focus on two examples of dispersal plastic responses
that have been well-studied: density-dependent (Harman et al., 2020) and sex-biased (Li and
Kokko, 2019) dispersal.

Dispersal rates of organisms show plastic responses to local population density and may in-
crease (positive density-dependent dispersal), decrease (negative density-dependent dispersal),
or even be unimodal (reviewed in Harman et al. (2020)). Theoretical work has focused on the
evolution of positive density-dependent dispersal, which evolves when there is negative density-
dependence in density regulation (Gyllenberg and Metz, 2001; Poethke and Hovestadt, 2002).
If individuals are present in a patch that has a smaller population density than an average patch,
they experience less competition and, therefore, tend to stay in their natal patch (no dispersal),
and those in patches with higher than average densities tend to leave their natal patch with a
probability that increaseswith local population density due to increased competition (Gyllenberg
and Metz, 2001; Poethke and Hovestadt, 2002). Many theoretical studies have assumed differ-
ent shapes of positive density-dependence: linear (Travis and Dytham, 1999) or sigmoid (Bocedi
et al., 2012; Kun and Scheuring, 2006; Travis et al., 2009). However, the theoretical expecta-
tion in discrete time models is given by a function in which dispersal is zero below a threshold
and then increases in a saturating manner beyond it (Poethke and Hovestadt, 2002). Apart from
a first principles justification, this reaction norm shape outcompetes all the others in pairwise
competition simulation experiments (Hovestadt et al., 2010). Similarly, sex-biased dispersal is
known to evolve due to asymmetry in limiting resources, kin competition, or inbreeding depres-
sion (Li and Kokko, 2019). When females mate with a randomly chosen male, this leads to the
evolution of male-biased dispersal, that is, males tend to disperse more than females, since they
experience greater variability in mates, which is a limiting resource (Gros et al., 2009).

Apart from the first principle approaches already described above (e.g., Poethke and Hoves-
tadt (2002) and Gyllenberg andMetz (2001)), the shape of the optimal dispersal plastic response
can also be obtained by other methods. A function value trait approach has been used in which
different “loci” represent the trait value corresponding to a given environment (Dieckmann et al.,
2006) or differing internal conditions (Gros et al., 2009). Finally, some studies have relied on poly-
nomials if the function-valued trait approach was too computationally demanding (Deshpande
et al., 2021). Closer to the present study, Ezoe and Iwasa (1997) standardised a neural network
model against analytically derived reaction norms for density-dependent dispersal.

However, fundamentally, these optimal reaction norms must have an underlying molecular
and genetic basis (Saastamoinen et al., 2018), that is, there must be a genotype-to-phenotype
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map (Alberch, 1991; Nichol et al., 2019) that can process internal states and environmental
conditions, leading to the emergence of plastic responses at the phenotypic level. One such
representation of a genotype-to-phenotype map is the gene-regulatory network (GRN) model
proposed by Wagner (1994) and its variants (Spirov and Holloway, 2013). While this is still a
highly simplified representation of molecular processes that generate plasticity, gene-regulatory
network approaches can reveal how phenotypic plasticity modifies evolvability by introducing
developmental constraints (Brun-Usan et al., 2021; Draghi andWhitlock, 2012). For example, un-
der conditions of rapid environmental change, Draghi andWhitlock (2012) modelled phenotypic
plasticity of two correlated quantitative traits using a model combining GRN and quantitative ge-
netics approaches. They found that plastic populations, which evolve in heterogeneous environ-
ments and have genes that receive an input from the external environment, exhibit evolvability
in the direction of environmental variation and adaptmost easily. van Gestel andWeissing (2016)
modelled bacterial sporulation using a GRN approach, incorporating phenotypic plasticity by al-
lowing the regulatory genes to receive environmental inputs, and found that a GRN approach
allows for greater diversity in the response to novel conditions than a classical reaction norm
approach, capturing a greater adaptive potential.

Thus, one context in which accounting for molecular mechanisms for dispersal plasticity may
be relevant is understanding rapid evolution during directional change, such as during range
expansions (Miller et al., 2020). How quickly organisms spread in space depends, besides repro-
duction, centrally on dispersal. Since dispersal has a genetic basis (Saastamoinen et al., 2018) and
can evolve (Ronce, 2007), the potentially rapid evolution of dispersal ability can impact range ex-
pansion dynamics, but, vice versa, range expansions can also drive dispersal evolution by spatial
sorting and selection, wherein more dispersive individuals end up at the range expansion front
(Shine et al., 2011). It has also been shown that the speed of range expansions depends critically
on whether dispersal increases or decreases with population density (Altwegg et al., 2013). In
theoretical work, density-dependent dispersal can lead to accelerating range expansions (Travis
et al., 2009), due to the evolution of decreased positive density-dependence of dispersal at range
fronts. Yet, experimental studies have shown both, reductions (Dahirel et al., 2023, 2022; Fron-
hofer et al., 2017) and increases (Mishra et al., 2020) in positive density-dependence of dispersal
during range expansion.

Building on this work, we posit that gene-regulatory networks can be used to model disper-
sal plasticity. Using this bottom-up approach, we here seek to understand whether processes
at the molecular level, particularly gene regulation, yield a similar plastic response to the theo-
retically predicted optimal reaction norm (Poethke and Hovestadt, 2002) in the case of density-
dependent dispersal. Hence, we develop an individual-based metapopulation model, in which
dispersal can evolve to be plastic to local population density. We represent the genetic archi-
tecture of density-dependent dispersal using a GRN that takes as an input the local population
density, regulatory genes process this input and finally output a continuous dispersal probability
trait. We compare the GRN model to the theoretically expected reaction norm (RN) shape pro-
posed by Poethke and Hovestadt (2002). Finally, we also investigate whether such a match to
theoretical expectations holds if dispersal can additionally be sex-biased (Li and Kokko, 2019).
To highlight how the genetic architecture of dispersal plasticity impacts predictions under con-
ditions of rapid change, we model range expansions.

Jhelam N. Deshpande & Emanuel A. Fronhofer 3

Peer Community Journal, Vol. 5 (2025), article e127 https://doi.org/10.24072/pcjournal.626

https://doi.org/10.24072/pcjournal.626


Thus, in this study, we address the following questions: 1) Does a more mechanistic GRN
model of plasticity lead to the emergence of what is predicted from first principles at the RN
level? 2) What are the ecological and evolutionary consequences of a more complex but mecha-
nistic model under native equilibrium metapopulation conditions and during range expansions?

Model description
General description

We develop a discrete-time and discrete-space individual-based metapopulation model of a
sexually reproducing diploid species in which dispersal can evolve and be plastic to local popula-
tion density and sex. Density regulation is local within a patch of the metapopulation, and local
dynamics follow a Beverton-Holt model of logistic growth (Beverton and Holt, 1957). We rep-
resent the genetic basis of an individual’s dispersal trait by a Wagner-like (Wagner, 1994) gene-
regulatory network (GRN), that takes as input and processes population density as an external
cue and sex as an internal state, producing as an output its dispersal probability (Figure 1 A,
C). In order to compare our model to the theoretically expected plastic response in the cases
of density-dependent dispersal and density-dependent and sex-biased dispersal, we develop
additional models (Figure 1 B, D) using the reaction norm approach described in Poethke and
Hovestadt (2002).

Individuals are initially present in the central 10 × 5 patches of out of a 500 × 5 grid land-
scape, for 20000 generations (time-steps), in order for the dispersal genotypes to reach (quasi)-
equilibrium.We assume that these individuals can start range expansion in the x-dimension after
20000 generations. Therefore, the boundary conditions in the x-direction are reflecting for the
first 20000 generations. In the y-direction, boundary conditions are toroidal, hence the land-
scape resembles a hollow tube. Range expansions can take place till the expanding population
has moved 245 patches from the central 10×5 patches in either direction along the x-dimension.
Range expansions stop when the expanding population reaches the boundary of the landscape
in the x-dimension.
Life cycle
Dispersal. We assume that dispersal is natal. The probability that an individual disperses is given
by its genetically encoded plastic response to local population density (Figure 1 A–B) alone or
local population density and sex (Figure 1 C–D). The plastic response may either be encoded by
a GRN or the threshold (Figure 1 A, C) of a theoretically expected reaction norm (Figure 1 B, D).
If an individual disperses, one of the eight nearest neighbouring patches (Moore neighbourhood)
is chosen as the target patch. Dispersal costs (Bonte et al., 2012) are captured by the dispersal
mortality µ, which is the probability that an individual dies while dispersing.
Reproduction and inheritance. After dispersal, individuals reproduce sexually. The population dy-
namics in a patch follow the Beverton-Holt model of logistic growth (Beverton and Holt, 1957):
(1) Nx ,y ,t+1 = Nx ,y ,t

λ0

1 + αNx ,y ,t
.

Here, λ0 is the intrinsic growth rate, and α is the intra-specific competition coefficient. This
model reaches an expected equilibrium density of N̂ = λ0−1

α in the absence of spatial structure
for λ0 > 1. A female first chooses a mate at random, and then produces a number of offspring
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drawn from a Poisson distribution with a mean 2λ0
1+αNx ,y ,t

. The factor of 2 corrects for the fact
that only females reproduce and keeps λ0 interpretable at the population level. The offspring
inherit the alleles to the various parameters of the GRN, or the threshold of the theoretically
expected reaction norm, one from each parent at each locus. In the GRNmodel, we assume that
the per locus per allele mutation rate decreases linearly from mmax = 0.1 to mmin = 0.0001 in
the first 5000 time steps and is constant after (Deshpande and Fronhofer, 2022). Since the GRN
model has a large number of parameters, using larger mutation rates initially allows the fitness
landscape to be coarsely explored quickly without the trait value getting stuck in a local optimum.
In the RN model, mmin = mmax = 0.0001 throughout the simulation. The mutation effects per
allele per locus for both models are drawn from Gaussian distribution with a standard deviation
σm = 0.1.

Generations are non-overlapping, therefore, the offspring generation replaces the parental
generation. In addition, we assume that theremay be random patch extinctions every generation
with a probability of ϵ per patch. These extinctions represent density-independent, catastrophic
external impacts.
Gene-regulatory network (GRN) model

The genetic basis of density-dependent and sex-biased dispersal is modelled by a modified
Wagner-like (Wagner, 1994) gene-regulatory network model (Deshpande and Fronhofer, 2022).
We assume that the dispersal probability d results from the linear combination (Draghi andWhit-
lock, 2012) of equilibrium gene expression statesSd

∗ of n = 4 genes that interactwith each other.
We assume that organisms can detect local population density (Fellous et al., 2012; Fronhofer
et al., 2015) and their own sex, which can produce a plastic response in their gene expression,
hence, their dispersal trait. Thus, these genes take as input the population density normalised
by the expected equilibrium density of the Beverton-Holt model N̂ = λ0−1

α and sex (0 and 1 for
female and male, respectively) of an organism (Figure 1 A, C). The gene-regulatory network has
three layers: an input layer (xd ; taking population density and sex as cues), a regulatory layer
(Sd(I ); vector of gene expression states corresponding to an iteration I of the developmental
process), and an output layer (d ; the dispersal probability trait) (van Gestel and Weissing, 2016).
These layers are connected to each other by matrices of weights: the input weights (Ud ), regula-tory weights (Wd ) and output weights (Vd ). The expression state of a gene is a sigmoid function
of the input it receives from the environment and other genes (Siegal and Bergman, 2002) and
can take values between −1 and 1. Each gene has its own properties: a slope (rd ) and a threshold(θd ) to this sigmoid. The slopes and thresholds of all genes, along with the elements of the input,
regulatory, and output weight matrices, are encoded by a diploid locus each with two alleles. The
mid parental value at each locus is used to iterate through gene expression states according to
equation Eq. 2.

Thus, the developmental process for the dispersal trait is characterised by the following dif-
ference equation (Deshpande and Fronhofer, 2022) where Sd(I ) is the vector of gene expressionstates for n genes and m inputs at each iteration of the developmental process:
(2) Sd ,i (I + 1) =

2

1 + exp
(
−rd ,i

(∑j=m
j=1 Ud ,j ,ixd ,j +

∑k=n
k=1 Wd ,k,iSd ,k(I ) − θd ,i

)) − 1.

The equilibrium gene expression states S∗
d are obtained after I = 20 iterations. Individuals with

GRNs that do not reach steady state equilibrium at this point die (Wagner, 1994). The dispersal
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probability is then calculated as the linear combination of these equilibrium gene expression
states (Draghi and Whitlock, 2012) as:
(3) d =

i=n∑

i=1

Vd ,iS
∗
d ,i .

Reaction norm (RN) model
We compare the plastic response that arises in the GRN model to the theoretically expected

optimal reaction norm (RN) derived from first principles for density-dependent dispersal (Poet-
hke and Hovestadt, 2002). In discrete time metapopulation models with logistic growth, disper-
sal probability is expected to be 0 below a threshold local population density and increase in a
saturating manner with it. Thus, dispersal probability d is given by:

(4) d =




0 0 ≤ Nx ,y ,t

N̂
< Cthresh

1 − N̂ Cthresh
Nx ,y ,t

otherwise.

Here, Nx ,y ,t

N̂
is the local population density normalised by the expected equilibrium population

density, and Cthresh is the threshold density, which can be optimised by simulations (Poethke
and Hovestadt, 2002). Thus, in the RN model, we assume that the threshold density Cthresh is
genetically encoded by a single diploid locus with two alleles. Individuals detect local population
density Nx ,y ,t and disperse with a probability given by equation Eq. 4.

We also extend this approach to sex-biased and density-dependent dispersal by encoding
two different threshold normalised densities as two loci, Cthresh,M and Cthresh,F . Cthresh,M is ex-
pressed if the individual is male, and Cthresh,F is expressed if the individual is female.
Analysis

We analyse both GRN and RNmodels (Figure 1) for density-dependent dispersal (GRN DDD
and RN DDD) alone and for density-dependent and sex-biased dispersal (GRN DDD + sex bias
and RN DDD + sex bias). Model parameters are found in Table 1. Since dispersal evolution ulti-
mately is driven by costs and benefits, we run 50 replicate model simulations for dispersal mortal-
ity µ ∈ {0.01, 0.1, 0.3} and a random patch extinction risk of ϵ ∈ {0, 0.05, 0.1}. We first compare
the long term (t = 20000 time steps) evolved plastic response in the GRN DDD and GRN DDD +
sex bias models to the expected optimal reaction norms RN DDD and RN DDD + sex bias mod-
els under standard metapopulation conditions. After 20000 time steps, individuals begin range
expansions, andwe compare range expansion speeds between the GRN and RNmodels. In order
to test the sensitivity of our results to assumed mutation rates we run additional simulations for
the GRN DDD model with mutation effects that are 1/4 times the standard GRN DDD model
(termed the GRN DDD small mutation effects model).

Results and discussion
Evolution of the density-dependent dispersal plastic response in the GRN and RN models.

The density-dependent dispersal plastic response (Figure 2) obtained after 20000 generations
in the GRN DDD model matches the theoretically expected optimum (RN DDD; Poethke and
Hovestadt (2002)) most closely for high extinction probability (for ϵ = 0.05 and 0.1) and high
dispersal mortality (for µ = 0.1 and 0.3). When there are no patch extinctions (for ϵ = 0), the
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Figure 1 – GRN (A, C) and RN (B, D) models for density-dependent (A–B) and density-dependent and sex-biased dispersal (C–D). The assumed GRN model has an input layer,which is a vector xd of external states or external cues, in our case, population densityalone (A) and population density and sex (B). The regulatory genes receive this input viathe input weights Ud . Genes have expression states denoted by Sd , and interactions be-tween these genes are encoded by a regulatorymatrixWd . The effects of these genes areencoded by the matrix Vd . In the case of density-dependent dispersal, the RN model isrepresented by a single quantitative locus, which is the threshold of the function derivedby Poethke and Hovestadt (2002), and for density-dependent and sex biased dispersal,two loci with sex dependent expression encode the threshold. We compare the evolu-tion of dispersal plasticity and range expansion dynamics between the reaction norm andGRN approaches.

GRN DDD plastic response differs from the theoretical optimum likely because the individuals
in the metapopulation are not exposed to a wide range of population densities, preventing op-
timisation (Figure 2). Finally, low dispersal mortality (µ = 0.01) also reduces optimisation. This
is likely because the strength of selection for reduced dispersal is low since the fitness cost of
a non-optimal dispersal decision is low. In addition to Figure 2, the quality of optimisation in
the GRN DDD model is assessed in SI Figure S1, which also shows that the GRN DDD model
is closest to the theoretical optimum under conditions of high patch extinctions and dispersal
mortality. Our result that optimisation in the GRNDDDmodel is least effective under conditions
of low dispersal mortality and extinction probability is consistent with those of Hovestadt et al.
(2010) who show that other strategies can co-exist with the theoretically expected optimal re-
sponse (Poethke and Hovestadt, 2002) in competition experiments under similar conditions of
low environmental variability and low dispersal mortality.

The amount and direction of phenotypic variation that is maintained in the gene-regulatory
network model, again depends on dispersal mortality and extinction probability. Particularly, this
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Table 1 – Model Parameters/Variables
Model Parame-ter/Variable Description Values
Nx ,y ,t Population density in the patch x , yat time t

dynamical
λ0 Intrinsic growth rate in Beverton-Holt model 2
α Intra-specific competition coeffi-cient in Beverton-Holt model 0.01
µ Dispersal mortality 0.01, 0.1, 0.3
ϵ Local patch extinction probability 0, 0.05, 0.1
mmin Mutation rate at equilibrium 0.0001
mmax Mutation rate at the beginning 0.1 for GRN, mmax = mmin forothers
σm Effect size (standard deviation) ofmutations 0.1
x Vector of inputs to the GRN in simulation
n Number of regulatory genes 4
Sd ,I Vector of expression states of regu-latory genes at iteration I in simulation
Ud m × n matrix with each element

Uji representing the connection be-tween the input j and gene i

evolves, initialised from a nor-mal distribution with sd = 1
Wd n × n matrix with each element

Wki representing the connection be-tween the gene k and gene i

evolves, initialised from a nor-mal distribution with sd = 1
Vd 1 × n matrix with each element

Vi representing the connection be-tween the gene k and the output
evolves, initialised from a nor-mal distribution with sd = 1

θd Thresholds of regulatory genes evolves, initialised from a nor-mal distribution with sd = 1
rd Slopes of regulatory genes evolves, initialised from a nor-mal distribution with sd = 1
Cthresh Threshold for density-dependentdispersal in RN model evolves, initialised from a uni-form distribution between 0to 1
Cthresh,F Threshold for density-dependentand sex-biased dispersal in RNmodel for females

evolves, initialised from a uni-form distribution between 0to 1
Cthresh,M Threshold for density-dependentand sex-biased dispersal in RNmodel for males

evolves, initialised from a uni-form distribution between 0to 1

variation is comparable in the GRNDDD and the RNDDDmodels at high dispersal mortality and
extinction probability, but at low dispersal mortality, greater phenotypic variation is maintained
in the GRN DDD model (SI Figure S2). This is because of the evolution of greater sensitivity to
mutation relative to the RN DDD model (SI Figure S4) when dispersal mortality is low, which is
expected since the negative fitness consequences of a non-optimal dispersal decision increase
with increasing dispersalmortality. Reduced optimisation (SI Figure S1) and increased phenotypic
variation (SI Figure S2) in the GRN DDD model under conditions of low dispersal mortality and
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extinction probability do not seem to have important consequences on metapopulation dynam-
ics since the distribution of observed population densities in both models do not differ (Figure 2).
To test whether this maintenance of variation at low population densities is a consequence of
assumed mutation rates we also simulated a GRN DDD model with a quarter of the mutation
effects (0.25σm; GRN DDD smaller effects model). We find that phenotypic variation maintained
at low population densities is still higher in the GRN DDD smaller effects model relative to the
RN DDD model but quantitatively lower than the GRN DDD model (see SI Figure S3). The eco-
evolutionary consequences of the differences in maintenance of phenotypic variation will be
explored in detail below.

In summary, the GRN DDD model produces a plastic response similar to theoretical expec-
tation (Poethke and Hovestadt, 2002) when the strength of selection on dispersal is sufficiently
high and the individuals across generations are exposed to a wide range of population densities,
that is, when dispersal mortality and extinction probability are high. Deviations from this expec-
tation occur when the strength of selection on dispersal is low (at low dispersal mortality and
extinction probability) and when individuals across generations are not exposed to a wide range
of population densities.
Evolution of the density-dependent and sex-biased dispersal plastic response in the GRN and
RN models.

Dispersalmay not only depend on the external context but also on internal conditions (Clobert
et al., 2009), such as the sex of the potentially dispersing individual. Figure 3 shows that includ-
ing the input of an internal condition, sex, along with local population density, as explored in
the previous subsection, leads to the emergence of a density-dependent and sex-biased disper-
sal plastic response in the GRN DDD + sex bias model similar to the optimal response in the
RN DDD + sex bias model. The conditions of dispersal mortality and extinction probability for
greater optimisation of the GRN model with sex-bias are similar to those when dispersal is not
sex-biased (SI Figure S5). Similar to the scenario in which dispersal is not sex-biased, greater
phenotypic variation (SI Figure S6) and sensitivity to mutation (SI Figure S7) occur at low disper-
sal mortality. These differences in phenotypic variation in dispersal reaction norms do not have
consequences on the distribution of population density in the metapopulation (SI Figure S9).

Focusing on sex-bias, the density-dependent dispersal threshold is lower for males than for
females, leading to male-biased dispersal in our simulations. This is consistent with previous
work on sex-biased dispersal, which shows that males experience greater stochasticity in mate
finding, which leads to the evolution of greater dispersal in males relative to females (Gros et al.,
2009).
Genetic architecture of dispersal plasticity impacts eco-evolutionary dynamics of range expan-
sion

Under equilibrium metapopulation conditions, we have shown that both density-dependent
dispersal and sex-biased dispersal plastic responses readily evolve in gene-regulatory network
models and outline the conditions in which they match their theoretical optimum. But what
are the ecological consequences of such plastic responses under novel conditions? In order to
answer this question, after 20000 time steps, we allow for range expansions in both the GRN and
RN models. We find that range expansion speeds are greater in the GRN model overall when
local density alone (Figure 4) and both local density and sex, define dispersal decisions (Figure 5).
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Figure 2 – TheGRNDDD (green) matches the RNDDD (purple) model for high extinctionprobability and dispersal mortality. The match is greatest at population densities that aremost frequent. Dispersal mortality increases from left to right (µ ∈ {0.01, 0.1, 0.3}), fromtop to bottom, extinction probability increases (ϵ ∈ {0, 0.05, 0.1}). For each combinationof dispersal mortality and extinction probability, the evolutionarily stable (ES) dispersalprobability and the histogram of population densities that occur during the simulation areplotted for both GRN and RNmodels. ES dispersal probability as a function of populationdensity normalised by the expected equilibrium population density (N̂ = λ0−1
α ; N̂ = 100in the present study). The purple line represents the density-dependent dispersal plasticresponse calculated from the median threshold Cthresh obtained after 20000 time stepsover all individuals, and the shaded region from the inter-quartile range in the RN DDDmodel. The green line represents the calculated median GRN output for 1000 randomlychosen individuals pooled across all 50 replicates at the end of 20000 time steps. Fixedparameters: intrinsic growth rate: λ0 = 2, intraspecific competition coefficient: α = 0.01,and number of regulatory genes: n = 4.

In general, the difference between range expansion dynamics in the two models is greater when
dispersal mortality is low and the rate of external patch extinctions is high (Figure 4–5).
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Figure 3 – The density-dependent dispersal and sex-biased plastic response in the GRNDDD + sex bias model matches the RN DDD + sex bias model at high dispersal mor-tality and extinction probability. The match is greatest at population densities that aremost frequent. Dispersal mortality increases from left to right (µ ∈ {0.01, 0.1, 0.3}), fromtop to bottom, extinction probability increases (ϵ ∈ {0, 0.05, 0.1}). For each combinationof dispersal mortality and extinction probability, the evolutionarily stable (ES) dispersalprobability and the histogram of population densities that occur during the simulationare plotted for both GRN and RN models. ES dispersal probability as a function of pop-ulation density normalised by the expected equilibrium population density (N̂ = λ0−1
α ;

N̂ = 100 in the present study). The blue and purple lines represent the ES reaction normsfor males and females in the RN model from Poethke and Hovestadt (2002). The darkgreen and green lines represent the calculated GRN output for 1000 randomly chosenindividuals at the end of 20000 time steps corresponding to male and female sex re-spectively. The transparency of the points is weighted by the frequency of occurrence ofpopulation density so as to only represent the GRN plastic response for those densitiesthat occur during the simulation. Fixed parameters: λ0 = 2 and α = 0.01. Number ofregulatory genes n = 4.
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These patterns of faster range expansion speeds in the GRNmodel and the conditions of low
dispersal mortality and extinction probability that produce them can be understood on the basis
of the evolutionary history of the metapopulation before range expansions begin. As seen in the
previous section, the GRN model maintains greater phenotypic variation (SI Figure S2 and S6)
under conditions of low dispersal mortality (see SI Figure S8–S9 for individual reaction norms).
Moreover, when there are no patch extinctions, variation is also maintained at low population
densities since these population densities do not occur during the equilibrium metapopulation
phase, allowing for the accumulation of genetic variation (SI Figure S8–S9). This variation is then
spatially sorted (Shine et al., 2011), leading to the evolution of greater dispersal rates at the
range expansion front in the GRN model relative to the RN model (SI Figure S10–S11). This
is evident in the trajectories of evolved dispersal as a function of time in the range front (SI
Figure S12) in which the GRN model leads to the evolution of greater dispersal rates early on in
the range expansion indicating that standing genetic variation is being sorted. Travis et al. (2009)
have previously shown that accelerating invasions can be found in models assuming sigmoid
density-dependent dispersal reaction norms. They argue that this allows them to have a relatively
flexible function, where not just a threshold, as in Poethke and Hovestadt (2002), but also other
properties of the reaction norm can evolve. We reconcile the two approaches because, at the
equilibrium metapopulation level without assuming a particular shape of the plastic response,
on average, the shape that emerges is the one predicted by Poethke and Hovestadt (2002) but
the GRN approach has greater evolutionary flexibility as in Travis et al. (2009).

Our results that the GRNmodel leads to faster range expansions are sensitive to the assump-
tion of smaller mutation effects. In simulations where the per locus per allele mutation effects
are smaller (= 0.25σm; GRN DDD small mutation effects), while the amount of phenotypic vari-
ation maintained at low population density is quantitatively lower than the RN DDD model and
higher than the GRN DDD model, this does not translate to faster range expansions (see SI Fig-
ure S13). This indicates that the per locus per allele mutation effects in the GRN model need to
be high enough for a minimal amount of phenotypic variation to bemaintained at low population
densities.

Interestingly, the possibility of sex-biased and density-dependent dispersal increases the dif-
ference between the dynamics of the RN model and the GRN model. Generally, male-biased
dispersal (Fig. 3) slows down range expansions (Miller et al., 2011) due to the fact that males
cannot reproduce by themselves, implying that population, hence range expansion dynamics,
are female-limited. Thus, the availability of variation at densities that do not occur in equilibrium
metapopulation conditions in the GRN model further amplifies differences between the two
models relative to density-dependent dispersal alone.

General discussion
In summary, we developed a model for density-dependent and sex-biased dispersal that as-

sumes that dispersal results from the effects of a gene-regulatory network. We find that under
conditions that are experienced in equilibrium metapopulations, the emergent predicted plastic
response matches existing theoretical predictions well for conditions of high dispersal mortality
and extinction probability. We then compare range expansion dynamics between a GRN and an
RN model and find that the GRN model leads to faster range expansions if mutation effects are

12 Jhelam N. Deshpande & Emanuel A. Fronhofer

Peer Community Journal, Vol. 5 (2025), article e127 https://doi.org/10.24072/pcjournal.626

https://doi.org/10.24072/pcjournal.626


0

0

0
12

5
25

0

GRN
RN

 µ = 0.01

0

0

 µ = 0.1

0

0

 µ = 0.3

 ε
=

0

0

0

0
12

5
25

0

0

0

0

0

 ε
=

0.
05

0

0

0 1250 2500

0
12

5
25

0

0

0

0 1250 2500

0

0

0 1250 2500

 ε
=

0.
1

R
an

ge
 fr

on
t p

os
iti

on

Time

E
xt

in
ct

io
n 

pr
ob

ab
ili

ty

Dispersal mortality

Figure 4 – Range expansion dynamics in GRN vs. RNmodel for DDD. Dispersal mortalityincreases from left to right (µ ∈ {0.01, 0.1, 0.3}), from top to bottom, extinction probabil-ity increases (ϵ ∈ {0, 0.05, 0.1}). We plot the median and quartiles of range front positionas a function of time for the GRN model and RN model. The range front is defined asthe farthest occupied patch from the range core. Fixed parameters: λ0 = 2 and α = 0.01.Number of regulatory genes: n = 4.

large because of the maintenance of greater variation when selection on dispersal is not high
and the population has relatively stable dynamics (no patch extinctions).

The theoretical literature usually uses highly simplified representations of the genetic archi-
tecture of traits like dispersal, most often only representing them at the level of the phenotype
(Saastamoinen et al., 2018). Particularly, adaptive dynamics approaches (Parvinen et al., 2006),
which assume small mutation effects and rare mutations, allow for optimal traits or reaction
norms to be derived, analytically or by means of simulation, as a function of ecological equi-
libria (Govaert et al., 2019). Quantitative genetics approaches may further highlight constraints
on optimisation of reaction norms such as genetic correlations (Gomulkiewicz and Kirkpatrick,
1992). Further, in simulations similar to ours, one quantitative locus with additive effects is of-
ten assumed (Saastamoinen et al., 2018). On the other hand, studies of genetic architecture
rarely make ecological conditions explicit, with an abstract representation of selection on traits
by assuming a fitness function that is a priori defined rather than a result of underlying ecolog-
ical processes (e.g., studies using the Wagner model; Wagner 1994). Few studies highlight the
advantage of incorporating both explicit ecological dynamics and genetic architectures. A no-
table exception is, for example, van Gestel and Weissing (2016), who compare GRN and RN
approaches for bacterial sporulation and show the GRN approaches maintain greater diversity
of plastic responses which makes them more evolvable under novel conditions.
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Figure 5 – Range expansion dynamics in GRN vs. RN model for DDD and sex bias. Dis-persal mortality increases from left to right (µ ∈ {0.01, 0.1, 0.3}), from top to bottom,extinction probability increases (ϵ ∈ {0, 0.05, 0.1}). We plot the median and quartiles ofrange front position as a function of time for the GRN model and RN model. The rangefront is defined as the farthest occupied patch from the range core. Fixed parameters:
λ0 = 2 and α = 0.01. Number of regulatory genes: n = 4.

In our study, we recapture the theoretically expected and known phenotypic relationships
between population density and dispersal (Poethke and Hovestadt, 2002), confirming the valid-
ity of our approach. Importantly, under novel, low-density conditions experienced during range
expansions, the differences observed between expansion dynamics in the different models make
clear that approaches based on reaction norms may not be able to predict eco-evolutionary dy-
namics under novel conditions.

Our results underline the relevance of understanding genetic architecture (Yamamichi, 2022)
for eco-evolutionary dynamics (Fronhofer et al., 2023; Melián et al., 2018), particularly for dis-
persal (Saastamoinen et al., 2018) and its response to internal and external cues (Clobert et al.,
2009). While empirical evidence supporting our work is scarce, Brisson et al. (2010) showed
differences in gene expression between winged and un-winged phenotypes of pea aphids, par-
ticularly in their wing development gene-regulatory network. In this system, winged morphs are
often induced due to crowding, and the relative production of dispersive and non-dispersive (re-
productive) females depends on developmental cues, including crowding. More generally, our
GRN approach can be used to understand how dispersal responds to other internal (e.g., infec-
tion state; Iritani and Iwasa 2014 or body condition; Baines et al. 2020) and external cues, for
example, the presence of parasites (Deshpande et al., 2021) or predators (Poethke et al., 2010).
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Our study links very closely to Ezoe and Iwasa (1997), who used a neural network to com-
pare the evolution of dispersal reaction norms to analytical predictions. They showed that the
neural network was able to produce plastic responses similar to the analytically derived reac-
tion norm while finding some consistent deviations from this optimal response. In our study,
we go beyond these results by highlighting the conditions of dispersal mortality and extinction
probability that yield reaction norms closest to the expected optimal response. Moreover, using
a gene-regulatory network approach allows us to place our work in context of previous work
investigating the relationship between phenotypic plasticity and evolvability (Brun-Usan et al.,
2021; Draghi and Whitlock, 2012; van Gestel and Weissing, 2016).

GRNmodels andmodels of GPmaps often use highly abstract representations of the environ-
ment (for example, Draghi and Whitlock 2012) and gene expression as the phenotype directly
under selection (for example, Espinosa-Soto et al. 2011). These approaches have been useful in
defining, for example, how evolvability of phenotypes is linked with phenotypic plasticity (van
Gestel and Weissing, 2016) and the alignment between genetic, environmental perturbations,
and direction of selection, and how this impacts evolvability in multi-trait systems (Brun-Usan
et al., 2021; Draghi and Whitlock, 2012).

However, in an eco-evolutionary framework (Fronhofer et al., 2023; Govaert et al., 2019),
ecological interactions define selection on a trait. Ecological dynamics also define the trait that
is under selection. Therefore, considering gene expression as a phenotype directly under se-
lection may not always be appropriate, and gene expression state to phenotype maps must be
included (Chevin et al., 2022). This is relevant because, for example, the association of extremes
of gene expression (Rünneburger and Rouzic, 2016) with increased mutational sensitivity (de-
creased robustness) is actually reversed (Deshpande and Fronhofer, 2022). Further, while such
a map is likely to be more complex than our assumed linear gene expression to phenotype map,
approaches such as ours and that of van Gestel and Weissing (2016) also narrow the range of
possible environments under native conditions and also help define phenotypes under selection
that are ecologically informed.

The latter point becomes clear when considering our results on range expansion dynamics.
Taking into account both genetic architecture and the ecological conditions that shape the evo-
lution of dispersal plasticity, the GRN model leads to the maintenance of variation in conditions
(densities) that are not very frequent under equilibriummetapopulation conditions. This variation
is then spatially sorted (Shine et al., 2011) during range expansion. However, in the RN approach,
this maintenance of variation under equilibrium metapopulation conditions does not happen
since only the threshold to the reaction norm is under selection. We see the consequences of
the spatial sorting of dispersal in the fact that range expansions are generally faster in GRN ap-
proaches, when dispersal is density-dependent alone, and sex bias only increases the difference
between the twomodels. This has previously been discussed in the literature as a form of cryptic
variation, particularly “hidden reaction norms” (Schlichting, 2008), which represent differences
in genotypes that are not normally expressed at the phenotypic level but might be expressed if
the genotype is perturbed due to mutation or recombination, but also when the environment is
perturbed. Our results are similar to the findings of van Gestel andWeissing (2016) who showed
that in their GRNmodel, the release of cryptic variation in native environments can lead to more
adaptive plastic responses in novel conditions.
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We additionally show that these mechanisms driving differences in range expansion dynam-
ics may critically depend on assumed mutation effects. This is because a comparison between
the GRN and RNmodel is not straightforward since the sensitivity of the dispersal reaction norm
to mutations is determined both by the underlying genetic architecture (e.g., GRN vs. RN) and
the assumed per locus per allele mutation effects at the loci encoding the plastic response.While
under conditions in which there is greater selection on dispersal and relatively heterogeneous
conditions of population density (high dispersal mortality and extinction probability), similar be-
haviour between GRN and RN model is predicted, at conditions in which selection on dispersal
is not as strong (low dispersal probability and extinction probability) sufficient variation may not
be maintained to speed up range dynamics relative to an RN model.

More importantly, the GRN model also provides a molecular-mechanistic basis for plastic-
ity. While the GRN is likely to be more complicated in reality, the different layers of the gene-
regulatory network that produce the plastic response can be interpreted biologically. For exam-
ple, the input layer represents the external environmental cue, population density, which can be
sensed as, for example, the reduced availability of resources or other chemical and mechanical
cues (Fellous et al., 2012; Fronhofer et al., 2015) resulting from a larger local density of individu-
als. The regulatory layer can be interpreted as the gene expression states in cells of a relevant de-
velopmental stage that respond to local population density. Empirical studies of gene regulation
in a dispersal context remain rare. Yagound et al. (2022) have shown gene expression differences
using mRNA sequencing in the brains of the invasive Australian cane toad in a few genes. In their
study, dispersal-related genes generally showed elevated expression at the range front. In this
system, associated life history and physiological changes are particularly well studied in terms
of range expansion dynamics (Perkins et al., 2013; Phillips et al., 2006). Other examples include
wing polyphenism in pea aphids (Brisson et al., 2010), and dispersal in yellow-bellied marmots
(Armenta et al., 2019). This relative scarcity of empirical studies, together with the relatively im-
portant effects predicted by our model, clearly call for more work, both empirical and theoretical,
to understand how genotype-to-phenotype maps impact eco-evolutionary dynamics.
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