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Abstract
Correlative Species Distribution Models (SDMs) are powerful tools for understanding the spatial struc-
ture of ecological patterns and serve as a foundation for predicting the short-term effects of environ-
mental changes on biological populations and for improving ecosystem management. However, due
to complex and often non-linear interactions between biotic and abiotic factors, as well as irregular
data distributions, SDMs are notoriously challenging to construct and validate, highlighting the need
for continued research and methodological advancements in this active field of study. Quantile regres-
sion is a promising statistical technique to improve SDM as it can deal with data heteroskedasticity
and provide a description of habitat suitability consistent with Liebig’s Law of the Minimum. The aim
of this study is to propose a tool for assessing habitat suitability of an estuary for a species, by defining
its optimal ecological niche, which can be used for estuarine management, with a study case of Ceras-
toderma edule in the Seine estuary. The method involved applying quantile regression to a 20-year
biological dataset coupled with a hydro-morpho-sedimentary model data set validated over a 25-year
period, both at the scale of the estuary. To account for the complex distributional shapes, this studywas
carried out comparing three different types of equation (linear, Gaussian and B-spline). On the basis
of a preliminary multivariate analysis of the physical descriptors, two models were built representing
hydrodynamic, morphodynamical and sedimentary features: daily maximum current speed, inundation
time and daily salinity range or mud content as a third predictor. The Gaussian quantile regression
produced the best description of the optimal niche, at the 97.5th centile and using the biomass. The
optimal ecological niche for C. edule appeared to be lower intertidal marine areas, with low current
speed, low salinity fluctuation and a sediment bed composed of muddy sand in the Seine estuary. The
calculation of habitat suitability index in this ecosystem was explored over a period of 25 years. The
model using daily maximum current speed, inundation time and daily salinity range was also applied
to data from the Scheldt basins, to test the reliability of the model, thus demonstrating that the model
performs quite well, even though there were some differences of habitat suitability between these
estuaries. This approach can allow direct comparisons of SDMs with one single Gaussian model and
may offer new perspectives to investigate SDMs on a large scale.
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Introduction 

A species distribution model (SDM) is an approach that provides practical information on the 
spatial distribution of species based on ecological niche modelling (ENM) by investigating 
correlative interaction to predict the occurrence or the abundance of species as function of 
predictor variables. An ENM is defined in an n-dimensional environmental space that can be 
geographically projected as a SDM, providing managers and decision-makers with information 
about species distribution to help stakeholders to define conservation plans (Austin, 2007, 2002). 
A wide choice of statistical models for constructing SDM is available, with two main categories: the 
correlative ones (Guisan & Zimmermann, 2000; Austin, 2002) and the mechanistic ones (Kearney 
& Porter, 2009), the latter being based on eco-physiological laws. Each approach has advantages 
and disadvantages (Kearney & Porter, 2009; Melo-Merino et al., 2020), but the vast majority of 
studies carried out to date are correlative (Robinson et al., 2011, 2017; Melo-Merino et al., 2020). 

Correlative SDMs link the presence-absence or population quantitative information 
(abundance, biomass) of a targeted species with spatio-temporal habitat data, thereby quantifying 
the relation between environmental factors and species distribution (Guisan & Thuiller, 2005; Elith 
& Leathwick, 2009; Franklin, 2010). These methods generally use geo-localised biological data of 
a species and abiotic parameters measured by techniques such as remote measurements or 
modelling (Brown et al., 1996; Guisan & Zimmermann, 2000; Van Der Wal et al., 2008; Melo-
Merino et al., 2020). 

Correlative SDMs encompass a multiplicity of statistical techniques, which can be divided into 
two approaches: algorithmic modelling (AM) and data modelling (DM) (Warren & Seifert, 2011). 
AM methods, such as MaxEnt or random forest, involve a statistical comparison of abiotic and 
biological data, without defining the type of relationship, embracing the overall intrinsic complexity 
of the environment, with the aim of maximum prediction performance, but without describing the 
physiological processes involved. These methods have recently undergone considerable 
development, thanks to the increasingly easy access to the computer tools needed to implement 
them, they have been applied for instance on cockle populations (Singer et al., 2017; Matos et al., 
2023). The DM approach, which is more historical, consists of defining a priori a type of relationship 
between abiotic factors and biological response, based on the state of the art of the species and 
its environment, in a principle of parsimony and simplification of the description of an environment. 
The aim is then to highlight the main physiological processes explaining population dynamics, and 
to provide tools that can be applied in spatially and temporally diverse contexts. 

In the context of a DM approach, various regressions techniques can be used, which are often 
based on Ordinary Least Squares (OLS), which defines the conditional mean function between the 
biological response and selected predictors (Koenker & Hallock, 2000). Whatever the number of 
factors used, there will always be unmeasured or unknown factors, which may have a limiting 
effect on the biological response, which then reflects the response to these unknown limiting 
factors. This is the statement of Liebig’s law of minima: if other resources are not optimal for some 
observations, the measured response of the species will be lower than the maximum possible 
response to the recorded resource (Cade & Noon, 2003; Anderson, 2008). This generates 
heteroskedasticity in bivariate or multivariate data distributions, as the mean and variance of the 
species abundances along environmental gradients tend to be positively correlated, thereby 
violating one of the fundamental assumptions of OLS modelling. It follows that the construction of 
a OLS-based SDM cannot take into account all meteorological, hydrodynamic, morphological or 
sedimentary factors, such as the patchy spatial distribution of many species, variations in 
recruitment from one year to the next, and the complex life cycles of some species (Ysebaert & 
Herman, 2002) that may partly bias the biological response to a set of selected factor (Cade et al., 
1999; Austin, 2007). 

The use of quantile regression (QR) can counteract this limitation, by defining different 
quantiles of biological response depending on the abiotic factors chosen (Koenker & Machado, 
1999; Koenker & Hallock, 2000). Studies have been conducted for more than 40 years to apply 
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QR, and recent advances in computer tools have improved its use and facilitated its interpretation 
especially for ecological applications, such as SDM (Cade et al., 1999; Cade & Noon, 2003; Cade 
et al., 2005; Austin, 2007; Jiménez-Valverde et al., 2021). The variability of the biologic response 
to a fixed environmental condition could be considered to reflect the expression of other more or 
less limiting factors. By targeting the upper quantiles in a QR, it is possible to define the best 
maximum biological response to selected abiotic predictors, with any other factors, whether 
biological, environmental or mobility being considered as non-limiting (Schröder et al., 2005). In 
other words, while classical ENM focus on modelling the average response to the environment, 
QR ENM focus more on modelling extremes, thus providing a description of species abundance 
distribution consistent with the theoretical principle of Liebig’s Law. The modelling of extremes, if 
based on a sufficiently rich dataset (over the long term, in various environmental conditions), has 
the potential to outline the boundaries of species niches, describing what we named Optimal 
Ecological Niche (OEN), by removing particular conditions recorded (meteorological conditions, 
sanitary events, lifespans). 

This type of OEN can be a key tool for estuarine and coastal management in the context of 
climate change and anthropogenic pressures (Crossland et al., 2005; Grassle, 2013). Indeed, 
understanding the links and interactions between abiotic and biotic components is necessary to 
preserve biodiversity and restore areas affected by environmental fluctuations and human activity, 
in order to conserve the benefits of their functional ecosystem services (Richards & Lavorel, 2023). 
Among a vast list of ecosystem services, an estuary is a shipping lane, a fishing ground and an 
area comprising diverse natural habitats (Hughes et al., 2014). All these activities compete for 
space and have different needs and yet are linked to each other, so it is necessary to have decision 
support tools that improve their management and enable their future development (Degraer et al., 
2008; He et al., 2015; Schickele et al., 2020). In particular, the vulnerability of estuarine sediments 
to the sea level increase and coastal squeeze has been identified for a long time with a strong 
negative impact on the trajectory of tidal flats (Healy et al., 2002; Murray et al., 2019). Many studies 
highlight the relevance of ecological gradients in estuaries (Brown et al., 1996; Guarini et al., 1998; 
Van Der Wal et al., 2010), where intertidal areas are undeniably subject to massive and frequent 
gradients, due to both actions of the tide and the river discharge, modifying the physico-chemical 
environment of water bodies. Physical gradients drive the set of interaction links with fauna in 
estuaries (Herman et al., 2001; Chapman et al., 2010). 

Within estuarine fauna, benthic macrofauna (or macrozoobenthos) is a key element in 
ecosystem functioning. Often primary consumers, they are a source of trophic support for the 
higher levels, in particular for fish and shorebirds (Saint-Béat et al., 2013). Their presence on or in 
the sediment contributes to sediment biogeochemical fluxes and morphological dynamics of their 
environment through a series of eco-engineering processes (Jones et al., 1994; Kristensen et al., 
2012; Arlinghaus et al., 2021). The capacity of benthic macrofauna to resist external stressors is 
yet not fully understood, but abiotic factors are habitat-defining parameters on which a cohort of 
species depends (Ysebaert & Herman, 2002). In particular, sediment and hydrological parameters 
have a direct impact on the activity and spatial distribution of macrozoobenthos, with sediment 
acting as a food source, habitat, shelter and breeding ground but which can also cause discomfort 
and stressful conditions (erosion, mud accumulation, anoxic episodes…). Sediment indicators, 
including grain size median and fine silt content, have been shown to strongly contribute to 
explaining variations in macrozoobenthic communities (Thrush et al., 2003, 2005; Anderson, 
2008). It is therefore very relevant to focus on the response of macrozoobenthos not only to 
temperature or salinity changes, but also to physical dynamics occurring in an estuary (Van Der 
Wal et al., 2017; Shi et al., 2020) such as sea level rise, increases in wave and current intensity 
related to more frequent storms or also the risk of coastal squeeze. 

The benthic macrofauna of the Seine Bay (Normandy, France) has been extensively studied in 
recent decades (Dauvin, 2015; Baffreau et al., 2017; Le Guen et al., 2019; Bacouillard et al., 2020) 
and estuarine management included in subsequent regional program frameworks 
(https://www.seine-aval.fr/). Accessing abiotic factors, and especially physical forcings, in an 
estuary is a challenge that can be solved by developing hydro-morpho-sedimentary (HMS) models, 
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which use principles of fluid and particle physics to define the parameters of interest in the estuary 
at an intermediate scale. The Seine estuary (Normandy, France) was the subject of the Mars3D 
model adjustment, which describes the dynamics of the physical parameters in an estuary, such 
as bottom elevation, salinity, temperature, current velocity, water surface elevation, with a 
particular effort invested in describing the erosion, deposition and consolidation properties of sand-
mud mixtures (Schulz et al., 2018; Grasso et al., 2018, 2021; Grasso & Le Hir, 2019; Mengual et 
al., 2020). Such tools allow temporal projection on a regional spatial scale and therefore to develop 
climate-focused forecasts and scenarios. On the basis of this available information, on both 
biological and abiotic components, it is then possible to model the spatial distribution of the 
targeted species, in order to better define the fauna-environment interactions that shape the 
presence and the performances of the species in the estuary under consideration. 

Investigating populations of Cerastoderma edule, the common cockle, as an example in the 
Seine estuary, the aim of this study is to assess the ENM following the principles of the DM 
approach, with the biological response (biomass and density) as a function of the hydro-morpho-
sedimentary factors of the estuary extracted from a 3D model. With the aim of proposing an OEN 
transferable to other estuarine environments, we used quantile regression at higher quantiles, with 
either linear or non-linear curve responses (Gaussian and B-spline). While linear responses are 
the simplest, there’s a danger of oversimplifying species-environment relationships as in nature 
there are often “shortages” or “surpluses”. Furthermore, univariate linear relationship cannot 
account for the effect of subsidiary factors the responses to which are inversely correlated with the 
variable of interest. For instance, the preference of C. edule for the intermediate tidal flat can be 
intended as a combination between a positive response to submersion time (longer feeding time) 
and negative response to increased current velocity (dislocation). As a large number of subsidiary 
factors generally interact in shaping species distribution along single gradients, Gaussian 
responses are useful for modelling species with a clear environmental optimum, but still 
oversimplify the effect of interactions with co-varying subsidiary factors. Flexible shape responses 
(like B-splines) provide a more nuanced view, capturing asymmetry in species responses to 
environmental gradients, but less intuitive and more data-intensive. Building on the work done by 
(Cozzoli et al., 2013, 2014, 2017), we propose to take the use of QR a step further by 1) showing 
that using a Gaussian equation rather than a linear or B-spline equation is more appropriate to 
describe a typical biological response, 2) building two models based on three environmental 
variables to reflect the effects of hydrodynamic (including meteorological), morphological and 
sedimentary processes in an estuary. These models were applied and analysed geographically in 
the Seine estuary, in the form of habitat suitability indices, as application of the normalized OEN, 
as a tool for developing conservation and management plans. In addition, one of the models was 
applied to an independent dataset from the Scheldt estuary (Cozzoli et al., 2014) in order to discuss 
the transferability potential of an ENM for cockles at a more global scale. 

Materials and Methods 

All data processing was conducted in R version 4.2.2 (2022-10-31 ucrt) except for Mars3D pre-
treatment in Matlab 2019a. 

Study area 

The Seine estuary in Normandy, north-west France, is defined as the last 170 km of the river 
leading to the marine ecosystem close to Le Havre, starting at Poses weir upstream and ending in 
the bay of Seine downstream. The Seine estuary is macrotidal (with a maximal tidal range of 8 m 
during spring tides at Honfleur), and is subject to fresh water discharge ranging from 100 to more 
than 1500 m3.s-1, with a mean of 450 m3.s-1 in the two last decades. Tidal dynamics and the wave 
regime have a significant impact on the hydro-sedimentary dynamics of the mouth of the estuary 
(Lesourd et al., 2003; Schulz et al., 2018; Grasso et al., 2021). 

The mouth of the estuary hosts a variety of habitats that provide many ecosystem services 
(Boesch & Turner, 1984; Beck et al., 2001). In particular, intertidal mudflats play a crucial role in 
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the Seine estuary and constitute areas of major interest including nutrient recycling, coastline 
protection, trophic networks, nesting sites for migratory birds and fish nurseries. The Seine estuary 
is marked by artificial structures that have profoundly modified this ecosystem, which is still 
undergoing changes that began at the beginning of the 20th century (Lesourd et al., 2016). 
Numerous dykes were built and sediment dredging was carried out to increase the capacity of the 
navigation channel, which contributed to the disconnection of the two banks of the estuary and 
reduced the extent of wetlands, hence provoking a “coastal squeeze”. Some of these works were 
large-scale projects: the construction of the Pont de Normandie (1989-1995), which crosses the 
Seine estuary, and the “Port 2000” project (2000-2005) to expand the port of Le Havre, mainly to 
give large container ships access to new all-day loading berths. 

The Port 2000 project involved ecological compensation in the form of the creation of a nature 
reserve in 1997, as well as the digging and dredging of an artificial channel in the north upstream 
mudflat and the creation of a small island to serve as a resting place for migratory birds in the 
southern mudflat (Aulert et al., 2009). Several historically known areas in the Seine estuary that 
differ in either their habitat or community have been studied, mainly intertidal mudflats and subtidal 
areas (Tecchio et al., 2016; Morelle et al., 2020) (Figure 1). 

 

Figure 1 - Maps showing the habitats defined in the dataset of the study area. The 
dots represent the location of the biological samples of the dataset. 

Biological model 

The cockle Cerastoderma edule (Linnaeus, 1758) is a bivalve belonging to the family of 
Cardiidae that is widely distributed and exploited in waters off northern Europe to north Iceland 
and off the coast of West Africa down to southern Senegal (Hayward & Ryland, 1995). The oval 
ribbed shells of the cockle can reach 6 cm in diameter and are white, yellowish or brown in colour, 
and its lifespan is 2-3 years (Malham et al., 2012). Cockles are suspension-feeders, inhabiting the 
few uppermost centimetres of the sediment with its two siphons emerging from the surface. Its 
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growth depends mainly on microphytobenthos in the juvenile stage and on phytoplankton in the 
adult stage (Sauriau & Kang, 2000). It provides numerous ecosystem services (Carss et al., 2020), 
and is a bioturbator species actively studied for its effects on sediment morphology (Eriksson et 
al., 2017). Cockle habitats are located in the central areas of the foreshore subject to medium 
currents (between 0.3 and 0.7 m.s-1 of maximum tidal current speed) (Herman et al., 1999; 
Ysebaert et al., 2002), typical marine salinity (> 30) and they prefer fine sands (slightly silty, grain 
size between 100 and 200 μm) (Ubertini et al., 2012; Cozzoli et al., 2014). This species can be 
found at particularly high densities in the English Channel, the most densely inhabited area being 
the Bay of Veys, (density in the order of 200 to 500 ind.m-²), and may exceptionally exceed 5000 
ind.m-2 (Gosling, 2003; Mahony et al., 2022). Winter conditions, current intensity and stress 
(erosion) appear to explain the high mortality rates observed in some years (Herman et al., 1999; 
Van Colen et al., 2010). Assessment of habitat suitability and SDM in previous studies mainly 
report the relevance of submersion (Cozzoli et al., 2014; Singer et al., 2017; Matos et al., 2023), 
salinity (Matos et al., 2023), temperature (Singer et al., 2017) and current velocity (Cozzoli et al., 
2014). 

Datasets 

Biological data 
Data concerning the benthic macrofauna of the Seine Bay are grouped in a database named 

MAcrobenthos Baie et Estuaire de Seine (MABES) (Dauvin et al., 2006; L’Ebrellec et al., 2019). 
This dataset provides information on sampling (geolocation, sampling method) and fauna (density 
[ind.m-2], biomass [gAFDW.m-2] – Ash Free Dry Weight) collected in several projects for the past 40 
years. This database was completed with data from the Cellule de Suivi du Littoral Normand 
(CSLN) surveys conducted for the Maison de l’Estuaire. 

The raw data were harmonised and grouped in a single database which contains a total of 543 
observations of Cerastoderma edule, and 86 sampling stations (with some variation in coordinates 
from year to year), with an average of 24 stations sampled in each campaign (depending of the 
project), mainly in September, October, and November. A series of 5-year periods was defined 
within the duration covered by the dataset, from 2000 to 2019 (the years before 2000 were 
discarded as they contained too few observations, n = 17): 2000-2005, including the construction 
of ‘Port 2000’ which caused major disruptions in the estuary; 2006-2010; 2011-2015; 2016-2019. 
These periods correspond to identified hydro-morphological sequences in the estuary. 

Hydro-Morpho-Sedimentary data 
The HMS model Mars3D can be used in the context of estuarine hydrodynamics and 

application to fine sediment and sand transport. This three-dimensional (3D) process-based model 
was set up and run under realistic forcings (including tide, waves, wind, and river discharge). The 
Mars3D model is composed of the hydrodynamic core forced by the WAVEWATCHIII® wave 
model (Roland & Ardhuin, 2014) coupled with the MUSTANG sediment module (erosion, 
deposition, consolidation). This MUSTANG module takes into account spatial and temporal 
variations in sand and mud content in the multi-layered sediment bed, as well as consolidation 
processes, and also solves advection/diffusion equations for different classes of particles in the 
water column (Le Hir et al., 2011; Grasso et al., 2018; Mengual et al., 2020). 

The HMS dataset was generated during the ARES project using the Mars3D model (Grasso et 
al., 2019, 2021). The ARES dataset covers the simulation periods 1990-2000 and 2005-2018. The 
period 2001-2004 was not modelled because it corresponds to the period of construction of the 
Port 2000 project. The dataset outputs are available at intervals of 30 minutes for the entire Seine 
Bay area each hydrological year, starting on October 1st and finishing on September 30th. The 
hydrological sub-data contain 58 variables, some of which depend on water depth, with 10 levels 
in the water column, of which only the median of the 3 lower layers were retained to reflect benthic 
conditions: current speed, temperature, salinity and SPM for 5 particles sizes. Inundation rates 
were indirectly calculated from bathymetry and water height of the model. The sedimentary sub-
data contain 19 variables, some of which depend on the depth in the sediment, with 6 levels 
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corresponding to 1 m, of which only the median of the 4 upper layers is retained, i.e. 10 cm to 
reflect benthic conditions: temperature, salinity and sediment concentration for 5 particles sizes. 
The other retained variables retained were the total thickness of the sediment and the bed shear 
stress. (Grasso et al., 2018) validated the Seine Estuary model in terms of hydrodynamics, salinity, 
and SSC from tidal to annual time scales at different stations within the estuary, the sediment 
fluxes were considered more qualitative (Grasso et al., 2021). 

In addition to these variables, processing was carried out to extract supplementary information. 
The daily maximum was calculated for current speed and bed shear stress. The daily range was 
calculated for salinity and temperature and the yearly sediment budget was calculated from the 
variation in sediment thickness at the beginning and end of the year. The sediment total 
concentration is the sum of all sediment concentrations, and the mud content was deduced from 
the different particle size concentrations. All the variables selected and created, 14 in all, were 
reduced to a median calculated over the hydrological year. Biological data were associated with 
HMS variables corresponding to the model cell and the relevant hydrological year according to the 
sampling date. 

These 14 abiotic factors were studied to select the most relevant factors and limit their number 
in order to avoid autocorrelations. A PCA (FactoMineR::PCA (Husson et al., 2024) and factoextra 
(Kassambara & Mundt, 2020) package for visualisation) was carried out on all the factors, allowing 
complementary parameters to be identified on the two main axes. In addition, a correlation matrix 
with the biomass and density of C. edule ensure that there was no direct correlation between 
abiotic and biotic factors. 

Model adjustments 

Quantile regression 
The mathematical theory of the quantile regression (QR) has been extensively expanded and 

described by Koenker over the past decades (Koenker & Bassett, 1978; Koenker & Machado, 
1999; Koenker & Hallock, 2001; Koenker et al., 2024). Its use in ecological studies has increased 
since the first pioneering studies (Cade et al., 1999; Cade & Noon, 2003; Cade et al., 2005). 

In practice, correlative ENM with QR can use any type of equation that links abiotic factors to 
a biological response, with any number of predictors to be used. Yet it was observed that the 
biological response to physical factors is often non-linear, and can be modelled by a gaussian 
distribution (Huisman et al., 1993; Van Der Wal et al., 2008). With this in mind, we have defined 
three different types of models in this study (Table 1) to describe the interplay of three abiotic 
factors to the biological response, by testing different functions (linear, B-spline and Gaussian). 
Mathematical notation is based on (1) the t subscript for variables that are quantile-dependent, (2) 
β for model coefficients, that are vectors of length t, (3) µ and s for mean and standard deviation. 
QR were performed with the quantreg package in R developed by (Koenker et al., 2024). The three 
model types were computed with different quantiles t = [0.5, 0.9, 0.95, 0.975]; 0.5 being the 
equivalent of an OLS regression, the other values higher than 0.9 to seek for the optimum response 
without risking overfitting of extreme values due to micro-geographical organisation. 

The model was adjusted on the biological data with the associated HMS data to create ENMs, 
which were then applied to the HMS data set, focused on the estuary. The maximum of each 
quantile of the ENM was used to standardise the model response, in order to create a habitat 
suitability index, ranging from 0 to 1. The results are displayed in maps with the mean of the model 
over each period, for each cell. A mean of the habitat suitability index by area and period is 
calculated to visualise the global habitat suitability over the whole estuary and the contribution of 
each factor. 
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Table 1 - List of types of models tested 

Type Equation Rationale 
RQ linear with 
interaction 

𝑦! =	𝛽"! + 𝛽#!. 𝑥# + 𝛽$!. 𝑥$ + 𝛽%!. 𝑥% + 𝛽&!. 𝑥#. 𝑥$
+ 𝛽'!. 𝑥$. 𝑥% + 𝛽(!. 𝑥#. 𝑥%
+ 𝛽)!. 𝑥#. 𝑥$. 𝑥% 

quantreg::rq (x1*x2*x3) 

Comparison with the results of a 
previous study (Cozzoli et al., 2014) 

RQ gaussian 
(non-linear) 𝑦* = A. 𝑒

+,(.#+/#!)
"

$.2#!"
3(.$+/$!)

"

$.2$!"
3(.%+/%!)

"

$.2%!"
4
 

quantreg::nlrq (f (x1,x2,x3, 
initial.conditions)) 
Initial conditions: means (µ) and sd (s) of each 
parameter 

Providing µ and s initiated by the 
mean and the standard deviation for 
each predictor (Huisman et al., 1993; 
Schröder et al., 2005).  

RQ linear with 
B-Spline 

quantreg::rq (splines:: 
bs (x1,degree=3,knots= median(x1))+ 
bs (x2,degree=3,knots= median(x2))+ 
bs (x3,degree=3,knots= median(x3))) 
Initial conditions: means (µ) of each parameter 
as on knot and degree 3 

Avoid pre-determined shape of the 
equation and the use of a flexible 
non-linear function (Cozzoli et al., 
2013) 

 
Model selection 

QR model validation was based on the Akaike Information Criterion (AIC). This index evaluates 
the performance of the model using the fewest possible predictors (Akaike, 1974), and was 
adapted to the QR (Cade et al., 2005), named AICc. Following Koenker’s recommendation, the 
R1, equivalent to OLS R² developed by Koenker and Machado (Koenker & Machado, 1999), was 
not used (Koenker, 2006). 

In addition to the AIC, the relationship between predicted and observed values was plotted to 
establish a validation plot (Cozzoli et al., 2014). The whole dataset was sampled with random 
replacement. The predicted (model output) data were discretized in 10 homogeneous classes 
based on the predicted values and for each class, the correspondent sample quantile of the 
observed data was calculated. To assess the validity of the modelled quantiles, a linear correlation 
was drawn for each quantile between random-predicted and observed values. 

Results 

Description of the biological data set 

The biological dataset for C. edule was split into four periods: 2000-2005 (n = 108), 2006-2010 
(n = 155), 2011-2015 (n = 174), 2015-2019 (n = 106). The following treatment focussed on the 
mudflats inhabited by C. edule (south mudflat (n = 218), north median mudflat (n = 198), north 
downstream mudflat (n = 82), north upstream mudflat (n = 2). The differences in biomass and 
density are detailed according to the period and the surface area concerned in Supp. Data 3.1. 

Selection of the Hydro-Morpho-Sedimentary factors and their association 

The selected predictors were observed during the same period and in the same area as the 
biological data (Supp. Data 3.2). Spatio-temporal variations were specific to each factor: 

• Daily maximum current speed [m.s-1]: the most dynamic area was the channel, with an 
average of 1.05 +/- 0.21 m.s-1. The northern upstream and median mudflats were 
subject to temporal changes in the distribution of the current during the last period, 
which had an impact on their overall average (upstream 0.43 +/- 0.34 m.s-1; median 
0.63 +/- 0.3 m.s-1). The southern mudflat presented the same hydrological conditions 
as offshore, at values between those of the northern upstream and median mudflats. 
The current velocity has an impact on siphon aperture and filtration rates, indirectly 
regulating the growth performances (Jonsson et al., 2005). This factor also plays a role 
in the burrowing position, in relation to a fleeing behaviour face to strong currents, in 
order to avoid the erosion of the shell itself (Wiesebron et al., 2022). The process of 
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the secondary settlement of the juveniles driven by current velocity is also well 
documented (De Montaudouin et al., 2003). 

• Inundation time [Proportion of the tidal cycle between 0 and 1 without unit]: The 
northern upstream mudflat (0.4 +/- 0.36) corresponded to the upper intertidal zones 
and showed higher tidal locations than the median (0.7 +/- 0.35) and downstream 
mudflats (0.93 +/- 0.17). There was a decrease in inundation time during the latest 
period in the northern upstream mudflat. The southern mudflat (0.85 +/- 0.27) showed 
a shorter inundation duration than the northern downstream mudflat. The tidal level 
defining the period of feeding of C. edule, it has a direct effect of growth rate 
(Richardson et al., 1980). 

• Daily salinity range: This factor varied considerably over space and over time. On the 
offshore and southern mudflats, the salinity varied little during the day. Strongly 
influenced by the river, the channel salinity varied from 15 to 20 during the day, but 
with dampening over time. The very dynamic variations in salinity in the three northern 
mudflats decreased after 2005. This parameter is a good indicator of the estuarine 
condition, and have shown a high impact on C. edule patterns (Matos et al., 2023). For 
adults individuals, low salinity response is valve closure, so less growth, and a stress 
that lead to less burrowing, as shown in (Domínguez et al., 2020; Verdelhos et al., 
2021; Mahony et al., 2022). 

• Mud content [%]: The northern upstream mudflat and channel areas were composed 
of sandy mud sediment (north upstream mudflat 42 +/- 30%; channel 43 +/- 25%) with 
increasing mud content in the channel over time. The others are muddy sands (21 +/- 
1%), with decreasing mud content over time. Mud distribution was heterogeneous in 
all areas, particularly in the northern upstream mudflat. The mud content could affect 
C. edule habitability (Folmer et al., 2017), such as the processes of the secondary 
settlement of the juveniles (De Montaudouin et al., 2003). The bioturbation rate of 
cockles is also higher than in sand habitats, hence enhancing the disturbance of 
sediment erodibility (Soissons et al., 2019). 
 

The PCA analysis on physical descriptors (Figure 2, Supp Data 3.2, detailed scores Table 2) 
gives 3 main dimensions for a total variance of 65.4% (PC1 = 28.8%, PC2 = 20.7%, PC3 = 15.9%): 

• PC1 corresponded to the hydrodynamic forcing of the area with the contributions of the 
following variables: daily maximum current speed (19.6%), average current speed 
(17.8%), daily salinity range (17.8%), daily maximum bottom shear stress (10.9%), 
SPM (9.2%), average bed shear stress (8.7%). 

• PC2 was related to the morphology of the estuary with the contributions of the following 
variables: average inundation time (23.1%), daily temperature range (20.4%), average 
bathymetry (19.9%), average salinity (14%), average temperature (8.3%). 

• PC3 was related to the sedimentary characteristics of the bed with the contributions of 
the following variables: average sediment total concentration (30.2%), average mud 
content [<63 µm] (29%), average bed shear stress (18%), daily maximum bed shear 
stress (7.2%). 
 

The PCA results were used to select predictors to capture the most relevant and transferable 
variables. Considering those axes, two models were built with three abiotic factors: 

A. Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%] – PC1-
PC1-PC2: variables were the main contributors of the two first axes, but the third axis 
is not represented at all. We have made this selection because these 3 predictors can 
be easily retrieved at high frequency in other ecosystems or contexts. Those 
parameters are also interesting because they contain information on the localisation of 
the tidal area that could evolve with sea level rise and information on the hydrological 
conditions including river floods, both processes in relation to climate change. 
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Moreover, this selection makes possible the direct comparison with a previous study 
(Cozzoli et al., 2014). 

B. Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%] – PC1-
PC2-PC3: These factors represented the main contributors of the three first axes of the 
PCA. Moreover, current speed and inundation time are easily measurable at high 
frequency (Goberville et al., 2010). They illustrate three aspects of climate change 
potentially able to alter spatial patterns of cockles: increase in storm-induced currents, 
global sea level rise and general changes in sediment beds induced by erosion events 
that could be more frequent as a consequence of the global warming. 
 

There was no significant linear correlation between biological data and any of the 
environmental factors. Despite the high level of correlation and significance between biomass and 
density (R = 0.866****), these two variables were analysed in parallel. 

 

Figure 2 - Principal Components Analysis (PCA) variables correlation plot of the 
two main axes with the abiotic factors’ contributions in bar plots for each axis. The 
colour of arrows and bars correspond to the contribution value of each variable. The 
red dotted line represents the mean contribution for all factors. The contribution of 
a variable to a given principal component is calculated as (Variable.cos2 * 100) / 
(total cos2 of the component). 
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Table 2 - Principal Components Analysis (PCA) scores for abiotic factors. Cos2, 
cosine squared of the variables, represents the quality of the representation of the 
variables on the PCA graph; Contribution represents the contributions (in 
percentage) of the variables to the principal components. The contribution of a 
variable to a given principal component: (Variable.cos2 * 100) / (total cos2 of the 
component). 

Variable Cos2 Contribution 
PC1 PC2 PC3 PC1 PC2 PC3 

inundation time 0.07 0.67 0.00 1.67 23.10 0.13 
current speed 0.72 0.05 0.01 17.82 1.86 0.46 
daily maximum current speed 0.79 0.00 0.01 19.65 0.02 0.42 
salinity 0.27 0.41 0.03 6.71 14.04 1.23 
daily salinity range 0.72 0.09 0.00 17.78 3.02 0.13 
temperature 0.07 0.24 0.02 1.83 8.31 1.00 
daily temperature range 0.00 0.59 0.01 0.01 20.44 0.52 
SPM 0.37 0.01 0.13 9.18 0.24 5.68 
bathymetry 0.01 0.58 0.13 0.28 19.88 5.66 
yearly sediment budget 0.00 0.16 0.01 0.00 5.47 0.38 
bed shear stress 0.35 0.04 0.40 8.68 1.35 17.99 
daily maximum bed shear stress 0.44 0.04 0.16 10.88 1.36 7.25 
sediment total concentration 0.10 0.02 0.67 2.51 0.60 30.19 
mud content 0.12 0.01 0.64 3.00 0.31 28.96 

 
Model selection and validation 

ENMs were computed using the three equations (linear, Gaussian and B-spline) for each 
combination of abiotic factors at four selected quantiles (t=0.5, 0.9, 0.95 and 0.975). The best 
scores were obtained for the biomass models compared to the density models, regardless of 
quantile. On average, the AICc of the quantile regression with the Gaussian equation model were 
systematically lower than the others for biomass (Table 3). 

The observation of the validation plot (Figure 3) completed the observations of AICc, i.e. 
Gaussian > B-Spline > linear (the regression lines of each quantile were closer to the 1:1 line). The 
Gaussian equation performs best at the 97.5th percentile, since this is the highest quantile 
calculated with the slope of the regression line between the predicted value and the observed 
value closest to the 1:1 diagonal. We have therefore chosen to retain the 97.5th percentile as the 
optimal quantile for subsequent analyses. 

Table 3 - AICc comparison for all models computed, according to the quantile, the 
type of equation and the response. In bold, the lower value of each model by 
response and quantile. 

 

Biomass (gAFDW/m²) Density (ind/m²) 

0.5 0.9 0.95 0.975 0.5 0.9 0.95 0.975 

daily maximum current speed (m.s-1) & daily salinity range & inundation time (%) 

Quantile regression bSpline 3858.7 4933.4 5297.1 5668.9 6977.6 8065.7 8403.0 8634.6 

Quantile regression Gaussian 3835.0 4871.2 5240.9 5655.3 6969.1 8102.2 8476.1 8783.3 

Quantile regression linear 3869.9 4918.5 5292.3 5702.6 6985.0 8067.4 8404.4 8706.1 

daily maximum current speed (m.s-1) & inundation time (%) & mud content (%) 

Quantile regression bSpline 3745.4 4790.6 5148.1 5496.5 6758.8 7794.7 8126.5 8283.2 

Quantile regression Gaussian 3733.7 4746.8 5071.5 5418.7 6745.2 7819.8 8186.1 8533.3 

Quantile regression linear 3757.0 4794.8 5162.0 5527.7 6767.1 7815.0 8142.6 8361.2 
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Figure 3 - Example of modelled vs observed biomass data plotted for each model 
functions. The predicted (model output) data were discretized in 10 homogeneous 
classes based on the predicted values and for each class, the correspondent 
sample quantile of the observed data was calculated. The selected predictors were 
the daily maximum current speed [m.s-1], daily salinity range and inundation time 
[%] in this example. The black line represents the 1:1 ratio, a linear correlation was 
drawn for each quantile between random-predicted and observed values. Quantiles 
are colour coded as 0.5 in blue, 0.9 in green, 0.95 in orange and 0.975 in red. 

Optimal ecological niche 

Quantile Regression with Gaussian equation 
The modelled responses for each ENM quantile are represented by a projection on each axis 

per predictor with the observed data to observe the univariate effects of each variable (Figure 4 
A1 & B1). The observed distribution of cockle biomass was left skewed, with a majority of records 
at low biomass values, and rare high biomass values, reflecting the validity of the choice of QR 
models. In addition, records were observed all along the environmental gradients of the selected 
predictors. The maximum observed responses located above the upper envelope of the model at 
t=0.975 are close to the model optimum. Furthermore, the two models can clearly be applied 
without any preference in terms of robustness, given the performance shown by the 
predicted/observed graph (Figure 4 A2 & B2), where we can see that the 97.5th percentile has a 
slope of 1 and a high R² in both models. The models using density showed the same results (Supp. 
Data 3.4.1). The coefficients of the models are displayed in Table 4, and optimum for each model 
is described in the range of predictors encompassing the observed biomass: 

A. Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%] (Figure 
4 A1 & A2): The optimum was of 167 gAFDW.m-² at 0.48 m.s-1, with a range of 3.16 unity 
of salinity and 100% inundation time. The optimum niche is a low intertidal zone with 
calm waters, where salinity is quite stable. 

B. Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%] (Figure 
4 B1 & B2): The optimum was of 239 gAFDW.m-² at 0.43 m.s-1, 100% inundation time 
and 31% of mud content. The optimal niche corresponds to low intertidal zones, with 
calm waters and muddy sands sediment. 
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Table 4 - Coefficients of the models computed with gaussian equation (Equation 1), 
by quantile and response. 

 Biomass (gAFDW/m²) Density (ind/m²) 

tau A μ 1 μ 2 μ 3 σ 1 σ 2 σ 3 A μ 1 μ 2 μ 3 σ 1 σ 2 σ 3 

daily maximum current speed (m.s-1) * daily salinity range (u.s.i) * inundation time (%) 

0.50 41.55 -2.89 4.26 0.85 1.84 3.51 0.13 9,509.94 -2.24 5.94 0.81 0.93 3.57 0.18 

0.90 716.49 -1.87 1.87 0.97 1.04 5.18 0.22 2,686.24 0.17 4.37 0.95 0.31 4.41 0.21 

0.95 392.63 -0.26 -4.40 1.22 0.58 8.40 0.34 113,728.75 0.39 5.24 3.30 0.24 3.62 0.86 

0.975 3,464.31 0.49 3.27 2.69 0.19 3.79 0.69 421,906.57 0.48 -21.93 2.95 0.19 14.63 0.80 

daily maximum current speed (m.s-1) * inundation time (%) * mud content (%) 

0.50 80.54 -3.06 0.86 -0.28 1.56 0.15 0.71 292.75 0.33 0.79 0.27 0.19 0.17 0.35 

0.90 1,321.22 -1.76 1.03 0.25 0.90 0.26 0.23 7,495.16 0.42 2.26 0.43 0.20 0.86 0.27 

0.95 491.99 -0.17 1.22 0.30 0.50 0.34 0.18 85,227.47 0.46 4.01 0.62 0.20 1.20 0.48 

0.975 272.78 0.43 1.15 0.30 0.25 0.30 0.20 151,774.30 0.50 4.77 0.41 0.21 1.40 0.32 

 
Spatio-temporal variations of habitat suitability  

The Optimal Ecological Niches, QR ENM with the Gaussian equation, were standardised on 
the basis of the model optimum at the 97.5th percentile, to obtain a value ranging from 0, an 
unfriendly environment for cockles, to 1, a very suitable environment, which makes it possible to 
simply assess the habitat suitability potential of a geographical area. The OEN was applied 
geographically to define the habitat suitability of the different areas of the estuary on all periods 
defined. The habitat suitability index, summary of the habitat suitability of each period and area is 
plotted to visualise differences in time and space (density in Supp. Data 3.4.2). 

Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%]: The maps 
(Figure 5 A) showed that the channel and northern mudflats were the least favourable areas, the 
southern mudflats and offshore were more appropriate, but few locations were really optimum. The 
habitat suitability index (Figure 5 B) ranged from 0 to 0.6 and was generally stable, confirming that 
the most suitable area was the southern mudflat followed by the offshore zone. The habitat 
suitability of the northern mudflats increased after 2005, in particular the northern downstream 
mudflat. The salinity part of the model had a noticeable effect on the result of the model, and the 
increase of habitat suitability for cockles on the 3 northern mudflats can clearly be related to the 
decrease in the daily salinity range in these sectors. 

Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%]: The closer to 
the mouth of the estuary, the higher the habitat suitability; the offshore area had an advantage, 
which has deteriorated since 2011 (Figure 6 A). The apparent patchiness in the habitat suitability 
in the model results is linked to the spatial distribution of mud content (Supp data 3.2). The habitat 
suitability index (Figure 6 B) varies from 0 to 0.5, with the highest value in the offshore area and 
the lowest in the channel. The offshore and the southern mudflat were similar in terms of habitat 
suitability and are the most suitable areas, joined by the downstream northern mudflat over the 
last three periods. The northern upstream and median mudflats showed an increase in habitat 
suitability over the first three periods from 1996 to 2010. It is difficult to identify the contribution of 
one predictor over the others in explaining this trend. 

 

14 Amélie Lehuen et al.

Peer Community Journal, Vol. 5 (2025), article e102 https://doi.org/10.24072/pcjournal.630

https://doi.org/10.24072/pcjournal.630


 

Figure 5 - A: Daily maximum current speed [m.s-1] & daily salinity range & inundation 
time [%] model habitat suitability index applied on the Seine estuary over the five 
periods. B: Abiotic factors and resulting model at 97.5th centile habitat suitability 
index per period and per area for all SDM models with a 95% confidence interval. 

 

Figure 6 - A: Daily maximum current speed [m.s-1] & inundation time [%] & mud 
content [%] model habitat suitability index applied on the Seine estuary over the five 
periods. B: Abiotic factors and resulting model at 97.5th centile habitat suitability 
index per period and per area for all SDM models with a 95% confidence interval. 
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Comparison and application to Scheldt basins data 
The data from the Scheldt estuary was projected onto the Optimal Ecological Niche for the 

cockle defined in the Seine estuary using the daily maximum current speed [m.s-1], daily salinity 
range and inundation time [%] model (Figure 7 A). The modelled response in the Scheldt was 
calculated by applying this OEN and the performance of the model is shown in Figure 7 B. The 
model fitted to the Seine data applied to the Scheldt is not appropriate at the 0.5 quantile, but is 
better simulated at the higher quantiles, with positive slopes reaching 0.71 at t=0.95 and 0.67 at 
t=0.975, (Figure 7 B). These regression lines are relatively far from the diagonal, revealing that 
the model fitted to the Seine data is not very reliable when applied to the Scheldt basins. 

When considering the scatterplots of observed biomass as function of the 3 descriptors (Figure 
7 A), we can notice that the response to daily salinity range and the inundation time was different 
between the Seine and the Scheldt basins. 

The distribution of the recorded biomass as a function of the daily salinity range is difficult to 
compare, because the present day Oosterschelde basin only receives minor freshwater inputs, 
unlike the Westerschelde and thus lacks a full salinity gradient. With regard to inundation time, 
there are also discrepancies between the fitted model and the data recorded in the Scheldt basins, 
where the best optimal habitat was located on the foreshores with ~50% of the inundation time, 
whereas this modelled ENM was predicted at values of 100% of the inundation time. As for the 
maximal current speed, the model appeared to be a better fit, but the highest observed cockle’s 
biomass was observed at a slightly lower current speed (~0.4 m.s-1) even though the difference is 
within the error of the numerical model (pers. com. Smolders). 

 

Figure 7 - Seine model daily maximum current speed (m.s-1) & daily salinity range 
& inundation time (%) projection on the three abiotic factor axes with data from 
Scheldt basins in blue dots for Oosterschelde and red dots for Westerschelde (A) 
and the predicted/observed validation plot computed on Scheldt application of the 
model parametrized in the Seine estuary (B). Black dots in A represents the 
observed data that were used for parameterisation (in the Seine estuary) while 
green dots are the data from the Scheldt basins; lines represent the model quartiles. 
See Figure 3 for building of B, black line represents the 1:1 ratio. Quantiles are 
colour coded as 0.5 in blue, 0.9 in green, 0.95 in orange and 0.975 in red. 

Discussion 

Optimal ecological niches for cockles 

In line with previous knowledge on cockle ecology, our study identified current velocity, salinity 
fluctuations and inundation time as the main environmental drivers of cockle distribution. We can 
emphasize that the proposed model which combines the effect of those three factors can be 
considered valid and robust, both for biomass and density variables of cockle populations, at least 
in the Seine estuary. This model especially focusses on the influence of hydrodynamic forcings 
generated by the tides and the fluvial regime and the morphology of the estuary, which generates 
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shallow and intertidal areas. Under these conditions, salinity increases with water depth, as it 
represents the upstream-downstream gradient of the estuary, and the lower the inundation time, 
the greater the mixing between fresh and marine waters. The optimum given by this model 
corresponds to low shores (typically the offshore zone with 100% of inundation time), without 
intense variation in salinity (daily range of ~3), in sectors subjected to relatively strong currents (~ 
0.5 m.s-1). The position on the shore, related to inundation time, must affect the suspension-feeding 
periods on phytoplankton and also probably the periods when cockles are accessible to predators 
(Cozzoli et al., 2014). Low inundation time must therefore encourage both survival and growth, 
mainly related to prey-predator interactions. Regarding the effect of salinity, cockles are often 
reported to be negatively affected by fresh water supply and salinity rapid shifts are often described 
as responsible for mass mortality events in cockles, mainly linked to flash floods (Matos et al., 
2023). The selection of these predictors agrees well with conclusions of other studies proposing 
SDM for Cerastoderma edule as this was the case in the Scheldt basins, Netherlands (maximal 
current speed and inundation time – Cozzoli et al., 2014), or the Aveiro lagoon in Portugal (where 
the predictors contributing the most in the definition of the ENM was salinity, submersion time and 
current velocity – Matos et al., 2023). Observations in cockle habitats of the British Isles were also 
in the same direction since the authors mention that cockles were unable to settle in calm waters 
(Boyden & Russell, 1972) and that the influence of tidal flow was found to be greater than that of 
salinity, the latter being an indirect indicator of the first and partially redundant. 

A second alternative model combining the same predictors but with mud content instead of 
salinity range provide the same level of confidence in terms of robustness of the predictions. We 
proposed two versions of model to guarantee the best level of transferability and inter-comparison 
potential with future studies. We must mention, that, to our knowledge, this the first ENM proposed 
for cockles including mud content. The presence of mud has often been reported to play an 
important role in cockle performances and spatial distribution. Muddy-sand to sandy-mud 
sediments are often described as the best optimal habitat for cockles’ recruitment and survival, as 
they provide a perfect balance between oxygenation and microphytobenthos as food supply 
(Bouma et al., 2001). For instance, in Portuguese lagoons, depth and average sediment grain size 
were the factors that better explained the probability of species occurrence (Santos et al., 2022). 
In fact, there must be a relative trade-off between two threatening constraints. On one hand, the 
absence of mud can clearly be related to strong currents provoking regular mud resuspension in 
the water column as well as the absence of microphytobenthos as food sources, while, on the 
other hand, a too intense presence of mud in sediment beds must make increase the vulnerability 
risks of cockles to eutrophication phenomena (anoxic conditions, contaminant presence). Cockles 
seem to be able to live in a broad range of habitats with a preference for mixed sediments, and 
more especially fine sands with a little proportion of mud. The distribution of biomass records 
across the diversity of sedimentary habitats in the Seine estuary display long distribution tails 
reaching 0% or 100% of mud content. This result is in agreement with previous observations in 
other ecosystems. For instance, this bivalve can show a preference for muddy bottoms in 
Netherland’s estuaries, but can also inhabit sediments with a median grain size ranging from 50 
μm (fully cohesive) to 250 μm (fully non-cohesive) (Cozzoli et al., 2013). Furthermore, the increase 
in mud content must also be related to the proximity of river discharge in many ecosystems (with 
correlation with salinity decrease). This is one reason that we made the choice of one factor or the 
other in the 2 alternative models. The results are not exactly the same in terms of habitat suitability 
maps, but both versions generally converge. 

In a previous study using QR, a SDM for cockles was proposed with only two predictors, the 
maximal current speed and the inundation time in the Scheldt basins (Cozzoli et al., 2014). They 
observed that the optimum was found in a medium intertidal zone (~50% of inundation time) with 
a maximum current of ~0.5 m.s-1. So, there is discrepancy between their conclusions and the one 
of the present study, especially when describing the role played by the inundation time. However, 
we must mention that, for the dataset of the Scheldt basins, the samples in the subtidal area were 
discarded because of methodological differences. This choice could explain a part of the 
contrasting conclusions, since we can have doubts if subtidal zones are really not occupied by 
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cockle populations in the Scheldt basins. It is also possible that because of contrasting conditions 
(slope of the cross-shore, hydrodynamic conditions or morphological landscapes…), the 
settlement preference can occur either at the minimum limit of the intertidal shore as observed in 
the Seine or in the middle position of intertidal shores, as observed in the Scheldt basins. This is 
unlikely that these contrasting preferences derive from genetic differences between populations, 
since studies investigating the genetic patterns of cockles in Europe suggest a common genetic 
sub-population with a northern group globally consisting of the northern North Sea (Vera et al., 
2023). These contrasting findings must rather be related to historical processes and local 
adaptation of cockle populations, despite the high level of larval connectivity across northern North 
Sea. 

In another study located at the Ria of Aveiro in Portugal, the optimal habitat was observed for 
calmer conditions (~0.2 m.s-1) compared to our results, but the most suitable habitat was found in 
similar conditions regarding inundation time and salinity, since they found better suitable conditions 
with the increase of both salinity and submersion time (optimum for subtidal and marine waters). 
So, there could be a shift in current velocity and submersion time in the definition of the most 
suitable habitat, depending on the ecosystem. Even if, this time, genetic diversity can partly explain 
some biological differences (Vera et al., 2023), since the genetic structure of cockles is clearly 
different between South Portugal and North Sea areas, we can suppose that the biological 
response to tidal currents can be relatively broad for cockles, generally, and could shift depending 
on the local environment. Apparently, cockles do not like still water at all in any ecosystem, and 
they clearly prefer locations with dynamic waters everywhere. Globally, there is a general 
consensus that cockles appreciate habitats located between the lower limit of the intertidal-subtidal 
shores and mid-shore positions, but cockles can prefer either the lower limit between intertidal and 
subtidal zones (as in the Seine estuary), while they can prefer the central intertidal shores in other 
places as in the Scheldt basins. 

A more detailed analysis of the contrasting conditions between the Westerschelde, 
Oosterschelde and Seine basins reveals obvious divergences that preclude the definition of a 
generic optimum for cockles, reliable everywhere. In particular, the Oosterschelde is a virtually 
closed basin with little freshwater input, whereas the Seine and the Oosterschelde are open 
estuaries. These discrepancies clearly indicate that the optimal conditions for cockles are indeed 
different in the three basins, and especially in the Oosterschelde. These conditions lead to different 
covariance structures for the physical factors, but do not call the model into question, although not 
all conditions present in the Oosterschelde are represented in the Seine data. The upper boundary 
models cannot really extrapolate to new conditions, but they can be successfully applied to new 
scenarios under the boundary conditions of the training data set.  In general, the Oosterschelde, 
which is not influenced by freshwater input and has calmer waters, represents the best optimal 
habitat in this system, unlike the Seine or the Oosterschelde. 

Questions can also be raised about the number of predictors to be retained in the ENM for 
cockles and the level of complexity to be retained. First, it is possible that among the three 
predictors of the two models we propose, there is one that contributes less and could be removed, 
or that does not shed light because of its redundancy with another more structuring factor. By 
testing the fit of the QR models with different combinations of predictors, the results were clearly 
less well predicted with only two descriptors. Of all the physical factors, we are relatively confident 
in the selection of the predictors we decided to retain, namely maximum current velocity, inundation 
time and a third predictor (either salinity or silt content). 

It seems unlikely that the addition of descriptors extractable from hydrodynamic 3D model could 
bring improvements, in terms of validation or model quality. However, the role of food availability 
and especially the phytoplanktonic chlorophyll concentration in the seawater must be relevant for 
these suspension-feeders. For instance, the study in the Ria of Aveiro (Matos et al., 2023) retained 
chl a concentration as well as nitrate concentration as secondary predictors. In the Wadden sea 
(Netherlands), the residual of a SDM show some correlation level with chl a concentration, 
suggesting a potential improvement by adding this predictor (Folmer et al., 2017). In Baie des 
Veys, in Normandy (France), a study focused on the coupling between benthic and pelagic 
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components had also identified that the best correlated variable to cockle biomass was the pelagic 
chl a concentration even if this chl a was more related to resuspended microphytobenthos to 
phytoplankton in this case (Ubertini et al., 2012). The abundance of microphytobenthic biofilms, 
especially high in sand-mud mixtures (Morelle et al., 2020) and their resuspension rates must be 
very relevant as a food supply for cockles (Sauriau & Kang, 2000; Ubertini et al., 2012; 
Rakotomalala et al., 2015). This addition of chl a concentration and trophic predictor could be 
modelled by incorporating a biogeochemical model coupled to a 3D hydro-sedimentary model. 
Unfortunately, this kind of biogeochemical models are not so easily available everywhere. In an 
attempt of exploring a ENM that could be transferred to other systems, it seems essential to 
consider food limitation and carrying capacities of the ecosystems in terms of phytoplankton or 
microphytobenthos. Herman et al. (1999) clearly showed a dependence of system-averaged 
benthic biomass on the magnitude of the spring phytoplankton bloom and there is a clear 
dependence of macrozoobenthic biomass and especially that of suspension-feeders on primary 
production rate when comparing different ecosystems. For instance, the fact that cockles biomass 
is very low in the Westerschelde compared to the Oosterschelde, can be clearly explained by the 
primary production level that can exceed ~ 300 gC.m-2.y-1 in the Oosterschelde, with a factor of 3 
higher than in the Westerschelde (Herman et al., 1999). In the Seine estuary, the recent estimate 
of primary production provides the value of 65 gC.m-2.y-1 (Morelle et al., 2018). There is also a 
possibility to improve predictions of ENM of benthic bivalves by including other biotic variables, as 
observed in New Zealand where the inclusion of co-occurring species improves the prediction 
quality by integrating ecological theory about species interaction (Stephenson et al., 2022). 
However, increasing the level of complexity too much is not necessarily a model improvement, 
since there a lot of redundancy and correlation among variables, when adding several predictors 
that could interplay. 

Assessment of the methodology  

The construction of an ENM using QR makes it possible to define an OEN, i.e. the optimal 
biological development in a given ecosystem. This involves defining the environmental conditions 
for which the highest biomass is possible according to a defined set of factors. This approach 
differs from an AM approach, where the maximum number of available factors is used to define a 
species distribution model. Simplifying the environment to a limited number of factors makes it 
easier to apply and transfer the niche to other environments, allowing comparisons between 
different locations. QR models could not only be used to detect heterogeneous effects of 
descriptors at different quantiles of the biological response, but also offer more robust and 
comprehensive estimates compared to mean regression, when the normality assumption is 
violated or if there are outliers or long tails of the distribution. These advantages make QR 
attractive, particularly if they are extended to apply independent datasets (Huang et al., 2017). 

By comparing the recorded data with the niche modelling, it is possible to assess its biological 
and physiological relevance. We chose to use a Gaussian equation to rigorously link the biological 
response to abiotic factors, based on current knowledge and classical distribution law reliable for 
biological populations in response to any environmental factor. This type of equation has the 
advantage of obtaining a unimodal response, unlike what can be obtained with a B-spline at the 
third degree, for example. This choice avoids retaining a model that seems quite good in terms of 
adjustments, but which simulates unfounded distributions. In addition, the niche model thus 
obtained is a continuous response, i.e. with no tipping point towards an unfavourable state, the 
biological reality of which is debatable when the selected factors are considered, in an estuarine 
environment defined by gradients and strong variations in abiotic conditions. 

On the other hand, the QR approach makes it possible to respond to the very local effects and 
natural patchiness that can affect biological populations and lead to very high densities of a species 
in a local ‘patch’, a phenomenon often observed in estuarine environments. Community self-
organisation takes place at several overlapping spatial scales, strongly expressed by tidal 
constraints, where micro-scale organisations are able to create micro-climates that can 
accommodate very high densities of fauna (Underwood & Chapman, 1996; Ettema & Wardle, 
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2002; Thrush et al., 2005; Le Hir & Hily, 2005). The aim of this study was to define the HMS 
conditions most favourable to the development of a species, and not necessarily the niche 
representing the most exceptional circumstances, hence the choice of a high but not necessarily 
maximum quantile. The very high quantiles correspond to the niche that reflects the biological 
observations resulting from the patchy distribution of species. Species distributions and the 
inherent patchiness can be studied in details on the basis of the maximum density of intertidal 
species, for instance (Thrush et al., 2003). 

Whatever the model used, the quality of a SDM depends first and foremost on the reliability of 
the input data. The Seine biological data used in this study comes from community monitoring 
programmes with a continuity of practices, and even of operators, which makes it possible to 
process data together over such a long period of time. The succession of generations in a 
population in an evolving ecosystem is key information for understanding the dynamics of a 
population in its environment. With regard to environmental data, the abiotic field data, 
synchronous with the biological data, are susceptible to highlight very small atypical habitats rather 
than macro-spatial trends. The use of a hydro-morpho-sedimentary model therefore makes it 
possible to better describe the overall environment, at a wide scale and by disregarding very local 
spatial structures. 

However, the synthesis of abiotic data, which is generally available at much higher frequencies 
than biological data, is subject to choices that have an impact on the way according to which the 
niche could be interpreted. In this study, the abiotic data were summarised at their annual median 
(over a hydrological year, from October to September) and aligned with the biological samples, so 
that they represented the recent history of the individual sampled. 

In intertidal ecosystems, the interactions between the environmental context and its biotope 
are part of a feedback loop: organisms are adapted to certain abiotic conditions, but they are able 
to significantly modify certain key abiotic parameters that define their environment, in particular 
sediment erosion parameters via bioturbation (Kristensen et al., 2012). Cockles, for example, are 
known eco-engineers that can modify their environment, in particular sediment content (Donadi et 
al., 2013, 2014). They modify their habitat to obtain better conditions (Li et al., 2017) and interact 
strongly with the microphytobenthos, creating biofilms that modify the erodibility of the sediments 
(Ubertini et al., 2012; Eriksson et al., 2017). These bioturbation processes are not yet included in 
HMS models, even though they can have a significant impact on estuary morphology (Orvain et 
al., 2012). Including these biota-mediated erodibility factors in HMS models may therefore have 
mitigating effects on the long-term evolution of habitats (Lehuen et al., 2024), and this should 
significantly improve the prediction of abiotic factors and their use for defining ENM/SDM. The aim 
is to better integrate the local effects exerted by benthic fauna (in particular bioturbation) into 
complex large-scale interactions in order to consolidate long-term projections. 

Moreover, the ENM obtained applied in SDM is not capable of predicting a drastic change in 
population that would be subject to short episodes of stressful events. In particular, constraining 
episodes occurring in the context of climate change could become a threat for the fate of cockle’s 
populations, leading to drastic changes in community succession initiated by a long-term change 
in physical conditions (Baltar et al., 2019). Examples include heat waves or highly erosive storms, 
the duration, intensity and frequency of which can affect the recruitment and development of 
populations. This is where the long-term climate approach comes up against its real limit: the 
representativeness of climate variability and the question of event frequency, which is the key to 
understanding the effects of climate change that could lead to a shock to biodiversity or 
productivity. Extreme events are insufficiently defined by a simple maximum of environmental 
values, as this has been demonstrated experimentally for the case of heat waves (Zhou et al., 
2022). 

Abiotic data from HMS models can be used to describe complex patterns between the main 
physical factors, but the evolution of ecosystems in response to climate change may lead to 
previously unconsidered parameters becoming critical parameters for biological development, 
such as acidification. Indeed, the acidification of marine waters is an identified consequence of the 
CO2 partial pressure in the atmosphere, and the impact of the pH decrease has been demonstrated 
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on bivalves’ organisms (Thomas & Bacher, 2018). There are experimental studies on the biological 
response to ranges of variation in temperature, salinity or pH, which can provide a better 
understanding of the mechanistic basis of metabolisms on organism performance (Łapucki & 
Normant, 2008; Hale et al., 2011; Lemasson et al., 2017; Ong et al., 2017; Peteiro et al., 2018; 
Medeiros et al., 2020; Madeira et al., 2021). However, in environments such as the Seine estuary, 
pH is not traditionally considered to be an environmental factor that plays an important role in the 
distribution of species at least during the past survey planning. 

Taken together, all these limitations justify recommending a cautious interpretation of the use 
of niche models in extrapolative exercises, scenarios of long-term projections. Indeed, by defining 
an average trend in the evolution of HMS factors in the estuary in order to assess the future of a 
species, this exercise could completely miss the dangers encountered by the population studied 
and provide erroneous information, whether reassuring or alarming. 

A tool for ecosystem management 

ENMs and their SDM application are tools that can effectively be used for the management of 
natural areas, highlighting the spatio-temporal differences in a given territory according to selected 
factors. In this case, the model can be used to monitor the potential productivity of target species, 
to ensure that the presence of a population that provides the ecosystem services required by the 
estuary is facilitated. ENM/SDM can also be used to monitor the progress of an invasive species 
in a territory (Srivastava et al., 2019), measure the impact of anthropogenic structures (Cozzoli et 
al., 2017), or define a conservation strategy for an endangered species (Frans et al., 2022). 

The use of an ENM in a given space depends on the technique used. Existing SDMs using the 
AM approach provide high-performance SDMs, but it is not possible to apply them to the data set 
available to us. This led us to choose the QR ENM method, which provides a set of equations 
based on a reasonable number of factors that are generally accessible in the context of managing 
an ecosystem such as an estuary. 

As seen in the previous paragraphs, the ENM obtained and its application in SDM makes it 
possible to control a geographical area such as an estuary in the medium term (~10 years). The 
tool nevertheless is very operational in a context of management of a natural area subject to 
anthropogenic pressure, simply illustrating the zones favourable to the cockles until now. The 
habitat suitability model also makes it possible to identify any drift in the areas of interest, and to 
begin a diagnosis of the causes of this drift, by adapting the temporal and spatial resolution as 
required. In fact, as the SDMs are linked to the HMS variables, the habitat suitability is a good 
indicator of the potential levers for dealing with changes in ecosystems, in particular due to human 
activities, as well as the effects of global climate change. 

The results of this study showed, for example, an improvement in the habitat suitability of 
cockles on the intertidal mudflats of the Seine, due to the saline intrusion already obvious. This 
trend should continue in the future for cockle, but at the expense of the more euryhaline species 
that typically colonise intertidal mudflats further upstream, such as Hediste diversicolor or 
Scrobicularia plana. However, increasing salinity can be accompanied by a reduction in freshwater 
input, which can lead to a limitation in nutritive salts and therefore in primary and secondary 
productivity, resulting in a risk of population declines and a global rarefaction of benthic 
communities, whatever the niche. 

The ENM/SDM are generally developed for an isolated species, but the management of a 
natural area requires an approach not only on a broad spatio-temporal scale, but also on the scale 
of species communities and the ecosystem services that we wish to maintain. The biodiversity 
approach using the Shannon index has been used in an SDM (Cozzoli et al., 2017). In another 
way, the introduction of inter-species interactions has been explored in the form of an explanatory 
biological factor in an SDM (Stephenson et al., 2022), which improves the model but reveals 
complex interaction patterns as soon as two species are studied. In addition, we can envisage 
modelling the biological response of a species community according to a set of environmental 
variables, in order to represent the complete biotic environment, as initiated in the Wadden Sea 
(Folmer et al., 2017). However, defining a community of species is very closely linked to the 
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analysis prism chosen. Depending on the question raised, it will be relevant to describe a 
community by integrating life traits, functional traits – trophic features and 
bioengineering/bioturbation activities. 

Conclusion 

Because of their complex structure and strong spatial gradients, understanding estuarine 
ecosystems can benefit from modelling the ecological niches of its fauna using ENM and SDM 
tools. The extraction of physical descriptors from 3D HMS models of water and sediment transport 
and the method of describing SDM using quantile regression enabled a detailed analysis of the 
environmental needs of the cockle. The two models built in this study, QR ENM at the 97.5th 
percentile with a Gaussian equation, combining maximum daily current speed, inundation time and 
daily salinity range or mud content as a third predictive factor, provide a robust description of the 
cockle’s optimal ecological niche. This niche, standardised in the form of habitat suitability, allowed 
a geographical visualisation of the habitat suitability of the estuary for the cockle, as well as its 
temporal evolution by areas of interest. The application of one of the ENMs obtained to another 
estuary showed the potential for transferability, while revealing the need to define a niche with 
additional elements. In particular, it seems necessary to integrate trophic components and in 
particular the availability of microalgal resources (phytoplankton and microphytobenthos). Based 
on general theories concerning the relationship between primary and secondary productivity, it 
seems relevant to incorporate a model simulating chl a into 3D models before being able to 
propose a truly generic and transferable ENM model. This could be debated, since the 
representation of the correlation between drivers (including food) could make the difference. 
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