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Abstract
The global demand for wood biomass is increasing, therefore it is necessary to develop forest manage-
ment alternatives that can, simultaneously, produce large amounts of biomass and maintain ecosystem
functions and services in a sustainable way. However, assessing the consequences of silviculture is
challenging, as forest ecosystems function slowly over long periods of time. Therefore, in this study,
an experimental platform was set up to monitor the long-term effects of several forest management
alternatives (FMA) on ecosystem functioning in a pine forest in a temperate region characterised by olig-
otrophic conditions. In practice, we monitored three contrasting FMA over a decade: (i) wood biomass
production (WBP), designed using an approach of very intense forestry (high stand density; seed lot of
pines selected to growth fast), (ii) combined objective management (COM; low stand density), aimed at
improving pine growth by alleviating any competition by spontaneous vegetation, and (iii) nutrient man-
agement (NuM; medium stand density), designed to improve tree nutrition using N-fixers in the stand
furrows. Overall, although FMA showed contrasting stand growth and structures, they had modest ef-
fects on forest biogeochemistry over a decade of monitoring: FMA showed similar trends regarding
atmospheric deposition, soil solution chemistry and water table-ditch chemistry. The main difference
observed was a more important role of dissolved organic matter in NuM biogeochemical functioning.
Conversely to their effects on biogeochemistry, the FMA appeared to influence the biophysical prop-
erties of stands. The WBP management (with high stand density) was shown to be shadier, cooler and
wetter than the other FMA. This trend was fairly clear during the summer periods although differences
were observed all year-long. An important result regarding biophysical effects was that, in addition to
being observed in the topsoil layers, they were also evident in deeper soil layers and in the water table.
All in all, our results indicated that contrasting FMA have tended to influence the ecosystem function-
ing, in particular its biophysical component, but showed no early sign of unsustainable biogeochemical
functioning. Nonetheless, this latter result should be confirmed in the long-term through further mon-
itoring.
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Introduction 

The demand for forest biomass has been increasing in Europe because forest biomass can be 
used for wood products, paper production, and even for energy production (Nicholls et al., 2009; 
Diaz-Yanez et al., 2013; Achat et al., 2015a). An approach to meet this growing demand is to 
intensify forest management, for instance planting dense stands of fast-growing species managed 
in short-rotations (Ranger & Nys, 1996; Heilman & Norby, 1998; Aylott et al., 2008; Achat et al., 
2018). However, intensifying forestry has shown to be potentially deleterious for ecosystem 
functioning such as impoverishing soils (Kimmins, 1974; Achat et al., 2015a) and such an approach 
needs to be evaluated (Toman & Ashton, 1996; Fox, 2000; Pohjanmies et al., 2021). Evaluating 
intensive forestry is all the more necessary because this kind of forest management exports large 
quantities of nutrients, whereas natural nutrient inputs are generally of low magnitude (Kimmins, 
1974; Heilman & Norby, 1998; Ranger & Turpault, 1999; Flueck, 2009; Achat et al., 2015a). In 
addition, the impacts of management on forest carbon and water balance and its biophysical 
functioning is also observed at various spatial scales (Magnani et al., 2007; Albaugh et al., 2016; 
Luyssaert et al., 2018). Therefore, the main objective of the present study was to assess the impact 
of different levels of forestry intensification on ecosystem functioning. In practice, we evaluated the 
effects of three forest management alternatives (FMA), a theoretical framework developed to 
compare contrasting silvicultural systems (Mason & Meredieu, 2011). The studied FMA 
manipulated stand density, competition control, fertilisation, genetics, and soil preparation, so they 
fulfil all the criteria of the intensive management definition (Fox, 2000). 

One major difficulty when assessing forestry strategies is the time dimension because forest 
management has to be evaluated over decades, if not centuries (Homann et al., 2000; Kimmins et 
al., 2008). To circumvent this obstacle, different approaches are possible such as modelling 
(Wallman et al., 2005) or long-term in situ monitoring (Pretzsch et al., 2019). While we value 
models and regularly use them (Loustau et al., 2005; Jonard et al., 2010; Achat et al., 2018; 
Moreaux et al., 2020), the present study relies on a long-term experimental platform. In addition to 
being crucial for improving ecosystem models (Achat et al., 2016a), long-term field experiments 
enable accurate assessments of ecosystem responses to silviculture (Prescott, 2014) and are 
useful for understanding complex ecosystem functioning (Green et al., 2023). Consequently, we 
set up a long-term forestry experiment in 2012 in south-western France, a region characterised by 
debates regarding intensive versus extensive forest management scenarios (González-García et 
al., 2014; Mora et al., 2014) and we monitored the ecosystems under different silvicultural systems. 
Hereafter, we report the results of one decade of monitoring that showed how intensively managed 
forest plantations have influenced biogeochemical and biophysical aspects of ecosystem 
functioning (Fox, 2000). Based on the literature, we had three main expectations at the beginning 
of the monitoring: one about biophysical effects of FMA and two about biogeochemical effects. 
Firstly, we expected that contrasting stand densities would have short-term effects on the 
ecosystem biophysical functioning (Pohjanmies et al., 2021) as a time lag in canopy closure can 
influence the local microclimate. More precisely, our hypothesis (H1) was that dense plantations 
would induce cooler and drier conditions than in sparse stands (De Frenne et al., 2021; Zhai et al., 
2024; Chen et al., 2025) because of high sunlight interception, rainfall interception, and 
evapotranspiration (Ewers et al., 2005; Barbier et al., 2009; De Frenne et al., 2021). Secondly, 
because ecosystem biogeochemical functioning is mainly influenced by forestry in mature stands 
(Erisman & Draaijers, 2003; Johnson & Turner, 2014), or through major disturbances (Weis et al., 
2006; Smolander & Heiskanen, 2007; Paré & Thiffault, 2016), we anticipated that the young forest 
stands would not display any strong biogeochemical differences between FMA (H2). Finally, we 
identified an exception to this H2 expectation, which was the introduction of N-fixer plants, because 
this practice showed short-term modifications of the ecosystem N cycling (Dyck et al., 1983; Watt 
et al., 2003; Bouillet et al., 2008; Voigtlaender et al., 2012; Vidal et al., 2019, 2021). We 
consequently hypothesised an increase of nitrate production and an improvement of tree N 
nutrition under such conditions (H3).  
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Material and Methods 

Study region  

The XyloSylve forest experimental platform was installed in 2012 in the Landes de Gascogne 
region (~43.5-45.5°N and ~1.5°W and 0.3°E), which is located in south-western France (Figure 
S1). The regional climate belongs to the temperate, fully humid, warm summer class (Cfb) of the 
Köppen-Geiger classification (Kottek et al., 2006). The local climate is monitored in an open area 
near (<1 km) the forest stands and data from the last two decades indicate mean annual values of 
13.1°C for air temperature and 908 mm yr-1 for bulk precipitation. Summer precipitation (May-
September) is on average 292 mm yr-1, resulting in moderate water stress (monthly SPEI 
values=4.7; Hargreaves climatic moisture deficit=354 mm yr-1; Figure S2). Nevertheless, climatic 
indices varied a lot from year to year during the period studied (Table S1), implying possible 
droughts or heatwaves.  

The Landes de Gascogne region is a 1.3 Mha flat area, characterised by a low elevation and a 
sparse network of rivers (Jolivet et al., 2007; Deirmendjian et al., 2019). Due to these properties, 
the water table level fluctuates near the soil surface (0-3 m deep), except near the rivers that 
function as natural drainage ditches (Cottinet, 1974). The water table is characterised by 
oligotrophic conditions but levels of redox and oxygen concentration vary over time (Righi, 1977; 
Jolivet et al., 2007; Deirmendjian et al., 2019). The soil parent material consists of Aeolian deposits 
of quaternary sands (~ 23-15 kyr BP), which are relatively homogeneous in particle size (mainly 
100-200 µm) and rich in quartz (Juste, 1965; Bertran et al., 2011; Sitzia, 2014). Aeolian deposits 
of this kind are found in several regions of Europe, such as in England, Netherlands, Denmark, 
Germany and Poland (Sitzia, 2014). While they are dominated by the quartz fraction, these sands 
also contain substantial amounts of orthose, but very low contents of phyllosilicates or minor 
minerals such as tourmaline, staurodite, zircon and andalousite (Juste, 1965; Latouche, 1971; 
Righi & De Conninck, 1977). Soils that have developed from the Aeolian deposits are mainly non-
structured sandy podzols (albic; entic and/or ortsteinic; Augusto et al., 2010). Podzols with the 
ortsteinic characteristic have a cemented B soil horizon –locally named alios– that physically limits 
the vertical distribution of plant roots and hence plant growth (Delibrias et al., 1966; Gelpe, 1992). 
Nevertheless, because of the discontinuous nature of this alios horizon (Richer-de-Forges et al., 
2017), soil exploration by tree roots is only partly impeded by this horizon (Achat et al., 2008) 
whereas the presence of the water table may be a major obstacle to tree rooting in the wet areas 
(Bakker et al., 2006). Soils are acidic and poor in nutrients and oligo-elements (Augusto et al., 
2010, 2022), such as potassium or magnesium (Delmas, 1954; Demounem, 1979). Nevertheless, 
it is the phosphorus (P) deficiency that characterises most these soils as the extremely low soil 
Ptotal content (Achat et al., 2009; Augusto et al., 2010) makes them some of the poorest soils 
worldwide (Lambers et al., 2010; He et al., 2021). In podzols, the soil physical-chemical reactivity 
is generally led by organic matter and aluminium-iron oxides (Eusterhues et al., 2005; Jansen et 
al., 2005; Grand & Lavkulich, 2013, 2015; Achat et al., 2016b), a characteristic that applies to the 
soils of this region (Augusto et al., 2010; Achat et al., 2011). 

Study forest  

Created in the second half of the 19th century (Jolivet et al., 2007), the Landes de Gascogne 
forest covers 0.9-1.0 Mha, making it the largest artificial forest in Europe (Figure S1A). Mainly 
composed of even-aged stands of maritime pines (Pinus pinaster Ait.), this forest is managed for 
wood production, pulp and industrial fuelwood (Jolivet et al., 2007; Orazio et al., 2015). Forest 
management includes plant breeding, soil preparation at planting, drainage, P-fertilisation, 
vegetation control, and several thinnings before a final clear-cut at 35-50 years-old (Dorlanne, 
1991; Chaperon & Cremiere, 1994). Such intensive management, in conjunction with the 
adaptation of the maritime pine species to harsh conditions (Chevalier et al., 2024), enable a stand 
productivity that is moderate in comparison to European forests (Tóth et al., 2013), but that is high 
when taking the local soil poverty into account.  
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It is worth mentioning that the Landes de Gascogne forest is exposed to major disturbances 
(Senf & Seidl, 2021), such as huge winter windthrows (in 1999 and 2009), summer droughts (in 
2011, 2016 and 2022), and large-scale wildfires (in 2022) due to the high ignitability of maritime 
pines (Tapias et al., 2004; Fernandes & Rigolot, 2007). In addition to those hazards, the 
sustainability of the system is threatened by current changes in silvicultural practices. Indeed, while 
the harvesting intensity of this forest is among the highest in Europe (Levers et al., 2014), recent 
technical innovations have enabled the generalisation of rooting system harvests and –to a lesser 
extent– whole-tree harvests (Banos & Dehez, 2017), with possible deleterious consequences on 
ecosystem functioning (Achat et al., 2015a; Achat et al., 2015b; Augusto et al., 2022). 

Experimental platform 

The XyloSylve experimental platform was initiated with the objective of testing, under real 
conditions, innovative silvicultural systems that were expected to supply in biomass in the regional 
forest-wood chain. In a first stage, discussions were organised between scientists and 
stakeholders to define forest management alternatives (FMA; Mason & Meredieu, 2011) that would 
constitute a gradient of extensive-intensive approaches, in combination with a conservative-
innovative gradient. A list of eight silvicultural systems was finally defined for field evaluation and 
three were evaluated in the present study (see below). These three silvicultural systems were 
contrasted enough to belong to different classes of the FMA framework (Mason & Meredieu, 2011). 

The XyloSylve platform was established in the INRAE experimental forest (elevation » 65 m 
above sea level). The area belongs to the “wet moorland” type based on the regional site 
classification (Jolivet et al., 2007), meaning that the water table level remains fairly close to the 
topsoil level (i.e. 0–2 m deep), and that spontaneous vegetation is dominated by purple moor-
grass (Molinia caerulea) and to a lesser extent by bracken (Pteridium aquilinum) or common 
heather (Calluna vulgaris). The XyloSylve platform consists of two distinct sites about 1.5 km apart: 
(1) the trial site (44.7352–44.7390°N; 0.7918–0.8005°W) assesses the practical feasibility of the 
eight FMA, but its results are not presented in the present study; and (2) the monitoring site 
(44.7441–44.7505°N; 0.7718–0.7805°W), which provided data for the present study. The 
monitoring site is composed of three large plots (~8–9 ha each) that test three contrasting 
silvicultural systems (see below). These three plots were side-by-side and were located on a flat 
horizontal plain, without any geomorphological differences (slope, elevation, microrelief). They 
were equipped with sensors and collectors to assess biogeochemical and biophysical changes, 
from the atmosphere to the groundwater. The large surface area of each plot was chosen to enable 
monitoring the carbon-water fluxes using the eddy-covariance methods (Kowalski et al., 2003; 
Barcza et al., 2009). The practical consequence of having large, heavily equipped, plots was that 
it was not feasible to test all of the eight silvicultural systems, or to replicate them. The absence of 
true replication implied that it was not possible to evaluate our results based on statistical tests 
because sampling replicates or repeated measurements over time are pseudoreplicates (Hurlbert, 
1984). However, Hurlbert also concluded that “Replication is often impossible or undesirable when 
very large-scale systems are studied [...] or when the cost of replication is very great”, which is the 
case of our experiment. We followed Hurlbert’s recommendations for this kind of study, which is 
not to use inferential statistics, but descriptive analyses instead. 

Forest management alternatives (FMA) 

Foresters may influence ecosystem functioning through several practices such as tree species 
choice (De Schrijver et al., 2008), vegetation control (Balandier et al., 2006), or thinning regimes 
(del Campo et al., 2022). In the three forest management alternatives (FMA) retained for the 
monitoring site, we paid particular attention to stand density and management of the understory. 
Indeed, stand density influences productivity while strongly modifying hydrological and 
biogeochemical processes (Andre et al., 2008; Hall & Marchand, 2010; Cai et al., 2016). Stand 
density affects light transmittance (Gaudio et al., 2011; Dumas et al., 2022), so it interacts with the 
dynamics of the understory vegetation and the latter is the second factor taken into account in our 
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selected FMA. It is all the more relevant because spontaneous vegetation is abundant and 
functionally important in the study region (Rivalland et al., 2005; Jarosz et al., 2008; Gonzalez et 
al., 2013; Vidal et al., 2021). 

The three FMA were tested in plots formerly occupied by mature pine stands, which had been 
clear-cut, with biomass export during the winter of 2012-2013. The site preparation was also the 
same for all the FMA, including soil ploughing-disking and fertilisation with inorganic phosphorus 
(Table 1), a practice long-known for improving tree growth in the study region (Trichet et al., 2009). 
Then, FMA differed from each other (Table 1; plantations in early-spring 2013): the wood biomass 
production (WBP) was designed using a very intense forestry approach (FMA5 in Mason & 
Meredieu, 2011). It included a dense plantation (Figure S3A) of a seed lot of maritime pine that 
was selected to be fast-growing (Table 1). The combined objective management (COM; FMA3 in 
Mason & Meredieu, 2011) aimed at improving pine growth by alleviating any competition. Inter-
tree competition was limited by planting at low density (Figure S3B) while competition due to 
spontaneous vegetation (Bon et al., 2023) was reduced with periodic mechanical controls (Table 
1). This FMA will include the plantation of broadleaved species (birch and oak) dedicated to future 
production diversification and support for biodiversity, which explains the management name, but 
this is not in the scope of the present study (see § Perspectives). The nutrient management FMA 
(NuM) was designed to improve the regional standard silvicultural system (moderate stand density 
and vegetation control; Figure S3C) using a nature-based solution, namely sowing N-fixers in the 
stand furrows. The species used were common gorse (Ulex europaeus L.; 100 seeds m-2) and 
common broom (Cytisus scoparius (L.) Link; 100 seeds m-2), which are local shrubs. Common 
gorse proved to fix atmospheric nitrogen (N) at a high rate (Augusto et al., 2005; Vidal et al., 2019) 
and was expected to be the species that is the best adapted to local conditions. In general, all of 
the FMA were designed to produce biomass, but with a level of forestry intensity that ranks: 
WBP>COM>NuM. 

Table 1 - Tested forest management alternatives. The forest management 
alternatives are fully described in the Methods section. 

Characteristics 
Wood biomass 

production 
(WBP) 

Combined objective 
management 

(COM) 

Nutrient 
management 

(NuM) 

Past land-use mature maritime pine, clear-cut including stump harvest 

Soil preparation ploughing and disking 

Fertilisation 50 kg-P ha-1 

Plantation 2500 trees ha-1 
(2´2 m) 

952 trees ha-1 
(1.5´7 m) 

1250 trees ha-1 
(2´4 m) 

Tree species Pinus pinaster 
(“biomass” seed lot)# 

Pinus pinaster  
(“common” seed lot; ref. VF3)# 

Pinus pinaster  
(“common” seed lot; ref. VF3)# 

N-fixer sowing none none Ulex europaeus  
+ Cytisus scoparius (2´100 seeds m-2) 

Vegetation 
management 

1 control 
(at 8 yrs) 

5 controls 
(at 4-8 yrs) 

2 controls 
(at 5 and 8 yrs) 

Intensity of 
management very high high moderate 

(#) The VF3 seed lot is issued from the third series of seed orchards from the French maritime 
pine breeding program (breeding within the SW France population, based mainly on growth 
and form). This improved seed lot is largely used in the Landes de Gascogne forest. 
Conversely, the “biomass” seed lot is an experimental (non-commercialised) mix of half sib 
families, the parents of which were selected from the same generation as VF3 parents, but 
for high growth rate (Annie Raffin, INRAE, personal communication). 

Study design 

The monitoring site is composed of three large plots of ~8-9 ha, arranged side-by-side (Figure 
S4A). In each plot, monitoring was carried out in three subplots: two peripheral subplots (in NE 
and SW directions) dedicated to most measurements and one subplot dedicated to water table 
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sampling and eddy-covariance monitoring (the central area; Figure S4B). The rationale of this 
design is to let undisturbed the biogeochemical monitoring (in the NW-SW peripheral subplots) 
when pumping the water table for sampling in the central area. Similarly, the eddy-covariance 
monitoring was carried out in the central subplot because this method takes into account processes 
over large surface areas (Kowalski et al., 2003) and consequently it was necessary to locate the 
eddy-covariance tower far away from any forest edge. Similarly, we located the two peripheral 
subplots at least 40 m away from the closest forest edge, because the vicinity of an edge (or a 
ditch) may affect the local biogeochemical functioning (Wuyts et al., 2008; Ågren et al., 2024). The 
monitoring is presented below but also summarised in Table S2. 

Soils 

The initial properties of soils were studied based on a large sampling campaign. In practice, 
each plot was studied using two complementary sampling approaches: (1) in the central hectare 
of the plot, a deep sampling (0–120 cm deep) was made at 36 points using a 6´6 systematic grid, 
designed to capture the mid-distance soil variability. This approach was designed also to produce 
a limited number of representative composite samples on which numerous different chemical 
determinations could be made (see below). (2) additional sampling points (0–60 deep) were 
distributed at random in each plot (N=72–88 depending on the surface area of each plot). This 
second sampling approach was designed to capture the spatial variability of a few properties (C, 
N, pH) within each plot.  

Soils were sampled using a gouge auger driven into the soil with a percussion drill. The soil 
cores were described (presence of roots, soil horizons, induration) before being split into layers of 
systematic thickness (0–15 cm, 15–30 cm, 30–60 cm, 60–90 cm and 90–120 cm). For approach 
(1), all samples of a given layer were combined to provide five composite soil samples per plot. 

The soil properties of the mineral layers were determined using standard French methods (NF): 
Soil pH-H2O was measured in a water/soil suspension (1:2.5; NF ISO 10390). Total C and N 
contents were quantified by dry combustion (NF ISO 10694 and NF ISO 13878). Total C was 
considered as soil organic carbon (SOC) because the studied soils contain no carbonate (Augusto 
et al., 2010).  

Additional chemical analyses were performed, but only on composite samples (i.e. one 
composite sample per soil layer [0–15 cm, 15–30 cm and so on; approach (1)] and per plot). The 
additional analyses were as follows: for soil texture, the five-size fractions for clay (<2 μm), fine silt 
(2–20 μm), coarse silt (20–50 μm), fine sand (50–200 μm), and coarse sand (200–2000 μm) were 
assessed (NF × 31–107). Extractable P content was quantified (Olsen et al., 1954). EDTA 
extractions were done for Cu, Fe, Mn and Zn quantification (NF 31–120). Boron was extracted 
using the hot water method (NF 31–122). Total content of 17 elements (Cr, Cu, Ni, Zn, Co, Pb, Cd, 
Tl, Mo, Al, Ca, Fe, K, Mg, Mn, Na, P) were quantified after extraction with fluoric acid (NF 31–147) 
followed by ICP-AES quantification [NF ISO 22036]. Exchangeable cations were determined using 
a cobaltihexamine extract (NF 31–130) and the sum of their charges was calculated to estimate 
their cation exchange capacity (CEC). Al-Fe oxide contents in the soil were determined using the 
Tamm method (Tamm, 1922). All soil analyses were made at the INRAE central platform (the LAS 
laboratory), which has the French quality certification (COFRAC) and participates in ring tests for 
quality control.  

Trees 

Survival, growth and nutrition of trees studies were based on 4–5 subplots (depending on the 
plot surface area). Each subplot was a rectangle of a surface area that depended on the plantation 
density (WBP=1,600 m2; NuM=1,920 m2; COM=2,688 m2) and where all trees were surveyed. 
Field campaigns were carried out during each dormant season. Tree height was always recorded 
and stem circumference at breast height (CBH) has been measured since the trees were 7 years-
old. Tree nutrition was assessed during the growing season by sampling 10 trees per subplot. For 
each tree, a twig directly exposed to sunlight was collected using a precision rifle. Then, intact 
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current-year needles were collected and needles from all of the subplot trees were merged to 
produce a composite sample. These foliage materials were finally dried, ground and analysed for 
major nutrients (N, P, K, Ca and Mg) and for Mn, an oligo-nutrient that may be limiting for plants of 
the study region (Trichet et al., 2018). Nutrients were analysed after wet mineralisation 
(H2SO4+H2O2). N and P were quantified colorimetrically (AutoAnalyser-3-High-Resolution 
colorimeter, SEAL) while other elements were quantified by flame atomic absorption spectroscopy 
(SpectrAA-20, VARIAN). All plant analyses were made using standard reference materials for 
quality control. We also collected data characterising Pinus pinaster in terms of regional mean 
values (Saur et al., 1992; Augusto et al., 2008; Trichet et al., 2018) and nutritional threshold values 
(van den Burg, 1985). 

Tree biomass was estimated based on allometric relationships for aboveground compartments 
(Shaiek et al., 2011), stembark (Augusto et al., 2008), coarse roots (Augusto et al., 2015) and fine 
roots (Achat et al., 2018). Similarly, foliage surface area, leaf area index and light transmittance 
rate were estimated based on dedicated empirical models (Berbigier & Bonnefond, 1995; Porte et 
al., 2000). 

Spontaneous vegetation and sown N-fixers 

Aboveground biomass and composition of the lowest vegetation stratum (hereafter referred to 
as “understory”) was monitored using annual destructive samplings. Sampling was carried out in 
mid-July, which corresponds to the peak of the growing period (Bergeret, 1980; Werno, 1984). The 
understory was studied in the 4–5 subplots dedicated to trees (see above). In each subplot, four 
sampling squares (1 m2 each) were displayed to be representative of tree ridges and inter-tree 
furrows, giving 16–20 squares per plot. In each square, all aboveground plant biomass was 
collected and taken to the laboratory. Then, biomass was sorted by species, dried and weighed. 
During the initial years of monitoring, subsamples were used to analyse the nutrient content of the 
understory (chemical methods described above). The main plant species present in the understory 
were purple moor-grass (Molinia caerulea), gorses (Ulex europaeus and Ulex minor), common 
broom (Cytisus scoparius), bracken (Pteridium aquilinum) and ericaceous species (mainly Calluna 
vulgaris and Erica scoparia). 

In March 2013, a 15N labelling area (100 m2) was set up in the NuM plot in order to quantify the 
percentage of nitrogen derived from the atmosphere in the N-fixer biomass (Danso et al., 1993). 
In practice, a non-fertilising dose (i.e. 7.5 mg-N m-2) of 99%-pure 15NH4Cl was sprayed onto the 
bare topsoil. In the subsequent growing seasons, current-year foliage was sampled from N-fixer 
individuals and from non-fixing plants, hereafter referred to as “reference plants”. The latter 
individuals were chosen out of a few species that were shown to be reliable reference species 
(Augusto et al., 2005; Delerue et al., 2015). During each field campaign, five pairs of healthy plant 
individuals (1 N-fixer + 1 reference species) of similar development stage were selected with the 
objective of having two individuals growing side-by-side. Samples were dried, finely ground with a 
ball mill, and δ15N was determined with an inductively coupled plasma (ICP) mass 
spectrophotometer. δ15N values were determined at the SilvaTech analytical platform, which 
complies with the ISO 9001:2015 quality certification. The percentage of nitrogen derived from the 
atmosphere (%Ndfa) was calculated (see equation in Cavard et al., 2007) based on the isotopic 
δ15N signature of: (1) a reference species, (2) the N-fixer species in field conditions, and (3) the N-
fixer species in controlled conditions, with no available N.  

Litterfall 

The fluxes of dead organic matter arriving on the soil surface were monitored during two 
consecutive years. For this, 24 litter-traps (i.e. 3 plots ´ 2 subplots ´ 4 traps) were installed at the 
beginning of the 2022 growing season. Each litter-trap is a cubic collector (with an opening of 0.5 
m2) with four legs above the understory vegetation, implying that only the tree litterfall was 
surveyed. Litterfall was collected six-times a year, and then dried, sorted (by tree species and by 
compartment [foliage, woody, other]) and weighed.  
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Atmospheric deposition in forest stands 

The fluxes of elements were monitored for one year under tree canopies. During the early 
stages of the experiment, the trees were small and so monitoring was initiated from 10 years-old 
onwards. Stemflow was assumed to be negligible based on the rough nature of Pinus pinaster 
bark, a property that limits stemflow (Levia & Frost, 2003), and on local studies (Courcoux, 1982; 
Loustau et al., 1992a, 1992b). Throughfall was monitored using four gutters per plot (197.5´20.0 
cm), equipped with a coarse filter (Thimonier, 1998). The spatial distribution of canopies and gaps 
modifies the throughfall chemistry (Carleton & Kavanagh, 1990; Seiler & Matzner, 1995; Bottcher 
et al., 1997; Thimonier, 1998; Levia & Frost, 2006), so the gutters were distributed to be 
representative of tree ridges and inter-tree furrows. Throughfall was collected, weighed, filtered, 
and stored at 4°C. Every cycle of four consecutive weeks, a composite sample was made for each 
collector using the four individual samples (i.e. one per week) and taking their volume into account. 
This handling implied that there were 13 cycles per year (i.e. 13´4=52 weeks). All composite 
samples were analysed quickly after sampling for pH and for NO3, NH4 and PO4 (Skalar SAN++). 
Then, samples were frozen (-20°C) and stored until other analyses could be made (dissolved Ntotal 
and dissolved organic carbon [DOC] by the combustion method; P, K, Ca, Mg, Mn, Al, Fe, S by 
ICP-AES). All solutions were analysed using procedures that comply with the COFRAC quality 
certification (see above). 

The element content found in the throughfall collectors do not correspond to atmospheric 
deposition strictly speaking because some chemical exchanges can occur between tree foliage 
and rain (Carleton & Kavanagh, 1990; McLaughlin et al., 1996). Consequently we estimated 
canopy exchanges and atmospheric deposition under the forest canopy using the “budget model” 
method (Draaijers & Erisman, 1995). This approach uses a chemical element that is not exchanged 
on foliage as a reference, such as sodium, chlorine or sulphur (Reynolds, 1996; Erisman & 
Draaijers, 2003; Gonzalez-Arias et al., 2006). In this study, we chose sulphur (S) as it has been 
shown that it is not be affected by Pinus pinaster canopies (Bellot et al., 1995). The budget model 
method (Draaijers & Erisman, 1995) states that the canopy exchange (CE) of the reference 
element is nil (CES=0) and that the ratio {under canopy:open area} of the fluxes of atmospheric 
deposition of a given element (for instance Ca) is the same for all elements (including the reference 
element). Based on the reference element assumption and the canopy:open ratio, it is then 
possible to calculate the fluxes due to canopy exchanges (CE>0 being canopy leaching; CE<0 
being canopy uptake) or due to atmospheric deposition (for full details, see Draaijers & Erisman, 
1995). 

Soil solution composition and soil microclimate 

Twenty soil pits per plot were dug at the beginning of the monitoring: 10 pits for each of the two 
peripheral subplots (Figure S4B). In each subplot, two pits were equipped with TDR sensors at 
different depths (~10, 20, 45 and 90 cm) to monitor soil temperature, water content and conductivity 
(reflectometer Campbell Scientific CS-650; measurement every minute). The reliability of all 
sensors was checked under laboratory conditions before their installation in the field. Physical soil 
properties (TDR sensors) were averaged by soil depth based on the four replicates installed in 
each plot (i.e. two replicates per subplot), which was shown to be a sufficient number to be 
representative (Schmidinger et al., 2024). Once averaged by plot and soil depth, daily mean values 
and cycle (4-weeks) mean values were calculated.  

In the eight other pits of a given subplot, ceramic suction cups (50 cm long, 2 cm in diameter) 
were inserted horizontally into the soil. Suction cups were installed at systematic depths (~20, 45 
and 90 cm) because, in podzols, the soil solution composition is not related to soil horizon 
boundaries (Gottlein & Stanjek, 1996). Depression (0.8 bar) was applied daily to collect extractable 
soil solution (except during prolonged dry periods to avoid damaging the pumps or the pipe 
network) and the extracted soil solutions were collected weekly. Soil solutions were analysed using 
the same handling and methods as for throughfall solutions (see above). 
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Water table and drainage ditches 

Each plot is equipped with three piezometers, one in the central area of the plot and two in the 
peripheral subplots (Figure S4B). The two piezometers in the peripheral areas were equipped to 
monitor the water table depth and temperature (piezometer Campbell Scientific CS-451) and their 
values were averaged. The piezometer in the central area was used to collect water samples four 
times per year (spring, summer, autumn, winter). If the drainage ditches contained water at the 
date of water table sampling, they were also sampled (Figure S4A) because they are important 
contributors to surface water in the study region (Vernier et al., 2003). 

In practice, the water table was first pumped during at least 10 minutes and until the properties 
(pH, O2 concentration, conductivity, temperature) of the water were stable. For this, a multi-
parameter sensor (Hanna Instruments, ref. HI 98194; systematically calibrated before fieldwork) 
was immerged in the recipient where the pumped outflow was directed. Once stability of the water 
properties was reached, the physical properties were recorded and the odour and colour of the 
water was described. In addition, water samples were collected, filtered in the field, and some of 
them were immediately acidified to ensure chemical stability before analysis (DOC, PO43-, Fe2+). 
Non-acidified samples were analysed for DON, DOP, mineral N, and alkalinity. Acidified water 
samples and samples for alkalinity were stored at 4°C before analyses. Samples for N compounds 
were frozen at -20°C. Fe2+, PO43- and dissolved N compounds were measured with colorimetric 
methods. DON and DOP were measured after mineralisation with persulphate. DOC 
concentrations were determined by high temperature catalytic oxidation method using a Shimadzu 
TOC 5000 analyser. All solution analyses were made using standard reference materials for quality 
control.  

Open area monitoring 

The station dedicated to monitor the weather conditions and the atmospheric bulk deposition 
was not located in the study plots but in an open area (44.74185°N, 0.78172°W; 0.5–0.8 km distant 
from the forest plots) of the INRAE experimental domain. The station is far from any forest edge, 
tree hedge or building. The weather data (air temperature, precipitation) were collected using the 
INRAE Climatik webservice (https://agroclim.inrae.fr/climatik). In addition, bulk precipitation was 
collected using five collectors (170 mm in diameter) each linked to a large, chemically inert, can. 
All the cans were placed in a box, buried to limit temperature fluctuations. Finally, wet deposition 
was studied using an automatic precipitation sampler NSA-181 
(www.eigenbrodt.de/en/products/sampler-collectors-instruments/nsa-181-basic). All the 
precipitation volumes were measured weekly and then subsampled for chemical analyses (using 
the same methods as the throughfall solutions; see above). Occult deposition (e.g. fogs) was 
considered as negligible (Erisman et al., 1997). 

Results and Discussion 

Initial soil properties 

The soils of the large plots are recognised as podzols (FAO/IUSS & FAO, 2006), which is the 
common case for the study region (Jolivet et al., 2007). These podzols were described as entic 
(i.e. no E horizon, with an A/Bs/C profile) in 80% of cases, and ortsteinic (i.e. cemented spodic Bs 
horizon) in 37% of cases. The combination of these two characteristics led to the following mean 
distribution, based on the WRB soil classification (FAO/IUSS & FAO, 2006): 14% haplic podzols 
(A/E/Bs/C), 6% ortsteinic podzols (A/E/Bs-cemented/C), 49% entic podzols (A/Bs/C) and 31% entic 
ortsteinic podzols (A/Bs-cemented /C). This distribution was similar among the three plots (even if the 
proportion of entic podzols was slightly lower in the NuM plot (72%)), and was representative of 
the study region (Augusto et al., 2010) including the spatial variability within a given plot 
(Duchaufour, 1949; Arrouays et al., 2002; Payet, 2004). The thickness –and the depth– of the soil 
horizons were also comparable for the three plots: The A (black; e.g. 7.5 YR 3/1 using the Munsell 
colour system) horizon was 39-47 cm thick (range of mean values), the E horizon (grey; e.g. 10 
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YR 7/2) was 11-15 cm thick (when present), the Bs horizon (brown; e.g. 7.5 YR 4/4) was 27-37 cm 
thick (top of the horizon at 40-50 cm deep), and the C horizon (yellow; e.g. 10 YR 7/4) appeared 
at depths of 73-77 cm. The maximum rooting depth was also similar among the studied plots (69-
84 cm). Finally, the thickness of the ploughed layer (due to soil preparation before plantation) was 
similar among forest management alternatives (FMA; 26-31 cm). 

As for the pedological description of the soil profiles, the soil physical-properties displayed fairly 
comparable conditions between plots. For the soil properties that were analysed with several 
replicates, the vertical distributions were the same for the three plots (Figure S5) and 
representative of mesophylous–wet moorland soils of the study region (Augusto et al., 2010). The 
same pattern was observed for all the studied soil properties, such as particle size distribution, Si-
Al-Fe oxides, P content, CEC and exchangeable cations, and elemental composition (Figures S6 
and S7). Overall, except for the vertical distribution of Zn (Figure S7K), our soil sampling suggested 
that the initial soil properties of the three large plots were fairly similar. Although initial homogeneity 
of soils is not sufficient to claim that further differences are due to experimental treatments 
(Hurlbert, 1984), it is a necessary prerequisite and we assumed that the further differences could 
be the consequences of the experimental managements. 

Biophysical effects of FMA with different levels of canopy openness: water and temperature 

As expected (hypothesis H1), the stand density had an influence on tree LAI, with subsequent 
consequences on light transmittance and litterfall fluxes (Figure 1). In particular, the densest stand 
(WBP) showed the highest canopy development and litterfall flux, which is logical since litterfall is 
positively correlated to stand biomass (Matala et al., 2008). The recorded results were similar to 
published data about maritime pine in terms of LAI and light transmittance (Loustau & Cochard, 
1991; Berbigier & Bonnefond, 1995; Rascher et al., 2011), litterfall dynamics (Courcoux, 1982; 
Hernandez et al., 1992) and litterfall flux (Courcoux, 1982; Kavvadias et al., 2001). 

Similarly to sunlight, the stand density influenced the interception rate of the rainfall (del Campo 
et al., 2022). The mean values of rain interception (calculated using the annual sums) were: 
combined objective FMA (COM)=18.6%, nutrient management FMA (NuM)=21.5%, wood biomass 
production FMA (WBP)=23.6%, and were in line with previous studies about maritime pine forests 
(Butcher, 1977; Courcoux, 1982; Farrington & Bartle, 1991; Loustau et al., 1992b). It is noticeable 
that the interception rate in the open stand (COM) was logically higher under the tree ridges 
(26.8%) than under the furrows (10.3%), and that the proportion of rain reaching the understory 
strongly decreased when the precipitation intensity was low (Figure S8).  

The interception differences in sunlight and rain between FMA may have influenced the soil 
microclimate. Indeed, soil temperature in the dense stand (WBP) was lower than in other stands 
(Figure 2), particularly during the 2016-2019 period when the WBP stand reached the canopy 
closure stage before the other stands. While such a canopy-effect on soil temperature was 
expected (Yan et al., 2011; De Frenne et al., 2021) and in line with our initial hypothesis H1, it was 
surprising to observe that the deep soil layers (Figure 2EF) were impacted as much as the topsoil 
layer (Figure 2D). The effects of canopy openness on soil water content were less straightforward 
to interpret than the soil temperature because the densest stand did not display the lowest water 
content as it might be expected considering the observed rain interception rates (H1; Yan et al., 
2011). Conversely, the soil of the WBP stand seemed wetter in winter than the COM soil (down to 
45 cm deep; Figure 2AB). We interpret this apparent paradox to be the result of several processes. 
Firstly because of its density, the WRB stand is shady, which induced a progressive decline of the 
understory (Gaudio et al., 2011). This vegetation stratum contributes up to one third of the forest 
evapotranspiration (Rivalland et al., 2005; Jarosz et al., 2008), and having a sparse understory 
may have contributed to wetter conditions in this dense stand. Secondly, a lower evaporation rate 
from the WBP soil may have been caused by lower temperature values. Thirdly, a denser stand 
canopy probably limited aerodynamic water vapour transport from the soil surface into the 
atmosphere. Finally, a thicker forest floor layer in the WRB stand may have limited vapour 
exchanges at the soil-atmosphere interface. We concluded that, whatever the processes 
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responsible, the stand density appeared to be an important property of young plantations for 
determining the local microclimatic conditions. 

 

Figure 1 - Stand canopy development and its effects on light transmittance and 
litterfall. These are mean values ±1 standard error: tree leaf area index (LAI; A), light 
transmittance through tree canopies (B), litterfall dynamics and annual fluxes (C-D). 
Red=wood biomass production (WBP); green=nutrient management (NuM); 
blue=combined objective management (COM). 

The FMA had no clear effect on the water table level (Figure 3A). On the other hand, 
temperature was apparently influenced by the nature of stands, with values that increased with 
stand openness: COM>NuM>WBP, particularly during the summer (Figure 3B). All in all, from the 
atmosphere to groundwater, stand density seemed to influence microclimatic conditions. Less 
water reached the soil in the dense stand, but the soil remained wetter in its upper part. The effects 
were marked for temperature and were surprising because it was the whole soil-water table 
continuum that was cooler under the densest stand. This result suggests that silviculture can have 
important –and literally deep– impacts on local biophysical dynamics. 

Nitrogen input through symbiotic fixation of atmospheric N2 

In the nutrient management FMA (NuM), the vegetation was left untouched until the sown N-
fixers (i.e. common gorse [Ulex europeaeus] and common broom [Cytisus scoparius]) accumulated 
enough biomass. In practice, while the gorse population developed vigorously, the broom 
population remained dominated (Figure S9A). This result is in line with the composition of the 
regional spontaneous vegetation (Barry et al., 1952). Based on the nitrogen content of gorse 
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(Augusto et al., 2009), the N pool size accumulated in total gorse biomass was estimated as 241 
kg-N ha-1, which is consistent with other studies about common gorse (Egunjobi, 1971a, 1971b; 
Augusto et al., 2005). Similarly, based on our 15N labelling, our estimates of the nitrogen fixation 
rate (i.e. ~90%) were well in line with current knowledge about this shrub species (Augusto et al., 
2005; Cavard et al., 2007; Drake, 2011). Such a high fixation rate implied that the total amount of 
fixed N was estimated as 217 kg-N ha-1 (i.e. ~54 kg-N ha-1 yr-1), which was also in the same order 
of magnitude as other pine-leguminous associations (Smethurst et al., 1986) and previous studies 
about pine-gorse associations (Augusto et al., 2005). After four growing seasons, the vegetation 
was crushed in the NuM plot. However, because only the stand furrows could be crushed (~75% 
of the stand surface area; Figure S9B), and because the gorse roots remained alive (enabling 
further regrowth by sprouting; Figure S9A), we considered that only ~140 kg-N ha-1 were applied 
onto the soil as fresh plant debris. 

 

Figure 2 - Soil microclimate. Soil water content (A-C) and soil temperature (D-F) at 
depths of 20 cm (A,D), 45 cm (B,E) and 90 cm (C,F). Red=wood biomass production 
(WBP); green=nutrient management (NuM); blue=combined objective management 
(COM). 
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Figure 3 - Watertable level and temperature. Lines represent the mean value (n=2 
piezometers) of watertable level (A) and temperature (B). In addition, the 
temperature values recorded during occasional sampling for water chemistry (n=1 
piezometer, distinct from the two other piezometers; see Figure S3B) are shown 
using dots. Red=wood biomass production (WBP); green=nutrient management 
(NuM); blue=combined objective management (COM). 

Atmospheric deposition of elements and interactions with tree canopies 

Atmospheric deposition with no interactions with tree canopies: open area station 
The composition of bulk precipitation showed strong relationships between several elements 

or molecules. Notably, Na, Cl and S were positively correlated, which is probably the consequence 
of oceanic spray (Gonzalez-Arias et al., 2006; Silva et al., 2007; Vet et al., 2014). Similarly, NO3, 
NH4 and S were positively correlated with each other, suggesting a pollution origin for N forms and 
a dual origin (i.e. ocean and pollution) for S (de Vries et al., 2003). 

Table 2 - Annual nutrient fluxes due to atmospheric deposition in the open area 
station. Annual flux values are the mean values of 9 monitored years (mean±1 
standard error). The location of the open area station is shown in Figure S1C. 

Nutrient Bulk precipitation Wet precipitation Dry precipitation %Dry Wet:Bulk ratio 
- (kg ha-1 yr-1) (kg ha-1 yr-1) (kg ha-1 yr-1) (%) slope (r2) 
NO3

- 4.48 ± 0.82 4.82 ± 0.62 0 ± 0# 0%# +0.75 (0.72) 
NH4

+ 6.63 ± 1.60 2.66 ± 0.16 4.08 ± 1.51 60% ¤ (0.25) 
N-mineral 11.11 ± 1.92 7.47 ± 0.75 4.06 ± 1.85 33% ¤ (0.26) 
P 0.176 ± 0.031 0.105 ± 0.021 0.076 ± 0.029 40% ¤ (0.34) 
K 2.42 ± 0.35 1.21 ± 0.27 1.21 ± 0.14 50% +0.57 (0.82) 
Ca 6.47 ± 0.62 2.96 ± 0.50 3.52 ± 0.34 54% +0.57 (0.83) 
Mg 4.17 ± 1.01 2.90 ± 0.68 1.28 ± 0.34 30% +0.76 (0.96) 
S 4.69 ± 0.87 3.13 ± 0.51 1.56 ± 0.40 33% +0.69 (0.96) 
Cl 44.21 ± 4.47 32.94 ± 3.64 11.27 ± 1.77 25% +0.80 (0.95) 

(#) The negative value was corrected as a nil value. (¤) only slope values of regressions with 
r2>0.50 are presented. N-mineral was calculated as the sum of NO3- and NH4+. Bulk 
precipitation=wet precipitation+dry precipitation 

Linked to the proximity of the ocean (Courcoux, 1982; Amezaga et al., 1997; Silva et al., 2007), 
the annual fluxes in the bulk deposition were dominated by oceanic NaCl salts (Table 2). The other 
nutrient fluxes ranged between 2.4 and 6.5 kg ha-1 yr-1, with the notable exception of P (<0.2 kg 
ha-1 yr-1). These fluxes were consistent with the literature (Courcoux, 1982; Campbell et al., 2004; 
Croise et al., 2005; Watmough et al., 2005; Vet et al., 2014), including the very low deposition rate 
of P (Vicars et al., 2010; Jarosiewicz & Witek, 2016; Sohrt et al., 2019). Except for NO3 inputs that 
were almost completely derived from wet deposition, other inputs arrived both as wet deposition 
and dry deposition (Table 2). The relative proportions of wet versus dry deposition varied according 
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to the element and were consistent with published results (Erisman et al., 1997; Balestrini et al., 
2007). Similarly, deposition fluxes as sampled by a wet-only collector (i.e. wet deposition) was 
systematically lower than fluxes estimated based on open collectors (i.e. bulk deposition; Table 2), 
with values that were fairly consistent with the literature (Lindberg et al., 1986; Staelens et al., 
2005; Balestrini et al., 2007). 

Atmospheric deposition with interactions with tree canopies: forest stands 
The FMA had no effect on pH mean values of throughfall (i.e. pH=4.7-4.8). Similarly, forest 

management had no clear influence on the chemical composition of the throughfall, which was 
collected below tree canopies (Table S3). This was in line with our initial expectation (H2). The 
chemical properties of the throughfall in our study were fairly similar to those of previous studies 
about maritime pine south-western France (Table S3; Pitaud, 1967; Courcoux, 1982). 

The ratio between throughfall and open deposition was close to 1 for elements not exchanged 
on the foliage (i.e. Na and S), with no effect of FMA. This negligible amplifying effect of tree 
canopies on atmospheric deposition was not surprising (hypothesis H2) because trees were still 
young and small, and because tree height is a major driver of forest efficiency to capture 
atmospheric deposition (Erisman & Draaijers, 2003). Such a pattern has already been reported for 
a young Pinus pinaster stand (Courcoux, 1982). Based on this result, we estimated canopy 
exchange assuming that it was the difference between throughfall and bulk deposition, and we 
found no clear effect of FMA on throughfall and canopy exchange. In general, throughfall was 
enriched in potassium and, to a lower extent, in magnesium due to canopy leaching (Figure 4). In 
practice, 62-66% of K and 7-13% of Mg in the throughfall originated from foliage leaching, a pattern 
that is consistent with many field studies (Morris et al., 2003; Tomaszewski et al., 2003; Chiwa et 
al., 2004). Conversely, mineral nitrogen (NO3, NH4) contained in bulk deposition was partly 
absorbed by tree foliage before reaching the soil surface (26-34% of NO3; 67-72% NH4; 39-48% 
N-mineral; Figure 4), also in line with published studies (Courcoux, 1982; Edmonds et al., 1991; 
Morris et al., 2003; Chiwa et al., 2004). 

 

Figure 4 - Chemical canopy exchanges. Annual fluxes of canopy exchanges for 
nitrogen (in NO3 or NH4 forms) and potassium (K) during the passage of rain on the 
foliage of the trees. Positive values indicate nutrient leaching from pine needles to 
throughfall, whereas negative values indicate uptake of nutrients by trees from 
rainwater. See Methods for more details about calculations. Red=wood biomass 
production (WBP); green=nutrient management (NuM); blue=combined objective 
management (COM). 

14 Laurent Augusto et al.

Peer Community Journal, Vol. 5 (2025), article e115 https://doi.org/10.24072/pcjournal.640

https://doi.org/10.24072/pcjournal.640


Soil solution biogeochemistry 

The soil solution chemistry was characterised by high concentrations of dissolved organic 
matter, including carbon (DOC) and nitrogen (DON). These compounds showed a logical decrease 
with increasing soil depth (Figure S10) and seasonal variations (Kaiser et al., 2003). Such a pattern 
is commonly reported for ecosystems with perennial vegetation (Danielson et al., 2017) and was 
consequently expected in this forest context (Mignot-Delprat, 1997). The nutrient management 
(NuM) FMA showed particularly high concentrations of dissolved organic matter in the topsoil layer 
(Figure S10A,D). The prominence of organic forms is typical of undisturbed ecosystems (Qualls, 
2000; Danielson et al., 2017), but this general trend was not observed in the topsoils of the 
combined-objective management (COM) and wood biomass production (WBP) FMA as dissolved 
nitrogen was dominated by NO3 (Figure 5A,D). This difference between FMA was not the 
consequence of differences in NO3, which showed similar ranges of values for the three FMA, but 
was the result of the high concentration values in DON in the NuM FMA. This pattern was surprising 
because the NuM understory was dominated by N-fixers (mainly Ulex europaeus) that are known 
to increase N-mineralisation (Smethurst et al., 1986; Rozé, 1987; Mo et al., 2016) and hence the 
nitrate concentration of soil solutions (Dyck et al., 1983; Magesan et al., 2012; Vidal et al., 2019). 
This unexpected trend, which partly conflicted with our hypothesis H3, may be explained by the 
huge differences of understory biomass between FMA. Indeed, while the aboveground biomass 
peaked in the first years at 5.8 Mg ha-1 (COM) and 4.6 Mg ha-1 (WBP), and then decreased as a 
result of vegetation control (COM) or tree canopy development (WBP), it had continued to increase 
in the NuM FMA (Figure S9A). Such a high level of standing biomass produced high amounts of 
dead organic matter after understory crushing (Figure S11) that had partly dissolved in the soil 
solution (Chapman et al., 2001). A sharp increase of the proportion of dissolved N as DON (Figure 
5A,D) due to the application of large amounts of fresh woody debris is consistent with the literature 
(Chang et al., 2007; Morris, 2009) and probably resulted from the high N-demand of the microbes 
that were decomposing the applied debris (Berg, 1988; van Wesemael, 1993; Moro & Domingo, 
2000). This pattern is also consistent with the timing of the experiment because the differences 
between FMA appeared in 2017 (Figure 5A,D), which was concomitant with the crushing of the 
NuM understory (Figure S9). This difference of soil solution composition probably also explains 
the more acidic conditions observed in the NuM soil (Figure 5G), as dissolved organic matter in 
this kind of podzols is known to contain various organic acids (Juste, 1965; Mignot-Delprat, 1997). 
Conversely, the presence of an abundant layer of living N-fixers did not induce nitrate leaching in 
the deep soil layers, as it may have been anticipated based on the literature (H3; Drake, 2011). 

Another possible difference between FMA regarding soil solutions was their ionic strength as 
estimated by electrical conductivity (Simón & Garcıá, 1999). For this property, the FMA seemed to 
rank as follows: WBP>NuM>COM (Figure S12A-B). Soil solution chemistry is often dominated by 
calcium (Schneider, 1997), even in acidic forest soils (Augusto & Ranger, 2001) such as these 
podzols (Merzeau, 1983), and so we interpreted the high conductivity values under the WBP stand 
as the consequence of high Ca concentrations (Figure S12D-E), but also as a result of different 
soil water moisture levels (Figure 2A-B). Nevertheless, because of the observational nature of the 
present study, this possible difference needs further investigation for confirmation. 
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Figure 5 - Soil solution nitrogen. DON%: percentage of total nitrogen composed of 
dissolved organic nitrogen (A-C), NO3%: percentage of total nitrogen composed of 
NO3 (D-F), pH value (G-I). Red=wood biomass production (WBP); green=nutrient 
management (NuM); blue=combined objective management (COM). 

Possible biogeochemical consequences on the water table and drained waters 

The water table was characterised by acidic conditions, with large fluctuations between pH=4 
and pH=5, but without any clear influence of FMA (Figure 6A) except water conductivity that 
seemed to be slightly lower under the COM as compared with other FMA. The striking result in the 
conductivity dynamics was not related to FMA but to the large peaks in 2020-2021, 2023 and, to a 
lesser extent, 2018 (Figure 6B). These peaks generally coincided with periods of high water table 
levels (Figure 3). The water table was also characterised by low values, and erratic variations, in 
dissolved oxygen (Deirmendjian et al., 2019), with no clear seasonal pattern (Figure 6C). These 
variations were negatively associated with Fe2+ concentrations (r=-0.36; P=0.001; Deirmendjian et 
al., 2019), and turbid and smelly (H2S odour) water (χ2=10.7, P=0.014), which were collected 
mainly during the winter season. Finally, the water table composition was characterised by low 
nutrient concentrations such as nitrogen, which was often below 1 mg L-1 and always below 2 mg 
L-1 (Figure 6D). 
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Figure 6 - Watertable physico-chemical properties. Red = wood biomass production 
(WBP); green = nutrient management (NuM); blue = combined objective 
management (COM). 

In drainage ditches, the water chemistry showed a negative relationship between DOC and 
dissolved oxygen (DO2; r=-0.38; P=0.013). More precisely, during the winter, the DOC values 
increased while the DO2 values decreased along the drainage route (Figure S13A-B), indicating 
concomitant re-oxygenation and mineralisation (Deirmendjian et al., 2018). In line with the water 
table dynamics, we observed that the electrical conductivity of the water in drainage ditches 
doubled during the periods of high water level as compared with periods of low water level (Figure 
S13C). It is probable that high water levels dissolved large amounts of organic matter located in 
the topsoil layers, which were then found in the water table and in ditches (Inamdar & Mitchell, 
2007; Deirmendjian et al., 2018, 2019). Nitrate concentrations in ditch waters were generally low, 
but some high values were observed during several winters and were at the expense of DON 
values (Figure S13D). These periods of high NO3 values were however uncommon as water 
chemistry was generally dominated by organic forms (Hedin et al., 1995; McGroddy et al., 2008). 
Whatever the chemical form of nitrogen, drainage ditches were probably a major vector of nutrient 
outputs as they were identified as the main contributors to the surface waters of the study region 
(Rimmelin, 1998; Vernier et al., 2003; Deirmendjian et al., 2018). 

Although it was not possible to quantify nutrient leaching in a reliable way, our results suggested 
that nutrients losses though water outputs were small. Indeed, the concentrations of soil solutions 
at 45 cm and 90 cm remained low compared with other forest ecosystems (Yanai, 1991; Attiwill & 
Adams, 1993; Berden et al., 1997; Ranger et al., 2001, 2007; Jussy et al., 2004; van der Salm et 
al., 2007; Sohrt et al., 2019). In addition, the water table chemical composition showed no obvious 
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symptom of pollution and was more oligotrophic than the mean values of the study region 
(Courcoux, 1982; Merzeau, 1983; Jolivet et al., 2007). Our data interpretation is also consistent 
with the literature, which showed that N leaching in forests is related to atmospheric N deposition 
and forest floor C/N ratio (van der Salm et al., 2007). Notably, N leaching increases with increasing 
atmospheric N deposition (Templer et al., 2022), and is generally negligible when atmospheric 
deposition is lower than 14 kg-N ha-1 yr-1 (van der Salm et al., 2007), which was the case of our 
experimental platform (Table 2). Similarly, N leaching in forest ecosystems is generally negligible 
when the forest floor C/N ratio has values higher than 30 (Gundersen et al., 1998), which is the 
case of Pinus pinaster stands (»34-44; Augusto et al., 2010). Finally, our data interpretation is 
consistent with other studies that were carried out in the same region, which all concluded that N 
leaching and P leaching were lower than respectively 2.0 kg-N ha-1 yr-1 and 0.2 kg-P ha-1 yr-1, mainly 
as organic forms (Courcoux, 1982; Campagne, 1997; Rimmelin, 1998; Vernier et al., 2003; De Wit 
et al., 2005). To sum up, we concluded that nutrient losses through soil leaching were probably of 
low magnitude. Nevertheless, further investigations are still needed, because simulations 
produced by the GO+ model (Moreaux et al., 2020) indicated that the annual water seepage from 
soils was substantial (500±66 mm yr-1) and even more important during years with high rainfall 
(total range over a decade=221-808 mm yr-1; r=+0.90 between annual rainfall and annual 
seepage). 

Vegetation response to forest management alternatives 

Tree nutrition in the study region is characterised by deficiencies in several nutrients, notably 
potassium and magnesium (Demounem, 1979) and above all phosphorus (Trichet et al., 2009), 
which explains the common use of P fertilisation in local silviculture (Table 1). Fertilisation at 
plantation probably improved tree nutrition as shown by foliage P content (Figure 7B), but foliage 
P content decreased over time and the same trend was visible for most nutrients (Figure 7A-E), 
suggesting a phenomenon of nutrient dilution induced by tree biomass growth (Jarrell & Beverly, 
1981; Manghabati et al., 2019). This decreasing trend was broken for N and K after five years, 
which coincided with the first major operations of understory control (Figure S9), as the N-K foliage 
content increased sharply and remained at high levels (Figure 7A,C). Spontaneous vegetation may 
be competitors of trees (South et al., 2006) and the composition of the local vegetation (Pteridium 
aquilinum, Molinia caerulea, Rubus fruticosus, Calluna vulgaris and Ulex europaeus) is well-known 
at the national scale (Dumas et al., 2022) and at the regional scale (Vidal et al., 2021; Bon et al., 
2023) for being particularly competitive species. Thus, reducing the biomass of the spontaneous 
vegetation probably reduced the competition for nutrient uptake. In addition, vegetation crushing 
produced large amounts of fresh litter that probably released nutrients quickly, such as potassium 
(Bessaad & Korboulewsky, 2020) and nitrogen (Vidal et al., 2019). The foliage nutrient content 
showed no difference between FMA, except for a lower P content for NuM and a lower K content 
for WBP after the first vegetation control. Nitrogen nutrition was not improved by the introduction 
of N-fixers in the NuM stand, in contradiction to our a priori expectation (H3). These trends will be 
further investigated using the trial site (in completely randomised blocks) of the XyloSylve platform. 

Contrary to foliage nutrient data that showed no –or only minor– differences between FMA, the 
tree growth data clearly differentiated the three tested silvicultural treatments. One important 
difference between FMA was the initial stand density (Table 1). As expected, because high stand 
density induces high competition among trees (Lee & Choi, 2019), we observed that tree survival 
rate (Figure 8A) and tree growth (Figure 8B-C) were high where the stand density was low. In 
addition, trees invested relatively more in aboveground biomass with increasing stand density 
(WBP FMA; Figure 8D), probably as a consequence of competition for access to sunlight (Ilomaki 
et al., 2003). At the stand scale, however, the WBP FMA had the highest stand biomass, because 
having small individuals was compensated by having numerous individuals (Figure 8E-F). After 10 
growing seasons, the WBP FMA accumulated 33% and 22% more biomass than COM and NuM, 
respectively. In other words, the most intensive FMA produced the largest amount of biomass, 
which explains why it was also the WBP FMA that modified the biophysical functioning of the 
ecosystem the most. 
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Figure 7 - Tree nutrition. Foliage (1-year-old needles) nutrient content over time. 
Red=wood biomass production (WBP); green=nutrient management (NuM); 
blue=combined objective management (COM). Dashed grey lines indicate 
nutritional threshold values between adequate nutrition and deficiency for Pinus 
pinaster (see F). Dotted purple lines indicate the mean value of the study region for 
the same tree species. 
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Figure 8 - Tree growth and stand biomass dynamics. Red=wood biomass 
production (WBP); green=nutrient management (NuM); blue=combined objective 
management (COM). 

Conclusions and perspectives 

Our study took place in a field experimental platform characterised by a temperate climate but 
also by particularly unfavourable edaphic conditions. Soils are acidic sandy podzols and inherently 
poor in nutrients. In such a context, the nutritional sustainability of forest stands depends on 
fertiliser inputs (Heilman & Norby, 1998), symbiotic N fixation (Augusto et al., 2005) and 
atmospheric deposition (De Schrijver et al., 2008). Taking into account the demand for nutrients 
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by pine trees (Helmisaari, 1995; Augusto et al., 2010), it is probable that the current rate of 
atmospheric deposition is high enough to supply trees with nutrients (except for P, which is 
supplied through fertilisation), which is well in line with other field studies carried out in unpolluted 
regions (Campo & Gallardo, 2012; Johnson & Turner, 2014). Although it was not possible to 
calculate input-output budgets reliably, because of the methodological constraints associated with 
this approach (Ranger & Turpault, 1999; Paré & Thiffault, 2016), it is probable that budgets are 
close to equilibrium (or in surplus for N in the NuM FMA) at the stage of stand development. The 
effects of contrasting FMA on the biogeochemical functioning of ecosystems were modest 
considering the large structural differences of stands including nitrogen cycling, despite a large 
symbiotic fixation flux in the NuM FMA. Nonetheless, it is worth mentioning that the trees remained 
small during a long initial period, probably delaying the biogeochemical consequences of FMA. 
This is particularly important for the soils studied, because the functioning of podzols is very 
dependent on soil organic matter (Juste, 1965; Lundstrom, 1993; David et al., 1995; Jansen et al., 
2005; Augusto et al., 2010), a compartment of the ecosystem that changes slowly over time 
(Korner, 2003; Balesdent et al., 2018). Consequently we anticipate that the influence of FMA on 
ecosystem biogeochemistry will increase with increasing tree age and management modifications. 
In addition, the tested FMA have designs that include important treatments at mid-stage 
development. In practice, the NuM FMA will receive a wood ash application to supply the 
ecosystem with nutrients (Gomez-Rey et al., 2013), while WBP will be thinned and COM will be 
planted with Mediterranean oak species. The functional consequences of these managements will 
be assessed in the monitoring site of the XyloSylve platform but also in its trial site, which will 
enable to statistically test the observed effects. 

FMA had stronger effects on biophysical processes (light transmittance, rainfall transmittance, 
temperature and moisture) and biomass allocation in the ecosystem than on biogeochemical 
processes. Within the scope of this study, the most intensive FMA –based on dense plantation 
dedicated to wood biomass production (WBP)– showed important effects on stand microclimate 
with higher moisture and lower temperature. This density-microclimate interaction in young 
plantations may be an important indication of how forestry could be adapted to climate change, as 
the study region is possibly exposed to a future reduction of plant growth due to water stress 
(Loustau et al., 2005). This is particularly relevant in the driest parts of the Landes de Gascogne 
forest, which are known to be water-limited, whereas the wettest parts (where the XyloSylve 
platform is located) are P-limited (Trichet et al., 2008, 2009; Bon et al., 2023). 

Finally, although the relationship between stand density and superficial microclimate was 
expected (Rambo & North, 2009; Kovács et al., 2017), the recurrent effect on deep soil and water 
table temperature was surprising and to our knowledge not yet reported. Also, taking into account 
the possible role of the water table for tree water supply (Vincke & Thiry, 2008), we posit that future 
studies about forest functioning should include the water table in the atmosphere-vegetation-soil 
continuum. 
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