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Abstract

Ruminants play an important role in global warming by emitting enteric methane (CH4) through the degrada-
tion of feeds by the rumen microbiota. To better understand the dynamics fermentation outputs, including
CH, and volatile fatty acids (VFA) production, mathematical models have been developed. Sensitivity analysis
(SA) methods quantify the contribution of model input parameters (IP) to the variation of an output variable
of interest. In animal science, SA are usually conducted in static condition. In this work, we hypothesized that
including the dynamic aspect of the rumen fermentation to SA can be useful to inform on optimal experi-
mental conditions aimed at quantifying the key mechanisms driving CH4 and VFA production. Accordingly,
the objective of this work was to conduct a dynamic SA of a rumen fermentation model under in vitro con-
tinuous conditions (close to the real in vivo conditions). Our model case study integrates the effect of the
macroalgae Asparagopsis taxiformis (AT) on the fermentation. AT has been identified as a potent CHy4 inhibitor
via the presence of bromoform, an anti-methanogenic compound. We computed Shapley effects over time
for quantifying the contribution of 16 IPs to CH4 (mol/h) and VFA (mol/l) variation. Shapley effects integrate
the three contribution types of an IP to output variable variation (individual, via the interactions and via the
dependence/correlation). We studied three diet scenarios accounting for several doses of AT relative to Dry
Matter (DM): control (0% DM of AT), low treatment (LT: 0.25% DM of AT) and high treatment (HT: 0.50% DM
of AT). Shapley effects revealed that hydrogen (H,) utilizers microbial group via its Monod H, affinity constant
highly contributed (> 50%) to CH4 variation with a constant dynamic over time for control and LT. A shift on
the impact of microbial pathways driving CH,4 variation was revealed for HT. IPs associated with the kinetic of
bromoform utilization and with the factor modeling the direct effect of bromoform on methanogenesis were
identified as influential on CH4 variation in the middle of fermentation. Whereas, VFA variation for the three
diet scenarios was mainly explained by the kinetic of fibers degradation, showing a high constant contribution
(> 30%) over time. The simulations computed for the SA were also used to analyze prediction uncertainty. It
was related to the dynamic of dry matter intake (DMI, g/h), increasing during the high intake activity periods
and decreasing when the intake activity was low. Moreover, CH4 (mol/h) simulations showed a larger variabil-
ity than VFA simulations, suggesting that the reduction of the uncertainty of IPs describing the activity of the
H,, utilizers microbial group is a promising lead to reduce the overall model uncertainty. Our results highlighted
the dynamic nature of the influence of metabolic pathways on CH,4 productions under an anti-methanogenic
treatment. SA tools can be further exploited to design optimal experiments studying rumen fermentation and
CH,4 mitigation strategies. These optimal experiments would be useful to build robust models that can guide
the development of sustainable nutrition strategies.
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Introduction

Reducing methane (CH4) emissions from ruminants is an important challenge for the livestock
sector. At the global level, these emissions are responsible of 14.5% of total greenhouse gases
(GHG) from human activity sources (FAO, 2017), highlighting the important role of ruminants in
global warming. In this context, The Intergovernmental Panel on Climate Change (IPCC, 2022)
highlighted that decreasing agricultural CH4 emissions by 11 to 30% of the 2010 level by 2030 and
by 24 to 47% by 2050 must be achieved to meet the 1.5 °C target of the Paris Agreement. In
addition, Arndt et al. (2022) indicated that some mitigation strategies scenarios may allow to meet
the 1.5 °C target by 2030. However, this study also highlighted that it was not possible to meet this
target by 2050 considering that expected increase in milk and meat demand will lead to an increase
of GHG emissions.

Ruminants produce CH4 during the degradation and fermentation of feeds (Morgavi et al., 2010;
Beauchemin et al., 2020). The fermentation process is done by a complex community of microbes
inhabiting the forestomach (rumen) of ruminants. These microbial community (rumen microbiota)
are constituted by members of bacteria, archaea, fungi and protozoa. The products of fermentation
include volatile fatty acids (VFA), which are useful compounds for the animal, and CH4. The
development of mitigation actions aiming to reduce the enteric CH4 production without affecting
animal performance and welfare is a crucial challenge for the field (Hristov et al., 2013; Pellerin et
al., 2013; Torres et al., 2020).

To better understand rumen fermentation and help design such strategies, mechanistic models
describing the dynamic process of the rumen fermentation were developed. A synthesis of the
characteristics of these models is presented by Tedeschi et al. (2014). Among these, the three
most popular dynamic mechanistic models of rumen fermentation are: Molly (Baldwin et al., 1987),
Dijkstra et al. (1992) and Karoline (Danfeer et al., 2006). More recently, Pressman and Kebreab
(2024) provided a review of current state of rumen models, and tried to identify future needs for
improving the representation of the impact of feed additives on rumen fermentation dynamic. This
work added the model of Mufioz-Tamayo et al. (2016; 2021) as another “lineage” of rumen models.
It is one of the two mechanistic models available representing the effect of a feed additive on the
rumen fermentation.

All the mechanistic models involved numerous input parameters (IPs) representing biological
and physical processes. The complexity of such models raises the need to investigate model
behaviour, including the various relationships among IPs and outputs. To address this need,
sensitivity analysis (SA) methods were used to assess the contribution of IP variability on the
variability of the output of interest, identifying IPs which contribute the most to model predictions
variability from those having a negligible effect (Faivre et al., 2013; looss and Lemaitre, 2015;
Saltelli et al., 2008, 2005).

In animal nutrition, SA is usually conducted on mechanistic models with the main objective of
reducing their complexity and identifying which IPs require more accurate measurements for
reducing output uncertainty. For instance, Huhtanen et al. (2015) and van Lingen et al. (2019)
used linear regressions for describing the effects of some parameters on the variation of daily scale
enteric CH4 emissions in the Karoline model and an updated version of the Dijkstra model,
respectively. In addition, Morales et al. (2021) and Dougherty et al. (2017) computed the Sobol
indices (Sobol, 1993) for quantifying the effects of 19 and 20 parameters on several output
variables of the Molly and AusBeef (Nagorcka et al., 2000) models, respectively. Morales et al.
(2021) did not consider the CH4 production among the 27 output variables studied, while VFAs
were considered. Dougherty et al. (2017) considered the daily CH4 production in the output
variables. In both studies, uniform distributions were set for exploring parameter variability.
Recently, Merk et al. (2023) adapted and calibrated the model of Mufoz-Tamayo et al. (2021) to
represent experimental data from the in vitro RUSITEC study of Roque et al. (2019), which aimed
at evaluating the effect of the macroalgae Asparagosis taxiformis (AT) on CHs production and
rumen microbiota. Authors used a Sobol based approach for identifying key parameters associated
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to microbial pathways driving CH4 production with and without the presence of AT. Despite these
contributions, SA is rarely applied to animal nutrition models, but many applications are found in
other fields of animal science. For instance, many works implementing SA on epidemiological
models are available in the literature. Lurette et al. (2009) conducted a dynamic SA based on a
principle component analysis and on analysis of variance, to identify key parameters influencing
Salmonella infection dynamics in pigs. More recently, Farman et al. (2025) investigated the impact
of various parameters on the progression of the brucellosis infection disease in cattle, by
computing the partial rank correlation coefficient.

Although different SA approaches were applied to mechanistic models of the rumen
fermentation in the literature, several aspects still need to be explored. One aspect is the dynamic
characteristic of the rumen fermentation. Most of the studies mentioned above explored sensitivity
of rumen mechanistic models at a single time point or under steady state conditions. However, our
hypothesis is that the influence of model parameters is of dynamic nature, since the rumen is a
dynamic system. Characterizing such dynamic influence is of relevance to better understand
rumen function (Morgavi et al., 2023), and represents the central step of an optimal experiment
design aiming at identifying experimental conditions enabling accurate estimation of model
parameters, and thus accurate characterization of mechanisms. Mufioz-Tamayo et al. (2014)
highlighted the importance of optimal experimental designs for improving parameter estimation
accuracy of a microalgae growth model. This characterization could also be useful to help design
CH4 mitigation strategies, in a context where investigating the combined effect of several CHs
mitigating compounds is an active research topic in animal nutrition. To our knowledge, SA has
not been applied in dynamic conditions for studying CHs4 and VFA predictions of rumen models,
highlighting a first gap to be filled.

Other aspect to explore in mechanistic models is the nature of the contribution of the IPs to
model outputs by identifying: 1) the effect due to the IPs alone, 2) the effect due to the interactions
between the IPs and 3) the effect due to the dependence or correlation between the IPs. Some
references mentioned above implemented a method differentiating some effects of the contribution
of an IP to output (individual, interaction and dependence/correlation). Dougherty et al. (2017)
computed first-order and total Sobol indices (Homma and Saltelli, 1996), quantifying the individual
and interaction effects of IPs. Whereas, van Lingen et al. (2019) concluded that there was no
interaction between parameter covariates when studying the variation of daily scale enteric CHa
emissions. The quantification of the contribution due to the dependence/correlation between the
IPs has been an important research activity of the applied mathematics field for several years now
(Kucherenko et al., 2012; Mara et al., 2015; Xu and Gertner, 2008). Not all the SA methods are
able to identify these three effects, conducting to biases in the estimated sensitivity indices. The
characterization of these three effects in rumen dynamic models was not performed in previous
works, highlighting a second gap to be filled.

Therefore, the aim of this work was to fill these two gaps, by conducting a complete dynamic
SA of a mechanistic model of rumen fermentation under in vitro continuous conditions accounting
for the effect of AT on the fermentation and CH4 production. The representation under in vitro
conditions means that the rumen fermentation is reproduced outside the living organism, in a
controlled laboratory reactor.

The model studied extends previous developments of Muioz-Tamayo et al. (2016; 2021). The
AT macroalgae has been identified as a potent CH4 inhibitor (Machado et al., 2014), with reported
in vivo reductions of CH4 emissions over 80% and 98% in beef cattle (Kinley et al., 2020; Roque
et al., 2021). Moreover, developing dynamic models able to represent the effect of feed additives
on rumen fermentation was highlighted as crucial by Pressman and Kebreab (2024), and AT is
one of the most promising inhibitors. The original model (Muioz-Tamayo et al., 2021) represented
the fermentation under batch conditions. We extended the model to account for continuous
conditions which aimed at providing a model closer to the in vivo conditions, which means a
representation of the rumen fermentation integrating the animal. This extension allowed to simulate
dietary scenarios accounting for several doses of AT. These scenarios were set according to an
in vitro study (Chagas et al., 2019) aimed to reproduce forage-based diets typical of dairy and beef
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cattle systems, testing several doses of AT. We hypothesized that applying dynamic SA to these
scenarios could be a way to improve our knowledge of microbial pathway mechanisms according
to different diets and treatments.

The SA method implemented was the Shapley effects (Owen, 2014). The added value of the
Shapley effects is the consideration of the three effects of an input on an output. Here, this is an
academic exercise, as no dependencies or correlations between parameters are present in the
model studied, but using this type of methods is crucial in the future. By applying this SA method
over time in a context considering the effect of a CH4 inhibitor, we are able to identify the
parameters explaining the variation of CH4 and VFA, and to investigate how the contribution of
these parameters move according to the inhibitor doses. These parameters are associated with
different factors representative of different microbial pathways of the fermentation. Therefore, at
the end, we are able to identify which factors/pathways contribute the most to CH4 and VFA
variation, and to quantify these contributions. This can be useful, in addition to in vitro and in vivo
studies, to know on which factors to play to reduce CH4 production.

Also, the in silico or numerical experiment framework in which SA is conducted was used to
analyze the uncertainty associated with the outputs of interest over time.

This work also addresses the limitations pointed out by Tedeschi (2021) in the evaluation
process of the model in Mufioz-Tamayo et al. (2021), which did not include SA to assess the impact
of model parameters on the model outputs.

Methods

First, a full description of the mechanistic model studied in this work is performed. This
description includes the conceptual representation of the rumen fermentation phenomenon, the
presentation of model equations, and the explanation of how the effect of AT on the fermentation
was integrated in the model. Second, all the elements of the sensitivity analysis implementation
are presented, with the description of the IPs studied, simulation scenarios considered and
sensitivity analysis method implemented. Finally, we address how the uncertainty of model
simulations were investigated.

Presentation of the mechanistic model

The model represents a rumen simulation technique (RUSITEC) system on a daily scale.
Characteristics of the simulated RUSITEC system were taken from the setting used in Belanche
et al., 2017. In the model, the rumen fermentation is represented as a reactor with a liquid phase
of volume V; and a gas phase of volume V;,. The total volume of the system was set to 0.8 L with a
separation of 0.74 L in liquid phase (1) and 0.06 L in gas phase (V). The feed “ingested” by the
reactor is the input flux of the system. The biochemical mechanisms occurring during the
degradation of the feed by the microbial community of the rumen with AT supply are represented
according to assumptions described in Mufioz-Tamayo et al. (2016; 2021). The model has 19
biochemical components in liquid and gas phase. The dynamics of the 19 state variables are
represented by ordinary differentials equations. The model considers that system is completely
mixed, which means that spatial variation is not directly modeled.

Phenomena representation

The structure of the rumen fermentation model used in this study is determined by the
representation of two phenomena namely the flow transport and microbial fermentation. The first
is a biochemical (e.g., liquid-gas transfer) and physical phenomenon (e.g., output flow due to
dilution rate) describing the transport fluxes in the system, here represented as a reactor. The
second is a biological phenomenon describing the microbial fermentation of feeds.

The system studied is displayed in Figure 1.
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Figure 1 - Representation of the in vitro continuous system. The system is
composed of liquid and gas phases associated with the volumes 1} and s,

respectively. The liquid-gas transfer phenomena occur with the rate pr g,s. 2, s;, x;,
SgH,» Sgco, and sgcy, correspond to the concentrations of the biochemical

components produced from the fermentation (the polymer components, the soluble
components, the microbial functional groups, the hydrogen in gas phase, the carbon
dioxide in gas phase and the methane in gas phase, respectively). They are the
state variables of the Mufioz-Tamayo et al. (2021) model. F;, represents the input
flux of the system, which is computed based on the feed intake described by the
polymer component concentration (z;). F,y; and Fy. ; represent the output fluxes in

liquid and gas phase, respectively.

This system is represented as a reactor system similar to engineering anaerobic digestion
reactors (Batstone et al., 2002). It should be noted that Mufioz-Tamayo et al. (2021) model is a
batch system, not considering input and output flow rates. The daily total dry matter ingested
(DM;ptar) was of 11.25 g. In our model, the dry matter intake (DMI) at a given time t was set as a
dynamic equation determined by the number of feed distributions (n,.), which corresponds to the
act of the feed being distributed in the RUSITEC system. For the feed distribution j, the DMI
kinetics follows
(1) DMI(t) = z?;lw. ekt

nr

Where DM, is the total quantity of dry matter (DM) ingested in one day (g), An; is the fraction
of DM,,.,; supplied in the distribution j and k (h™) is the intake kinetic rate. DM,,.,, was set to
11.25 g supplied in two feed distributions (n, = 2). We set the first feed distribution to account for
70% of the total DM (4,,, = 0.7). This configuration provides a DMI kinetics composed of two

distributions with a significantly greater amount of DM ingested during the first intake and a medium
intake kinetic (Figure 2).
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Figure 2 - Dry matter intake (DMI, g/h) over time (h) simulated for one day with
DM;ppq; = 11.258, n, = 2, 4,, = 0.7 and k = 0.015.

The feed intake constitutes the input flux of the system. The feed is degraded by the rumen
microbiota, leading to the production of several components in liquid and gas phase. Polymer
components, soluble components and microbial functional groups are the components in liquid
phase, and hydrogen, carbon dioxide and CH4 are the components in gas phase. Chemical
compounds leave the system in liquid and gas phases as shown in Figure 1.

The representation of the fermentation process is displayed in Figure 3. It corresponds strictly
to what happens in the liquid phase (blue box of Figure 1). Biochemical assumptions used to
describe the fermentation and the effect of AT are detailed in Mufioz-Tamayo et al. (2016; 2021).
The main ones are described in the caption of Figure 3.

Y

l Fiber carbohydrates I I Non-fiber carboh_vdrares‘ I Proteins ‘

Bromoform

| (fromA. taxiformis)

4—‘| Glucose Amino acids }—» A
\

> [ |

>l >lg >lg e v 4 pornessanasenn
T oy
I Acetate I | Butyrate | I Proplonatel Y\E\ (—D V
: ¥ —
) ) S=—NH3
D Particulate components [:] Soluble components . Microbial groups ] Components in gas phase . Methanogen inhibitor

Figure 3 - Representation of the in vitro rumen fermentation from Mufioz-Tamayo et
al., (2021) model. This conceptual representation is based on biochemical
assumptions described in Mufioz-Tamayo et al. (2016; 2021). The main assumptions
are: 1) three polymer components are considered in the rumen: fiber carbohydrates,
non-fiber carbohydrates and proteins, 2) hydrolysis of polymer components releases
glucose (for fibers and non-fibers) and amino acids (for proteins), constituting two of
the three soluble limiting substrates available in the rumen. The last soluble limiting
substrate available is hydrogen, 3) the rumen microbiota is represented by three
microbial functional groups (glucose utilizers, amino acids utilizers and hydrogen
utilizers) determined by the microbial utilization of the three soluble limiting substrates
in the fermentation pathway, 4) the utilization of the soluble substrates by biological
pathways is done towards two mechanisms: product formation (single arrows) and
microbial growth (double arrows), 5) acetate, propionate and butyrate are the only
volatile fatty acids produced from the fermentation and 6) methane, carbon dioxide
and hydrogen are the gas outputs of the fermentation. The inclusion of bromoform as
the inhibitor compound of AT impacted the fermentation via two mechanisms. First,
the bromoform has a direct inhibition of the growth rate of methanogens, resulting in
a CHa production reduction and hydrogen accumulation (represented by @). Second,
the bromoform affects indirectly, through the hydrogen accumulation, the flux
allocation towards VFA production, as hydrogen exerts control on this component
(Mosey, 1983) (represented by ><).
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The resulting model comprises 19 state variables corresponding to 19 biochemical component
concentrations in liquid and gas phases.

System characteristics, intake and dietary scenarios

The consideration of feed intake (Figure 1) in the model studied allows to simulate dietary
scenarios. In the system, the feed intake is composed of one intake scenario, which defines the
intake dynamic, and one diet scenario, which defines the diet composition. The intake scenario is
simulated before running the model by computing Equation 1 setting parameters with expert
knowledge, conducting to Figure 2. Whereas, the diet scenario is set when computing the input
flux F; ;, associated with the three polymer components (Equation 2, presented later). The fractions
of fiber carbohydrates, non-fiber carbohydrates and proteins in the diet (wygf, Wnsc, Wpro) Were set
using data from an in vitro study assessing several dietary CH4 mitigation strategies, including AT,
on the fermentation (Chagas et al., 2019). This experiment tested the impact on CH4 production of
several doses of AT from 0 to 1% DM (containing 6.84 mg/g dry weight of bromoform) in the diet.
The diet was composed of 38.7% DM of neutral detergent fiber (w, 4¢), 39.7% DM of non-structural
carbohydrates (w,s) and 16% DM of crude proteins (wp,). We analyzed three simulation
scenarios: A control treatment with 0% of AT, a low treatment with 0.25% of AT and a high
treatment with 0.50% of AT (Figure 4).

O Total volume of the system = 0.8 L (= 0.74 L in liquid phase (V;) + 0.06 L in gas phase (V,))
O  Total dry matter intake in one day (DM,,,,)) = 11.25 g/d

A 4

Intake scenario (expert knowledge)
Dry matter intake simulated with the equation from Mufioz-Tamayo et al., 2019

A,,- DM
DMI(t) — Inp ” Ttotal

[ System characteristics (Rusitec condition from Belanche et al., 2017) ]

ekt

Equation parameters set with expert knowledge
Q Number of intake in one day (n;) = 2
Q Distribution of DMota) between intakes (A, ) = 70%/30%

O Intake rate (k) = 0.015

Diet scenario (Chagas et al., 2019)

Q % of neutral detergent fiber = 38.7%
Q % of non-structural carbohydrates = 39.7%
Q % of proteins = 16%
r = i Y S S —— * ___________
| Control ( . L . \
W= 0% "\4 Integration of Bromoform from Asparagopsis taxiformis I
\ - 0 Content of Bromoform in Asparagopsis taxiformis (x,, xr) = 6.84/1000
| O 2treatments tested determined by fraction of Asparagopsis taxiformis in the feed (w ) |
-—— - —— i — e ————— - - —— -
e e —T T X
] Llow level P ]| Highlevel
\ Wyr = 0.25%-'I v Wy =0.5% -'I

Figure 4 - Summary of system characteristics, intake scenario and diet scenario
simulated with the mechanistic model.

The initial condition of bromoform concentration was set to zero for all the three treatments.
These three scenarios are representative of a typical forage-based diet for dairy or beef cattle,
testing three reasonable doses of AT, which were also studied in vivo (Roque et al., 2021).

Model equations

Model state variables are defined as § = (z,s,X,sg), Where z = (z,qr, Znsc, Zpro ) IS the vector of
concentrations of the polymer components (neutral detergent fiber (z,q4¢), non-structural
carbohydrates (z,sc) and proteins (zpro); 9/L), S = (Ssur Saar Sacs Sbus Spr SIN» SiC» SHy» Sch,» Sbr) 1S the
vector of concentrations of the soluble components (sugars (s, ), amino acids (s,,), acetate (s,.),
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butyrate (sy,, ), propionate (s, ), inorganic nitrogen (s;y), inorganic carbon (si¢), hydrogen (sy, ), CHa
(Scu,) and bromoform (sy.); mol/L), x = (xsu, Xaa tz) is the vector of concentrations of the
microbial functional groups (sugars utilizers (x,,), amino acids utilizers (x,,) and hydrogen utilizers
(xw,); MOIIL) ,Sg = (Sgco,» SgH, Sgch, ) IS the vector of concentrations in gas phase (carbon dioxide
(Sg,co,), hydrogen (sgy,) and CHa (sgcn,); mol/L). The polymer components include an input flux
in their equation and all the components are associated with an output flux in liquid or gas phase.
The input flux (g/(Lh)) of polymer components is described as

w;. DMI(t)

@) Fin(®) = 22!

where w; is the fraction of polymer component i in the diet of the animal, DMI is the DM intake
(g/h) with a total DM of 11.25 g split in two feed distributions along the day with the first distribution
accounts for 70% of the total DM, and 1; the volume in liquid phase of the rumen (L).

The output flux in liquid phase (g/(Lh) for polymer components and mol/(Lh) for soluble and
microbial functional groups components) is described as

(3) F; out1 = D .z;, for polymer components
4) F; out1 = D .s;, for soluble components
(5) F; out1 = D .x;, for microbial functional groups

where D is the dilution rate (D = 0.035 h™!, Bayat et al., 2011), z; is the concentration of polymer
component i, s; is the concentration of soluble component i and x; is the concentration of microbial
functional group i.

The output flux in gas phase (mol/(Lh)) is described as

dg -Sg,i
F =
(6) toutg Vg
where g, = BT 1 Pty *Prico, *Pmcms) g g output flow of gas phase (L/h) wit R the ideal gas

P-pu,0
constant (barL/(molK)), T the temperature of the rumen (K), prn,, pr.co, and prcu, the liquid-gas
transfer phenomena rates of hydrogen, carbon dioxide and CH4 (mol/(Lh)), respectively, P the total
pressure (bars) and py,o the partial pressure of water vapor (bar). sy, is the concentration of
component i in gas phase (mol/L) and V; is the volume in gas phase of the rumen (L).

Model equations are derived from mass balance equations described below.

For polymer components
7 dzndfs _ _ - F
(7) 3t Indfin = Pndf ~ Indfoutl
dz
(8) f = Fnsc,in — Pnsc t (fch,x -me)- (pxsu + Pxaa + prz) - Fnsc,out,l
dz
(9) % = Fpro,in - ppro + (fpro,x -me)- (pxsu + Pxaa + prz) - Fpro,out,l

where Fyggin, Fnscin @NdFy0in are the input fluxes of neutral detergent fiber, non-structural
carbohydrates and proteins (g/(Lh)), respectively. pnaf, Pnsc @nd pyr, are the hydrolysis rate

functions of polymer components (g/(Lh)), indicating the kinetic of hydrolysis of polymer
components. These functions are described as

(10) Pi = Knyd,i-Zi

With ky,yq; the hydrolysis rate constant (h'") and z; the concentration of polymer component i
(9/L). Fadtouts Fuscout @Nd Fpro oue @re the output fluxes of polymer components (g/(Lh)). The middle
part of equations (8) and (9) represents the recycling of dead microbial cells where [, , forox are
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the fractions of carbohydrates and proteins of the biomass, w,;, is the molecular weight of microbial
cells (g/mol) and p,_ = kq.Xsy» Px,, = kq - Xaa, Pxy, = ka . xn, are the cell death rate of sugars
utilizers, amino acids utilizers and hydrogen utilizers (mol/(Lh)) with k4 the rate of dead of microbial
cells (h™).

For soluble components

dSsy __ Pndf Pnsc

su Fsu,out,l

( ) dt Wsu  Wsu

(12) % = ?5:: — Paa — Faa,out,l

(13) df;tlz = Yh,su-Psu t Yhyaa - Paa — PH, — PTH, — FHyout)
(14) % = Yacsu-Psu T Yac,aa “Paa — Fac,out,l

(1 5) d;% = Ybu,su - Psu + Ybu,aa «Paa — Fbu,out,l

(16) d;;;r = Yprsu-Psut+ Ypr,aa -Paa — Fpr,out,l

(17) d;ItN = YiNsu -Psu T YiNaa - Paa T YiNH, - PH, — FiNout!
(18) d;% = Yicsu - Psu T Yicaa - Paa T YicH, - PH, — PT,co, — Ficout)
(19) ds;tH4 = Yeu,H, - PH, — P1.cH, — FcH,outl

Let us detail how the amino acids are produced and used by the biological pathways in the
fermentation process. Equation (12) indicates that amino acids are produced (positive sign in the
equation) from the degradation of proteins, occurring with the kinetic rate py, (9/L h), which is
divided by the molecular weight of the amino acids w,, (g/mol). Moreover, amino acids are utilized
(negative sign in the equation) by the biological pathways during the fermentation with the kinetic
rate p,, (Mol/Lh). The kinetic rate p,, is a function indicating the kinetic of utilization of amino acids
during the fermentation and is described as

km,aa-Saa-Xaa

(20) paa - K'S,aa+saa

With ki, .o the maximum specific utilization rate constant of amino acids (mol substrate/(mol
biomass h)), s,, the concentration of amino acids (mol/L), x,, the concentration of amino acids-
utilizing microbes (mol/L) and Ks,, the Monod affinity constant associated with the utilization of
amino acids (mol/L). F,, oy is the output flux of amino acids concentration (mol/(Lh)). Then, further
in the fermentation, amino acids are utilized by the specific microbial functional group x,, and
contributed to the production of hydrogen (Equation 13), VFA (Equations 14, 15, 16), inorganic
nitrogen (Equation 17) and inorganic carbon (Equation 18) with a stoichiometry represented by the
yield factors Yy, aas Yacaar Youaar Ypraas Yinaa @Nd Yicaa, respectively. These components are also
produced from glucose metabolism. In the last step of the biochemical conversion cascade,
inorganic nitrogen and inorganic carbon are utilized during the reaction of hydrogen utilization in
liquid phase with the kinetic rate function py, (mol/L h), described similarly as Equation (20). An
additional term (I,) is included to represent the inhibition effect of bromoform on the hydrogen
utilizers (methanogens) as detailed later on. Hydrogen in liquid phase is also associated with a
transfer phenomenon with hydrogen in gas phase given by the rate pry, (mol/(Lh)). This liquid-
gas transfer phenomenon also concerns carbon dioxide with the rate prco, (mol/(Lh)) and CH4
(Equation 19) with the rate pr ¢y, (mol/(Lh)). The general equation of the liquid-gas transfer rate is
described as

(21) Pt = kya. (Si - KH,i-pg,i)

Peer Community Journal, Vol. 5 (2025), article e126 https://doi.org/10.24072/pcjournal.644


https://doi.org/10.24072/pcjournal.644

10

Paul Blondiaux et al.

With k;a the mass transfer coefficient (h™'), s; the concentration (mol/L), Ky; the Henry’s law
coefficient (M/bar) and p,; the partial pressure (bars) of soluble component .

Finally, CH4 in liquid phase is produced using hydrogen in liquid phase with the stoichiometry
Yeu, H,-

For microbial functional groups

dxsy _

(22) dt _ ‘su -Psu ~ Pxg, — Fxsu,out,l
dxXaa _

(23) dat _ ‘aa -Paa ~ Pxyy — ana,out,l
dxHZ

(24) ik YHZ -PH, — prz - FxHZ,out,l

Microbial functional groups of glucose utilizers (Equation 22), amino acid utilizers (Equation 23)
and hydrogen utilizers (Equation 24) are produced from their respective substrates with the yield
factors Y, Y, and Yy,, respectively.

For the gas phase
ds
gC02 __ PT,CO,
(25) ac Vl . Vg - FCOZ,out,g
ds
gHy PTH,
(26) dt Vl . Vg - FHZ,out,g
ds
gCHy __ PT,CHy
(27) dt - Vl . Vg - FCH4,out,g

The dynamics of carbon dioxide (Equation 25), hydrogen (Equation 26) and CH4 (Equation 27)
in gas phase are driven by the liquid-gas transfer phenomena given by the rates pro,, prn, and
pr,cu, (mol/(Lh)), respectively.

Model parameters were either set with values extracted from the literature (Batstone et al.,
2002; Serment et al., 2016), set with values reported from in vitro study providing the experimental
data (Chagas et al., 2019) or estimated using the maximum likelihood estimator as reported in
Mufioz-Tamayo et al. (2021). In the present study, initial conditions of state variables were
determined by running the model for 50 days without AT supply (control condition). The idea was
to reach a quasi-steady state of the state variables. Values corresponding to the last time step
simulated were selected as initial conditions of the model for the further analysis explained below.

Integration of the macroalgae Asparagosis taxiformis
The integration of bromoform contained in AT conducted to the incorporation of the 19™ state
variable representing the dynamic of bromoform concentration.

dSbr _
(28) at Fbr,in - kbr «Shbr — Fbr,out

Where Fy.in = W‘""/—DMI is the input flux of bromoform concentration (g/(Lh)) with wy,,. the fraction
1

of bromoform in the diet of the animal. k;,. corresponds to the kinetic rate of bromoform utilization
(h"") and Forout = D .sp; is the output flux of bromoform concentration (g/(Lh)). The value of ki,
was obtained from data reported in Romero et al. (2023a).

The direct effect of bromoform on the CH4 production is represented through the factor I,
(Equation 29) impacting the kinetic rate function of hydrogen utilization (py,). This factor is a function
of the bromoform concentration and is modeled by a sigmoid shape. Whereas the indirect effect
of bromoform on the flux allocation towards VFA production is represented through the flux
allocation parameters A, describing the three reactions driving flux allocation from glucose
utilization to VFA production. 4;, 1, and A; indicates the molar fraction of glucose utilized to
produce acetate, to produce propionate and to produce butyrate, respectively. They follow 4, +
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A, + 13 = 1. A, (Equation 30) and 4, (Equation 31) are represented by affine functions described
below.

1
1+exp(—p1-(Spr+p2))

(29) Ly =
With s, the bromoform concentration (g/L) and p,, p, the parameters of sigmoid function.
(30) A1 = D3~ Pa- Py,
With py, the hydrogen partial pressure (bars) and p;, p, the parameters of affine function.
(31) A2 = Ps + D6 Pu,

With py, the hydrogen partial pressure (bars) and ps, ps the parameters of affine function.
These factors are displayed in Figure 5.

1.001 W
0.75- \ 0.31 0.42
-5 0501 < 3
0.2 <
0.401
0.251
0.1
0.00. 0.381
00 01 02 03 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Sor (Mg/L) py, (bar) Py, (bar)

Figure 5 - Representation of the direct effect of Asparagosis taxiformis on the
methane production (1) against the bromoform concentration (s, mg/L), and of
the indirect effect of Asparagosis taxiformis, through the hydrogen accumulation, on
the flux allocation towards acetate production (4,) and propionate production (4,)
against the hydrogen partial pressure (py, ).

It should be noted that the model version of Mufioz-Tamayo et al. (2021) includes an inhibition
factor of glucose utilization by hydrogen (Iy,). This factor was incorporated to account for the
reduced production of VFA under AT supply observed in the experiments of Chagas et al. (2019).
However, in the present study, we decided not to include this term. Some studies have shown that
high doses of AT decrease total VFA both in vitro (Chagas et al., 2019; Kinley et al., 2016; Machado
etal., 2016; Terry et al., 2023) and in vivo (Li et al., 2016; Stefenoni et al., 2021). However, in other
studies the total VFA was unaffected by AT supplementation under in vitro (Romero et al., 2023b;
Roque et al., 2019) and in vivo (Kinley et al., 2020) conditions. These discrepancies might be due
to the variability of physical processing of the macroalgae (e.g., drying, storage). The incorporation
of the hydrogen inhibition factor was indeed challenged by Henk van Lingen in the evaluation of
the model in Mufioz-Tamayo et al., (2021) (Tedeschi, 2021). Accordingly, we acknowledge that
this aspect requires further studies, and it is not then included in the present work. We then run
again the calibration of the model without the Iy, factor under batch conditions using the
experimental data from Chagas et al. (2019) to estimate the parameters from equations (28-30).
In the process, with the aim of model simplification, we set the allocation factors 4, 4, as linear
functions of py,. The updated version of the model under batch conditions is available at Mufioz-

Peer Community Journal, Vol. 5 (2025), article e126 https://doi.org/10.24072/pcjournal.644


https://doi.org/10.24072/pcjournal.644

Paul Blondiaux et al.

Tamayo (2020). Table 1 shows the stoichiometry matrix of the biochemical reactions represented
in the model. Table 2 shows the model parameters.

Table 1 - Stoichiometry matrix of biochemical reactions occurring during the rumen

fermentation.
Component - i 1 2 3 4 5 6 7 8 Kinetic
rate
j  Microbial process | Zndf Znsc Zpro Ssu Saa SH, Sac Shu
1 Hydrolysis of NDF -1 1/wgy Pndf
1 Hydrolysis of NSC -1 1/wg, Pnsc
2 Hydrolysis of proteins -1 1/Wa, Ppro
3 Utilization of glucose -1 Y, su Yacsu Yousu Psu
Utilization of amino
4 acids -1 YHz,aa Yac,aa Ybu,aa Paa
5  Utilization of hydrogen -1 PH,
6 Death of sugars utilizers fehx - Wmb forox - Wmb Pxeu
Death of amino acids
7 utiIizers fch,x - Wmb fpro,x -Wmb pxaa
Death of hydrogen
8 utilizers 4 9 fch,x *Wmp fpro,x *Wmp pXHz
9 Inhibition of bromoform
. Kinetic
Component — i 9 10 11 12 13 14 15 16
rate
j  Microbial process | Spr SIN Sic ScH, Xsu Xaa Xy Sbr
1 Hydrolysis of NDF Pndf
1 Hydrolysis of NSC Pnsc
2 Hydrolysis of proteins Ppro
3 Utilization of glucose Vs Yinsu Yicsu Ysu Psu
T,Su
Utilization of amino
4 acids Ypr aa YIN,aa YIC,aa Yaa Paa
5  Utilization of hydrogen Yinu, Yicu, Yeu,u, Yu, Py,
6 Death of sugars utilizers -1 Pxgy
7 Death of amino acids A
utilizers Praa
Death of hydrogen
8 Ltiizers - Prn,
9 Inhibition of bromoform —kyy
Table 2 - Model parameters. Parameters studied in the sensitivity analysis are
highlighted with *.
Definition Unit Value Reference/Criteria
used
Rates
Growth rate of the microbial . .
Uj group j mol j/(L h) Yi.pj Monod equation
Kinetic rate of microbial . Sj N
. ko —I .
pj process j Mol (or g) j/(L h) mJ Ky 45 Xj Monod kinetics
Px; Death cell rate of microbes j  mol j/(L h) kg x;
Mass transfer
Liquid-gas transfer rate of . _r ] phenomena
Prj component j mol j/(L h) kLa. (5j = Kuj- Pgas,) between the liquid
and gas phases
Biochemical parameters
1 Molar fraction of the sugars mol/mol _
1 utilized to produce acetate Ps ~ P4 -PH,
1 Molar fraction of the sugars mol/mol i
2 utilized to produce acetate Ps T Ps - Pu;
Molar fraction of the sugars
45 utilized to produce acetate mol/mol I-(h+)
Grcan Stoichiometry coefficient of mol/mol 0.67 Stoichiometry of

acetate production from

amino acids
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Definition Unit Value Reference/Criteria
used
amino acids utilization fermentation
Stoichiometry coefficient of (Mufoz-Tamayo et
Obu,aa butyrate production from mol/mol 0.24 al., 2021)
amino acids utilization
Stoichiometry coefficient of
Opr,aa propionate production from mol/mol 0.062
amino acids utilization
Stoichiometry coefficient of
Oiy2a hydrogen production from mol/mol 0.82
amino acids utilization
Stoichiometry coefficient of
Oicaa inorganic carbon production mol/mol 0.88
from amino acids utilization
Fraction of hydrogen utilized _ Stoichiometry of
fi for product formation mol/mol 1-10. Yy, reactions
. - represented in the
£ ]Ic:ractlon of glucose utilized mol/mol 1-5 .y, model
u or product formation 6
Mass fraction of . .
fenx carbohydrates in the a/g 0.20 I;{g;cshl and Baldwin,
microbial cells
f Mass fraction of proteins in I 0.55 Reichl and Baldwin,
prox the microbial cells 99 ) 1975
Kinetic rate constant of Romero et al.
* -1 )
For bromoform utilization h 0.095 2023a
kq Death cell rate constant h 8.33e-04 Batstone et al., 2002
* Hydrolysis rate constant of 1
knydnar cell wall carbohydrates h 0.024 Chagas et al. 2019
* Hydrolysis rate constant of 1 .
Knyanse non-structural carbohydrates h 0.06 Estimated
* Hydrolysis rate constant of A .
knyd,pro proteins h 0.09 Estimated
* Maximum specific utilization .
Fmaa rate constant of amino acids mol /(mol h) 2.00 Estimated
* Maximum specific utilization .
Kmu, rate constant of hydrogen mol /(mol h) 16 Estimated
* Maximum specific utilization Mufioz-Tamayo et
Fem,su rate constant of glucose mol /(mol h) 1.00 al., (2021)
Monod constant associated
Ksaa® with the utilization of amino mol/L 6.40e-03 Baldwin et al., 1987
acids
Monod constant associated Robinson and
Kon,* with the utilization of mol/L 5.84e-06 o
2 h Tiedje, 1982
ydrogen
Kosu® Monod constant associated ), 9.00e-03 Baldwin et al., 1987
’ with the utilization of glucose
. oo Baldwin and
Ksin Nitrogen limitation constant mol/L 2.0e-04 Denham, 1979
Microbial biomass yield
Yaa factor of amino acids mol/mol 0.31 Estimated
utilizers
Microbial biomass yield Mufioz-Tamayo et
Vi, factor of hydrogen utilizers mol/mol 0.006 al., (2021)
v Microbial biomass yield mol/mol 0.16 Mufioz-Tamayo et
su factor of glucose utilizers ’ al., (2021)
Yield factor of the acetate 2
Yacsu during utilization of glucose mol/mol fou- @43 4)
Yield factor of the butyrate
Yousu during utilization of glucose mol/mol fu- ()
Yield factor of the propionate 4 o
Yorsu during utilization of glucose mol/mol fou -G - A2) St0|ch|ometry of
Yield factor of the hydrogen reactions .
Y, su during utilization of glucose mol/mol fou (4.2, +2.23) represented in the
: . . model
Yield factor of the inorganic
Yinsu nitrogen during utilization of mol/mol —Yu
glucose
Yield factor of the inorganic )
Yicsu carbon during utilization of mol/mol fou-(2.44 +3 A+ 2.43)
glucose
Y Yield factor of the methane mol/mol f (1)
CHyHz during utilization of hydrogen Hz * %4
Yield factor of the inorganic 5
Yick, g mol/mol -(G) fu, + (5)- (= fu >

carbon during utilization of
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Definition Unit Value Reference/Criteria
used
hydrogen
Yield factor of the inorganic
Yinu, nitrogen during utilization of mol/mol —Yy,
hydrogen
Yield factor of the
Yiaa component i during mol/mol (1 =Ya2).0iaa
utilization of amino acids
Yield factor of the
component inorganic _
Yinaa nitrogen during utilization of mol/mol Naa = Yaa Ny
amino acids
Physicochemical parameters
Equilibrium constant of
Kaco, bicarbonate 5.13e-07 Batstone et al., 2002
K Equilibrium constant of 1.44-09 Batstone et al., 2002
PN ammonium
K, vra Equilibrium constant of VFA 1.74e-05 Batstone et al., 2002
K, Equiibrium coefficient of 2.75e-14 Batstone et al., 2002
kia Liquid-gas transfer constant ht 8.33 Batstone et al., 2002
Kico Henry's law coefficient of o, 2.46e-02 Batstone et al., 2002
P2 carbon dioxide
Kuscn Henry's law coefficient of 5 1.10e-03 Batstone et al., 2002
e methane
. Henry's law coefficient of o 7.23e-04 Batstone et al., 2002
2 hydrogen
P Pressure bars 1.01325 Serment et al., 2016
T Temperature K 312.15 Serment et al., 2016
W, Mo!ecula{' weight of average g/mol 134 Feedipedia
amino acid
Wace Molecular weight of acetate g/mol 60.05 Wikipedia
Whu Molecular weight of butyrate  g/mol 88.10 Wikipedia
Wo mg:’g&grc‘gﬁ'sght of g/mol 113 Batstone et al., 2002
W Molecular weight of g/mol 74.1 Wikipedia
P propionate
Wy Molecular weight of glucose g/mol 180.16 Wikipedia
A Volume of the gas phase L 0.06 Sgﬁnche etal,
v Volume of the liquid phase L 0.74 Selanche etal,
Parameters of factors modeling the effect of bromoform on rumen fermentation
Parameter of the factor I,
" modeling the direct effect of .
P1 bromoform on the CHa 72551 Estimated
production
Parameter of the factor I,
modeling the direct effect of .
p2* naric vy i) -1.0837e-04 Estimated
production
p3* Intercept of 1, 0.3655 Estimated
Ps* Slope of 4, 0.6371 Estimated
ps* Intercept of 4, 0.3787 Estimated
pe* Slope of 4, 0.1160 Estimated

Sensitivity analysis

Based on the representation of Figure 3, we focus on the hydrolysis of polymer components
(fiber carbohydrates, non-fiber carbohydrates and proteins), the fermentation of microbial
functional groups (glucose utilizers, amino acids utilizers and hydrogen utilizers) and the effect of
bromoform on rumen fermentation. They are the components of interest, those whose impact on
the variability of CH4 and VFA production is to be studied, when implementing the SA.

We implemented a SA method for quantifying the contribution of 16 IPs to the variability of four
state variables of the mechanistic model described in the previous section. This method is
grounded on a strong theoretical framework and provide easy-to-interpret sensitivity indices (SlI).
Moreover, the SI were computed over time allowing studying the dynamics of IP sensitivity during
the fermentation. The Shapley effects (Owen, 2014) were computed for quantifying the individual,
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interaction and dependence/correlation effects of an IP to the variability of an output. Although the
model studied here provides no correlated or dependent IPs, this method was used to introduce a
new SA method in the animal nutrition field. In addition to Shapley effects, we explored also the
Sobol method. The interested reader is referred to the supplementary material (Blondiaux et al.,
2024).

This work was done with the support of MESO@LR-Platform at the University of Montpellier,
which was used to run the algorithms computing Shapley effects. They were run using one node,
28 cores and 125 GB of RAM of memory.

Input parameters and output variables studied

State variables of the model considered as output variables of the SA were the rate of CH4
production (in gas phase) (qcu,,gout» Mol/h) and VFA (acetate (s,.), butyrate (sy,,) and propionate
(spr)) concentrations (mol/L). The model was run for four days, similarly to the RUSITEC of Roque
et al., (2019), and the SA was performed on the last day of simulation, from 72 to 96h with a time
step of 1h.

Components constituting the model represent different factors associated to microbial
pathways involved in in vitro rumen fermentation. These factors include polymer hydrolysis and
microbial growth. The sensibility of hydrolysis rate constants associated with the three polymer
components (knyqndf, Knydnsc @Nd Knydpro h'') was studied for quantifying the impact of feed
polymer hydrolysis on output variables of interest during the fermentation. In addition, the
sensibility of maximum specific utilization rate constants (kp sy, km,aa @nd kp ,, Mol substrate/(mol
biomass h)) and Monod constants (Ks sy, Ks .2 @and Ks y,, mol/L) associated with the three microbial
groups was studied for quantifying the impact of microbial growth on output variables of interest
during the fermentation.

In addition to the IPs quantifying the impact of polymer components and microbial functional
groups, IPs related to the effect of bromoform on the fermentation were considered. The kinetic
rate constant of bromoform utilization (k. , h™), quantifying the consumption of anti-methanogenic
compounds, was added to the SA. Moreover, the parameters of sigmoid and affine functions
associated with the factor representing the impact of bromoform on methanogens (I, associated
with parameters p, and p,) and with the flux allocation from glucose utilization to VFA production
(A, associated with parameters p; and p,, and A, associated with parameters p; and p,) were
added to the SA. Therefore, in total, 16 IPs were considered.

The first step in SA was to set the variability space of IPs. To perform that, information about
the variability of each IP was required. This information was available from two sources: data and
expert knowledge (Table 3). Based on the low number of data available for each IP, uniform
distributions were selected for quantifying hydrolysis rate constants, maximum specific utilization
rate constants and Monod constants variability. Lower and upper bounds of uniform distributions
were set by selecting the minimum and maximum values among all the references. Furthermore,
the parameters associated with the effect of bromoform on the fermentation were not biological
parameters and no data were available for modeling their variability. Therefore, a uniform
distribution varying of £ 10% the baseline model parameter value was used for parameters p, to

De-

Shapley effects

Definition

The SA method implemented was the Shapley effects, which come from the field of cooperative
game theory (Shapley, 1953). The Shapley effect of an IP x; (sh;) measures the part of variability
of the output variable caused by the variability of x;, and allocate to x; a fair value regarding its
individual contribution, its contribution due to interactions with other IPs and its contribution due to
dependence/correlation with other IPs (Owen, 2014, Song et al., 2016). It is described as

(32) shi =2 8ue () CusunivarEyInD = Toey varCElylx,D)
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where d is the number of IPs, u € {1, ...d} is a subset of IPs, y is the output variable and x is

an IP.

Table 3 - Variation range (minimum (min) and maximum (max)) and
sources/references of uniform distributions used for exploring the variability of input
parameters studied in the sensitivity analysis.

Parameter Min Max References

knydnar 0.01 0.33 Chapoutot et al., 2010; Mufoz-Tamayo et al., 2016; van Lingen et al., 2019

knyansc 0.06 0.22 Mufioz-Tamayo et al., 2016; van Lingen et al., 2019

knyd,pro 0.05 0.25 Mufioz-Tamayo et al., 2016; van Lingen et al., 2019

Kmsu 0.94 4.33 Batstone et al., 2002; Mufioz-Tamayo et al., 2016, 2021

Kssu 1e-04 9e-03 Batstone et al., 2002; Mufioz-Tamayo et al., 2016, 2021

Kmaa 1 5 Batstone et al., 2002; Mufioz-Tamayo et al., 2016, 2021

Ksaa 3e-04 8e-03 Batstone et al., 2002; Mufioz-Tamayo et al., 2016, 2021

kmn, 12 25 Batstone et al., 2002; Mufioz-Tamayo et al., 2016, 2021

Ksu, 1e-07 1e-05 Batstone et al., 2002; Mufioz-Tamayo et al., 2016, 2021

kpr 8.55e-02 1.04e-01

P1 6.52e+04 7.98e+04

[ -1.19e-04 -9.75e-05

P3 0.33 0.40

D4 0.57 0.70

Ds 0.34 0.42

De 0.10 0.13

Interpretation

The Shapley effects are condensed and easy-to-interpret. Their sum is equal to 1, allowing us
to interpret them as the percentage of contribution of the IPs to output variability. Nevertheless,
the distinction of individual, interaction and dependence/correlation effects are not possible. Each
IP is associated with one value, integrating the three effects.

Numerical computation

Several methods are available for estimating the Shapley effects. In our study, the random
permutation method was used (Song et al., 2016). This method provides a consistent estimation
of the Shapley effects adapted in the case of numerous IPs (looss and Prieur, 2019). It is based
on an alternative definition of the Shapley effects, expressing it in terms of all the possible IPs
permutations (Castro et al., 2009). The computational cost of this method is N,, + (d — 1)N,N; with
N, the sample size for estimating the output variance, m the number of permutations randomly
sampled from the space of all the possible IP permutations, d the number of IPs considered, N,
the sample size for estimating the expectation and N; the sample size for estimating the conditional
variance. N, and N; were set at 1 and 3, respectively, as recommended in Song et al. (2016). In
addition, N, = 1e04 and m = 1e04 were considered, conducting to 460000 model evaluations.
Estimation of the Shapley effects was performed using the R package “sensitivity” (looss et al.,
2023).

Uncertainty analysis

SA provides a framework combining an IP sampling matrix, developed by randomly drawing
values from IP probability distributions (Table 3), to simulations of our four outputs of interest. This
in silico framework was used for analyzing uncertainty associated with the simulations of CHa,
acetate, butyrate and propionate concentrations (mol/L). Similarly to SA, uncertainty associated
with outputs of interest was studied dynamically by computing summary statistics (median,
standard deviation (SD), and quantiles 10 and 90%) and the coefficient of variation (CV) of the
output simulations at each time step.
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Results and discussion

Analysis of the simulations of the mechanistic model

Comparison with in vitro and in vivo studies for methane production
Figure 6 displays the dynamic of gy, ¢ 0u: Of the three dietary scenarios (control: 0% of AT, low
treatment: 0.25% of AT and high treatment: 0.50% of AT) for a four days simulation.
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Figure 6 - Rate of CH4 production in gas phase (qcy, gout, Mol/h) over time (h) of
the three dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment:
0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis
taxiformis) for a four days simulation.

Increasing the dose of AT decreased qcy, g0ut With, at the end of the four days of simulations,
a CHa (g/d) reduction of 17% between control and low AT treatment and of 78% between control
and high AT treatment. This reduction increased from one day to the next with computed
reductions of 9%, 14%, 16% and 17% between control and low AT treatment, and of 65%, 72%,
75% and 78% between control and high AT treatment, from day 1 to 4, respectively.

These reductions between AT treatments were lower than those reported in in vitro and in vivo
studies. Chagas et al. (2019) indicated that the inclusion of AT (10 g/kg OM) decreased predicted
in vivo CHs production (mL/g DM) of 99% under in vitro condition. Whereas, the RUSITEC of
Roque et al. (2019) and the in vitro study of Romero et al. (2023b) reported reductions of CHa
production (mL/g OM and mL, respectively) of 95% (with a 5% OM dose) and 97% (with a 2% DM
dose), respectively.

Under in vivo conditions, Roque et al. (2021) tested AT doses similar to our simulations. This
work reported in vivo CH4 production (g/d) reduction of 32.7 and 51.9% between control, and low
and high AT treatments, respectively. The model simulated a lower reduction for low AT treatment
and a higher reduction for high AT treatment.

These results highlighted that some interactions occurring during the fermentation are not
represented in the model (e.g. forage wall content might inhibit the effect of AT). Improving the
model involves a finer representation of the interactions between feed characteristics and
fermentation, as discussed by Bannink et al. (2016).

Analysis of the behavior of VFA proportions

The dynamic of VFA proportions and propionate to acetate ratio of the three dietary scenarios
for a four days simulation is displayed in Figure 7.

The dynamic of VFA proportions showed that increasing AT dose in the diet decreased acetate
proportion of 5% and 31% at the end of the fermentation between control, and low and high AT
treatments, respectively. Whereas, butyrate and propionate proportions increased when
increasing AT dose in the diet, with increases at the end of the fermentation (t = 96h) of 13% and
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74% for butyrate proportion and of 4% and 22% for propionate proportion between control, and
low and high AT treatments, respectively. These behaviors were similar to those of in vitro studies.
In Chagas et al. (2019), the AT treatment was associated with lower molar proportion of acetate (-
75%) and higher molar proportions of propionate and butyrate (+ 38% and + 47%, respectively).
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Figure 7 - Acetate proportion (%), butyrate proportion (%), propionate proportion
(%) and propionate to acetate ratio over time (h) of the three dietary scenarios
(control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis
taxiformis and high treatment: 0.50% of Asparagopsis taxiformis) for a four days
simulation.

Propionate to acetate ratio was also associated with an increase of 10% between control and
low AT treatment and of 76% between control and high AT treatment. This increase was
highlighted in Roque et al. (2019) and Romero et al. (2023b).

These results highlight that the VFA dynamic behavior between AT treatment simulated by the
model was consistent with the in vitro experiments.

Shapley effects - General contribution of the input parameters to the variability of methane
and volatile fatty acids production

Figures 8, 9, 10 and 11 display the Shapley effects computed over time for the fourth day of
simulation (from 72 to 96h) of q¢y, g out (MoOI/h), 55 (MOI/L), sp,, (Mol/L) and s, (Mol/L), respectively,
for the three dietary scenarios (control, low AT treatment and high AT treatment) studied. This
implementation will be able to identify the microbial pathways explaining the variation of CH4 and
VFA, and to investigate how these pathways change according to the inhibitor doses. Only the IPs
associated with a contribution higher than 10% for at least one time step were displayed.

For some time steps, the computation led to negative indexes. In this case, the estimates were
set to 0. These issues mainly concerned qcy, g0ut Of the two AT treatments and were either due to
the outliers in the variability explored in the simulations or to the lack of variability in the simulations
for some time steps. The computational time for one dietary scenario was of 24h using the
MESO@LR-Platform.

The comparison of our results with those of previous SA conducted on mechanistic models of
rumen fermentation is not straightforward given the specific model structures and their
mathematical formulation. Consequently, the model structure, and the variables and parameters
considered in these models are different from those used in our representation, except for Merk et
al. (2023) which conducted its SA on an adapted version of the model of Mufioz-Tamayo et al.
(2021). Moreover, regarding the other references than Merk et al., 2023 the comparison of SA
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results is only valid for the control as other models did not consider AT treatments. Nevertheless,
despite these limitations considering our results in relation to those obtained in previous studies
provides useful information to improve our knowledge of the whole picture of the rumen

fermentation.

Rate of methane production
Figure 8 indicated that the action of the microbial group of hydrogen utilizers represented by

the Monod affinity constant Ks i, contributed largely the most to the variability of gcy, g out OVer the
fermentation for control and low AT treatment, explaining more than 50% of ¢y, ¢ 0ut Variation over
time for both scenarios. The dynamic of the impact of this microbial group was constant over time
and slightly followed the dynamic of DMI.

The other influential IP for control was related to microbes degrading the fibers, via the
hydrolysis rate constant ky,,q n4r, highlighting a contribution of c.a. 10% to qcy, g0ur Variability with
a constant dynamic over time. This IP showed a low influence (c.a. 10%) for low and high AT
treatments.

When no dose of AT was considered, Merk et al. (2023) and Huhtanen et al. (2015) also
highlighted the impact of fibers degradation component on CHs production variation of Mufioz-
Tamayo et al. (2021) and Karoline models, respectively. The initial neutral detergent fiber
concentration, which was largely associated with the highest contribution (= 43%) to CHa4
production variation, and kyyqnqr Were the influential IPs in Merk et al. (2023). The other influential
IP for the control was related to the flux allocation parameter from glucose utilization to propionate
production (4,). This last IP was not considered in our SA as we modified the flux allocation
parameters in our model version.
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Figure 8 - Shapley effects of the influential input parameters (i.e, parameters with a
contribution higher than 10% for at least one time step) over time (h) computed for
the fourth day of simulation of the rate of CH4 production in gas phase (qcy, g out:
mol/h) for the three dietary scenarios (control: 0% of Asparagopsis taxiformis, low
treatment: 0.25% of Asparagopsis taxiformis and high treatment: 0.50% of
Asparagopsis taxiformis).

For the other SA works carried out under control condition, fat and the degradation of starch
and insoluble protein were the other factors associated with an influence on CH4 production in
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Huhtanen et al. (2015). Whereas van Lingen et al. (2019) highlighted that IPs associated with the
fractional passage rate for the solid and fluid fractions in the rumen and NADH oxidation rate
explained 86% of CH4 predictions variation of a modified version of the Dijkstra model. Our model
does not include the different passage rates between solid and liquid fractions. Finally, Dougherty
et al. (2017) found that influential IPs on daily CH4 production predicted with the AusBeef model
were associated with ruminal hydrogen balance and VFA production.

For AT treatments, some IPs associated with the factors modeling the effect of AT on the
fermentation were highlighted as influential on gcy, ¢ 0ue Variability. The IPs p,, which is related to
the sigmoid function modeling the direct inhibition effect of AT on methanogenesis, and k.., which
describes the kinetic of bromoform utilization, showed a low (c.a. 10%, at t = from 77 to 78h for p,,
and at t = 87h for k) and intermediate (> 20%, at t = from 81 to 83h and from 87 to 93h for both
p2 and ki) contribution to q¢y, g ouc Variability for low and high doses of AT, respectively.

Furthermore, AT treatments highlighted the differences of the role of microbial pathways
explaining the variation of qcy, ¢ out When increasing the dose of AT. When a high dose of AT was
supplemented, k- and p, explained more than 50% of qcy, g0ur Variability in the middle (t = from
81 to 83h) and middle end (t = from 88 to 92h) of the fermentation, replacing a part of the variability
explained by Ksy,. Their influence decreased at the end of the fermentation but was still higher
than 20%. When comparing both IPs, k. showed a slightly higher influence (< 10%) than p,.
Moreover, other IPs associated with the direct (p,) or indirect (p,, ps and p¢) effect of bromoform
on the fermentations showed a low influence on qcy, g Variation for high AT treatment. This
highlights that the use of AT to mitigate CH4 production led to a shift in the factors associated to
microbial pathways of the rumen fermentation impacting the CH4 production. The low participation
of these IPs to the variability of q¢y, g 0ur When a low dose of AT was supplemented suggested that
the AT dose of this treatment was too low to highlight this shift.

However, the impact of K, was still important over time for the high AT treatment, especially
at the beginning (t = from 73 to 76h) and at the end (t = from 87 to 89h and from 93 to 96h) of the
fermentation. Moreover, the hydrogen utilizers microbial group also showed an influence via the
maximum specific utilization rate constant k,,, 4, for low and high AT treatments. This influence
was low (c.a. 10%) for low AT treatment over the fermentation and was of c.a. 20% or higher at t
= 73h, from 81 to 83h and from 87 to 96h for high AT treatment, confirming the importance of this
factor on qcp, g out Variation.

In presence of a dose of AT (included at a 5% inclusion rate) , the high impact of IPs associated
with bromoform concentration and the factor I,,, on CH4 production variation was also highlighted
in Merk et al. (2023). The initial bromoform concentration and p; showed the highest contributions
(= 46%) to CH4 production variation. This study also mentioned the low but non-negligible impact
(c.a. 10%) of IPs related to methanogen abundance, total microbial concentration and hydrogen
utilizers microbial group, represented by k., 11, This last IP showed also an influence on qcy, g out
variation for high AT treatment in our work. Therefore, Merk et al. (2023) also identified a shift in
the key factors driving CH4 production variation in presence of AT.

Volatile fatty acids concentration
Figures 9, 10 and 11 highlighted that similar IPs contributed to the variability of s,c, sp, and s,
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Figure 9 - Shapley effects of the influential input parameters (i.e., parameters with
a contribution higher than 10% for at least one time step) over time (h) computed
for the fourth day of simulation of the acetate concentration (s,., mol/L) for the three
dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of
Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis taxiformis).
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Figure 10 - Shapley effects of the influential input parameters (i.e., parameters with
a contribution higher than 10% for at least one time step) over time (h) computed
for the fourth day of simulation of the butyrate concentration (s, mol/L) for the three
dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of
Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis taxiformis).
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Figure 11 - Shapley effects of the influential input parameters (i.e., parameters with
a contribution higher than 10% for at least one time step) over time (h) computed
for the fourth day of simulation of the propionate concentration (s, mol/L) for the
three dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment:
0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis
taxiformis).

VFA concentration variation were highly impacted by fibers degradation represented by the
kinetic kyyqnar for the control and two AT treatments. ky,qnqr Was always associated with the
highest contribution for s, sy, and s, and the three dietary scenarios studied. This result was
expected as fiber hydrolysis is the limiting step of the fermentation and VFA proportion. This
contribution was very high (> 50%) for s,. control, s,, high AT treatment and s,,.. While, it was
intermediate (between 30 and 40% over the fermentation) for s,. low and high AT treatments, and
spy control and low AT treatment. The dynamic of this influence was globally constant over time
slightly following the dynamic of DMI, except for s,. low AT treatment which showed a decrease
during the first feed distribution.

Regarding the impact of increasing AT doses on kyyqnqr CONtribution, it decreased for s, while
it was still the most influential IP, with an influence over time varying from 29 to 42% for low AT
treatment and from 26 to 37% for high AT treatment.Whereas, it increased for s, and s, with an
influence over time, varying from 34 to 42% and 60 to 65% for control, from 34 to 43% and 61 to
68% for low AT treatment and from 54 to 62% and 67 to 71% for high AT treatment, respectively.

Regarding the other influential IPs, hydrogen utilizers microbial group slightly impacted (< 30%)
the variation of s,. and sy, for low AT treatment, with the two IPs representing this group (Ks i,and
kmu,)- The influence of these IPs was increasing at the beginning of the fermentation, constant in
the middle of the fermentation and decreasing at the end of the fermentation. For both variables,
this influence was mainly due to Ky, , being the second most influential IP from t = 74h to the end
of the fermentation with a contribution varying from 17 to 27% over this period of time for s,., and
explaining a maximum of 16% of the variation of sy, (second most influential IP). k., ;,was
associated with a low contribution, varying from 11 to 16% over the fermentation for s,., and
showing a constant dynamic at c.a. 10% for s;,. Moreover, the degradation of non-fiber
compounds with the IP kyyqnsc Showed a non-negligible contribution for the control with an
influence varying from 13 to 19% for s,., for the high AT treatment with an influence of c.a. 10%
for sy, and for the three dietary scenarios with an influence of c.a. 10% for s,.
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Furthermore, IPs associated with the functions describing the indirect effect of bromoform on
rumen fermentation and quantifying reactions driving flux allocation from glucose utilization to
acetate (A, associated with p; and p,) and propionate (A, associated with ps and p¢) production
showed a low impact on VFA concentration variation under our conditions. IP p; was associated
with an impact on s,. and s, variation. This impact was highlighted for the control and two AT
treatments studied, with a contribution lower than 20% for control and low AT treatment, which
decreased at the beginning of the fermentation and then increased over time, and of c.a. 25% for
high AT treatment for s,.. Whereas, the contribution over time was more important for the control
(c.a. 25%) than for the two AT treatments (<20%) for sy, with the same dynamic. p,, the negative
slope of A,, slightly impacted s, variation of high AT treatment with a constant dynamic. Regarding
A2, ps slightly impacted (<30%) sy, and s, variation over the fermentation for the three dietary
scenarios with a dynamic slightly decreasing at the beginning of the fermentation and then
increasing over time, similarly to p;. The positive slope p, did not contribute to VFA concentration
variation.

Nevertheless, no shift of the factors associated to microbial pathways impacting VFA
production was highlighted when increasing the dose of AT. Moreover, IPs related to the direct
effect of bromoform on the fermentation (p; and p,) did not contribute to VFA concentration
variation. This suggests that under the conditions evaluated AT had no impact on the biological
mechanisms responsible for VFA production, in contrast with the one responsible for CHa
production. However, AT supply does have an indirect effect on VFA production to its effect on the
lambdas and a variation was observed when considering the molar proportions of VFA (Figure 7).
Moreover, new influential IPs were highlighted from a dietary scenario to another for all the VFA,
except sp;.

Morales et al., (2021) studied the sensitivity of 19 IPs on VFA concentration predicted with
Molly. It found that the intercept used for rumen pH prediction was the only influential IP, explaining
more than 79% of the variation of acetate, butyrate and propionate concentration predictions of
Molly. In this study this result was expected as Molly is a whole animal model, which was not the
case of our model. No IPs related to rumen pH were considered in our SA, explaining that the
selection of this component was not possible in our case.

Uncertainty analysis

The uncertainty of gcy, g 0ur @nd VFA concentration simulations used to compute the Shapley
effects was assessed by studying the variability over time of these simulations. The results were
displayed only for gy, g out-

Rate of methane production

Figure 12 displays the median and quantiles 10% and 90% over time of qcy, g out Simulations
computed by exploring the variability of six factors associated to microbial pathways of the rumen
fermentation (fiber carbohydrates, non-fiber carbohydrates, proteins, glucose utilizers, amino acids
utilizers, hydrogen utilizers) and four factors of the effect of bromoform on the fermentation (sy,,
Iy, 4, and 4,) for the three dietary scenarios.
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Figure 12 - Median and 0.1 and 0.9 quantiles of the rate of methane production in
gas phase (qcp, gout» Mol’h) over time (h) computed from the simulations used to
calculate the Shapley effects for the three dietary scenarios (control: 0% of
Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis taxiformis and high
treatment: 0.50% of Asparagopsis taxiformis).

When not considering the 10% more extreme simulations, the CV highlighted that qcu, g out
simulations showed a lower variability for low and high AT treatments with a median CV of 0.74
and 0.59, respectively. Whereas, the control showed a median CV of 0.78.

SA results indicated that the variability of gy, gouc Simulations was only explained by the
variation of hydrogen utilizers microbial group via Ky, for control and low AT treatment. Whereas,
the variability of Ks, explained an important part, but also with the variability of other factors, of
dcH,gout Simulation variability for high AT treatment. This suggests that reducing uncertainty
associated with q¢y, ¢ ou¢ Predictions involves to reduce the uncertainty of IPs describing the activity
of the hydrogen utilizers microbial group. A way to achieve that is to increase the information

available for estimating the variability of parameters describing this microbial group, involving an
improvement of our knowledge of it.

Finally, when comparing control and AT treatments, qcp, gouc Simulation variability was more
important for the control than for low and high AT treatments. This indicates that the shift and
increase of factors explaining the variation of gcy, g 0u: did not lead to an increase of simulation
variability, especially for high AT treatment. Merk et al., (2023) found a different result, computing
a CV of 0.23 against 1.22 for simulations associated with control and AT treatment, respectively.

However, the range of variation of IPs explored in our study led to outlier simulation for AT
treatments. For instance, an IP simulation scenario led to qcy, g our Values of 96 and 0.07 mol/h at
t = 74 and 73h for low and high AT treatments, respectively. These outliers were not identified for
the control. This suggests that some of the range of variation explored for Ks y,, kmy 1,, P2 @and k.
was not appropriate when considering AT treatments.

Moreover, Figure 13 highlighted that qcy, g ou: Variability varied over time and that this variability
was related to the dynamic of DMI (g/h). The time periods associated with the highest intake activity
(represented by the level of decay of the curve of Figure 2) were between 72 and 78h for the first
feed distribution and 84 and 90h for the second feed distribution. The first feed distribution time
period was systematically associated with the highest variability of gy, gour Simulations with a
maximum SD of 7e-04 mol/h at t = 75h, 6e-04 mol/h at t = 74h and 7e-05 mol/h at t = 73h for
control, and low and high AT treatments, respectively. This feed distribution represented 70% of
the total DM. The second feed distribution, representing 30% of the total DM, was also associated
with an important variability of qcy, gouc Simulations for the three dietary scenarios. Therefore,
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simulation variability increased during the high intake activity periods of both feed distributions and
decreased at the end of it. These results go in line with model developments predicting CH4 with
dynamic data DMI as single predictor (Munoz-Tamayo et al., 2019, 2022).
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Figure 13 - Standard deviation of the simulations of rate of methane production in
gas phase (qcu, gout» Mol/h) over time (h) used to calculate the Shapley effects for
the three dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment:

0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis
taxiformis).

Volatile fatty acids concentration

VFA concentrations were associated with much less variability than gcy, g ouc- Simulations, with
a maximum CV of 0.08, 0.12 and 0.09 for s,, sp, and s, respectively. This suggests that these
variables were less sensitive to the variation of factors associated to microbial pathways involved
in the rumen fermentation analyzed here. Perhaps the consideration of other parameters such as
the yield factors would lead to a higher variability of VFA simulations. The variability of these
variables was only explained by the individual variability of the kinetic of fibers degradation kyyq na-
This suggests that the uncertainty related to kyyqnqr Measurements generates a low uncertainty
on VFA concentrations.

Similarly to qcu,gout» the dynamic of the variability of VFA concentration simulations was
related to the dynamic of DMI. This variability increased during the high intake activity periods of

the first and second feed distributions, with the highest variability reached for the first feed
distribution, and decreased at the end of both feed distributions.

Limitations and perspectives of methods

Sensitivity analysis approaches

The computation of the Shapley effects allowed to identify the influential and non-influential IPs
on the variation of qcy, gour @nd VFA concentration. This analysis was conducted in a context
where the IPs studied were related to factors associated to microbial pathways of the rumen
fermentation. Therefore, the aim of the dynamic SA implemented was to gain knowledge on the
biological impact of these factors on CH4 and VFA production. The use of sensitivity indices for
this purpose is becoming increasingly widespread in animal nutrition modeling and our work
contributes to this movement. For instance, Merk et al. (2023) conducted local and global SA for
identifying key drivers of CH4 production with or without AT.

The main originality of our work is the computation of Sl over time, leading to a dynamic
interpretation of the impact of key drivers on CH4 and VFA variation. Moreover, this interpretation
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was conducted by simulating a typical forage-based diet associated with several realistic dose
levels of a highly promising CH4 inhibitor. Investigating the dynamic impact of microbial pathways
on fermentation outputs, considering diets and treatments applied in the field, is of great interest
for animal nutrition, in a context where the combining effect of CHa4 inhibitors is relevant to study
(Munoz et al., 2024). Integrating the dynamic characteristic is important, as no additive effect of
inhibitors was showed under static condition (Mufioz et al., 2024). This highlights that the
implementation of dynamic SA on mechanistic models representing the effect of these inhibitors
could be used to identify optimal times, frequencies and doses for inhibitor delivery, in order to
help develop mitigating strategies using two or more inhibitors. In our work it has not been possible
to go that far, but we developed a dynamic SA approach that can be used to reach this aim.

A second originality is the proposition of an approach allowing to discriminate the nature of the
contribution of IPs to output variable variation. Although, considering the contribution due to the
dependence/correlation between IPs was not relevant in our case study, this work proposes a first
methodology to handle this kind of contribution in the case of development of more complex
models involving dependent or correlated IPs.

Our study used simulation conditions based on RUSITEC in vitro experiments. Future work can
use our SA framework to identify useful sampling times and experimental conditions to provide
informative data for model refinement in the context of optimal experiment design for parameter
estimation.

Regarding our SA results, it is important to mention that they are inherently linked to the
representation of the rumen fermentation considered in our case study. Another limitation concerns
the range of variation set on IPs studied. Due to the lack of data available, a non-informative
distribution was set to explore their variability. By having more information about the variability of
these IPs, it will be possible to have more robust results.

Uncertainty analysis

The in silico framework used for the SA shows that the factors associated to microbial pathways
modeled in our case study mainly impacted CHa4 prediction uncertainty. This suggests that an
improvement in the range of variation of parameters associated with the methanogenesis should
lead to a reduction of the uncertainty associated with model predictions. The high AT treatment
also showed that the parameters associated with the bromoform effect on the fermentation
impacted negatively the prediction uncertainty. These suggestions should be carefully interpreted
because limited by the low information available on the numerical values of parameters of the
equations representing the rumen fermentation.

Conclusions

A dynamic sensitivity analysis of a model describing the effect of bromoform (via Asparagopsis
taxiformis) on rumen fermentation under in vitro continuous condition was conducted. The
hydrogen utilizers microbial group was identified as the key factor explaining CH4 variation over
time for the control and low dose treatments. This factor was associated with the microbial
methanogenesis. The high AT dose treatment showed a shift in the factors associated to microbial
pathways explaining CH4 variation, highlighting the emergence of parameters associated with
bromoform concentration and direct effect of bromoform on methanogenesis. Moreover, the
individual variability of kinetic of fibers degradation explained most of the VFA variation. The
uncertainty analysis of simulations computed for SA suggested that reducing the uncertainty of the
parameters associated to the kinetics of hydrogen utilizers microbial group should lead to a
reduction of model prediction uncertainty. Our work showed that implementing dynamic sensitivity
analysis is a promising approach to improve our understanding of mechanisms involved in the
rumen fermentation and can help to design optimal experiments assessing CHs4 mitigation
strategies.
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