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Abstract
Ruminants play an important role in global warming by emitting enteric methane (CH4) through the degrada-
tion of feeds by the rumen microbiota. To better understand the dynamics fermentation outputs, including
CH4 and volatile fatty acids (VFA) production, mathematical models have been developed. Sensitivity analysis
(SA) methods quantify the contribution of model input parameters (IP) to the variation of an output variable
of interest. In animal science, SA are usually conducted in static condition. In this work, we hypothesized that
including the dynamic aspect of the rumen fermentation to SA can be useful to inform on optimal experi-
mental conditions aimed at quantifying the key mechanisms driving CH4 and VFA production. Accordingly,
the objective of this work was to conduct a dynamic SA of a rumen fermentation model under in vitro con-
tinuous conditions (close to the real in vivo conditions). Our model case study integrates the effect of the
macroalgae Asparagopsis taxiformis (AT) on the fermentation. AT has been identified as a potent CH4 inhibitor
via the presence of bromoform, an anti-methanogenic compound. We computed Shapley effects over time
for quantifying the contribution of 16 IPs to CH4 (mol/h) and VFA (mol/l) variation. Shapley effects integrate
the three contribution types of an IP to output variable variation (individual, via the interactions and via the
dependence/correlation). We studied three diet scenarios accounting for several doses of AT relative to Dry
Matter (DM): control (0% DM of AT), low treatment (LT: 0.25% DM of AT) and high treatment (HT: 0.50% DM
of AT). Shapley effects revealed that hydrogen (H2) utilizers microbial group via its Monod H2 affinity constant
highly contributed (> 50%) to CH4 variation with a constant dynamic over time for control and LT. A shift on
the impact of microbial pathways driving CH4 variation was revealed for HT. IPs associated with the kinetic of
bromoform utilization and with the factor modeling the direct effect of bromoform on methanogenesis were
identified as influential on CH4 variation in the middle of fermentation. Whereas, VFA variation for the three
diet scenarios was mainly explained by the kinetic of fibers degradation, showing a high constant contribution
(> 30%) over time. The simulations computed for the SA were also used to analyze prediction uncertainty. It
was related to the dynamic of dry matter intake (DMI, g/h), increasing during the high intake activity periods
and decreasing when the intake activity was low. Moreover, CH4 (mol/h) simulations showed a larger variabil-
ity than VFA simulations, suggesting that the reduction of the uncertainty of IPs describing the activity of the
H2 utilizers microbial group is a promising lead to reduce the overall model uncertainty. Our results highlighted
the dynamic nature of the influence of metabolic pathways on CH4 productions under an anti-methanogenic
treatment. SA tools can be further exploited to design optimal experiments studying rumen fermentation and
CH4 mitigation strategies. These optimal experiments would be useful to build robust models that can guide
the development of sustainable nutrition strategies.
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Introduction 

Reducing methane (CH4) emissions from ruminants is an important challenge for the livestock 
sector. At the global level, these emissions are responsible of 14.5% of total greenhouse gases 
(GHG) from human activity sources (FAO, 2017), highlighting the important role of ruminants in 
global warming. In this context, The Intergovernmental Panel on Climate Change (IPCC, 2022) 
highlighted that decreasing agricultural CH4 emissions by 11 to 30% of the 2010 level by 2030 and 
by 24 to 47% by 2050 must be achieved to meet the 1.5 °C target of the Paris Agreement. In 
addition, Arndt et al. (2022) indicated that some mitigation strategies scenarios may allow to meet 
the 1.5 °C target by 2030. However, this study also highlighted that it was not possible to meet this 
target by 2050 considering that expected increase in milk and meat demand will lead to an increase 
of GHG emissions. 

Ruminants produce CH4 during the degradation and fermentation of feeds (Morgavi et al., 2010; 
Beauchemin et al., 2020). The fermentation process is done by a complex community of microbes 
inhabiting the forestomach (rumen) of ruminants. These microbial community (rumen microbiota) 
are constituted by members of bacteria, archaea, fungi and protozoa. The products of fermentation 
include volatile fatty acids (VFA), which are useful compounds for the animal, and CH4. The 
development of mitigation actions aiming to reduce the enteric CH4 production without affecting 
animal performance and welfare is a crucial challenge for the field (Hristov et al., 2013; Pellerin et 
al., 2013; Torres et al., 2020). 

To better understand rumen fermentation and help design such strategies, mechanistic models 
describing the dynamic process of the rumen fermentation were developed. A synthesis of the 
characteristics of these models is presented by Tedeschi et al. (2014). Among these, the three 
most popular dynamic mechanistic models of rumen fermentation are: Molly (Baldwin et al., 1987), 
Dijkstra et al. (1992) and Karoline (Danfær et al., 2006). More recently, Pressman and Kebreab 
(2024) provided a review of current state of rumen models, and tried to identify future needs for 
improving the representation of the impact of feed additives on rumen fermentation dynamic. This 
work added the model of Muñoz-Tamayo et al. (2016; 2021) as another “lineage” of rumen models. 
It is one of the two mechanistic models available representing the effect of a feed additive on the 
rumen fermentation. 

All the mechanistic models involved numerous input parameters (IPs) representing biological 
and physical processes. The complexity of such models raises the need to investigate model 
behaviour, including the various relationships among IPs and outputs. To address this need, 
sensitivity analysis (SA) methods were used to assess the contribution of IP variability on the 
variability of the output of interest, identifying IPs which contribute the most to model predictions 
variability from those having a negligible effect (Faivre et al., 2013; Iooss and Lemaître, 2015; 
Saltelli et al., 2008, 2005). 

In animal nutrition, SA is usually conducted on mechanistic models with the main objective of 
reducing their complexity and identifying which IPs require more accurate measurements for 
reducing output uncertainty. For instance, Huhtanen et al. (2015) and van Lingen et al. (2019) 
used linear regressions for describing the effects of some parameters on the variation of daily scale 
enteric CH4 emissions in the Karoline model and an updated version of the Dijkstra model, 
respectively. In addition, Morales et al. (2021) and Dougherty et al. (2017) computed the Sobol 
indices (Sobol, 1993) for quantifying the effects of 19 and 20 parameters on several output 
variables of the Molly and AusBeef (Nagorcka et al., 2000) models, respectively. Morales et al. 
(2021) did not consider the CH4 production among the 27 output variables studied, while VFAs 
were considered. Dougherty et al. (2017) considered the daily CH4 production in the output 
variables. In both studies, uniform distributions were set for exploring parameter variability. 
Recently, Merk et al. (2023) adapted and calibrated the model of Muñoz-Tamayo et al. (2021) to 
represent experimental data from the in vitro RUSITEC study of Roque et al. (2019), which aimed 
at evaluating the effect of the macroalgae Asparagosis taxiformis (AT) on CH4 production and 
rumen microbiota. Authors used a Sobol based approach for identifying key parameters associated 
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to microbial pathways driving CH4 production with and without the presence of AT. Despite these 
contributions, SA is rarely applied to animal nutrition models, but many applications are found in 
other fields of animal science. For instance, many works implementing SA on epidemiological 
models are available in the literature. Lurette et al. (2009) conducted a dynamic SA based on a 
principle component analysis and on analysis of variance, to identify key parameters influencing 
Salmonella infection dynamics in pigs. More recently, Farman et al. (2025) investigated the impact 
of various parameters on the progression of the brucellosis infection disease in cattle, by 
computing the partial rank correlation coefficient. 

Although different SA approaches were applied to mechanistic models of the rumen 
fermentation in the literature, several aspects still need to be explored. One aspect is the dynamic 
characteristic of the rumen fermentation. Most of the studies mentioned above explored sensitivity 
of rumen mechanistic models at a single time point or under steady state conditions. However, our 
hypothesis is that the influence of model parameters is of dynamic nature, since the rumen is a 
dynamic system. Characterizing such dynamic influence is of relevance to better understand 
rumen function (Morgavi et al., 2023), and represents the central step of an optimal experiment 
design aiming at identifying experimental conditions enabling accurate estimation of model 
parameters, and thus accurate characterization of mechanisms. Muñoz-Tamayo et al. (2014) 
highlighted the importance of optimal experimental designs for improving parameter estimation 
accuracy of a microalgae growth model. This characterization could also be useful to help design 
CH4 mitigation strategies, in a context where investigating the combined effect of several CH4 
mitigating compounds is an active research topic in animal nutrition. To our knowledge, SA has 
not been applied in dynamic conditions for studying CH4 and VFA predictions of rumen models, 
highlighting a first gap to be filled. 

Other aspect to explore in mechanistic models is the nature of the contribution of the IPs to 
model outputs by identifying: 1) the effect due to the IPs alone, 2) the effect due to the interactions 
between the IPs and 3) the effect due to the dependence or correlation between the IPs. Some 
references mentioned above implemented a method differentiating some effects of the contribution 
of an IP to output (individual, interaction and dependence/correlation). Dougherty et al. (2017) 
computed first-order and total Sobol indices (Homma and Saltelli, 1996), quantifying the individual 
and interaction effects of IPs. Whereas, van Lingen et al. (2019) concluded that there was no 
interaction between parameter covariates when studying the variation of daily scale enteric CH4 
emissions. The quantification of the contribution due to the dependence/correlation between the 
IPs has been an important research activity of the applied mathematics field for several years now 
(Kucherenko et al., 2012; Mara et al., 2015; Xu and Gertner, 2008). Not all the SA methods are 
able to identify these three effects, conducting to biases in the estimated sensitivity indices. The 
characterization of these three effects in rumen dynamic models was not performed in previous 
works, highlighting a second gap to be filled. 

Therefore, the aim of this work was to fill these two gaps, by conducting a complete dynamic 
SA of a mechanistic model of rumen fermentation under in vitro continuous conditions accounting 
for the effect of AT on the fermentation and CH4 production. The representation under in vitro 
conditions means that the rumen fermentation is reproduced outside the living organism, in a 
controlled laboratory reactor. 

The model studied extends previous developments of Muñoz-Tamayo et al. (2016; 2021). The 
AT macroalgae has been identified as a potent CH4 inhibitor (Machado et al., 2014), with reported 
in vivo reductions of CH4 emissions over 80% and 98% in beef cattle (Kinley et al., 2020; Roque 
et al., 2021). Moreover, developing dynamic models able to represent the effect of feed additives 
on rumen fermentation was highlighted as crucial by Pressman and Kebreab (2024), and AT is 
one of the most promising inhibitors. The original model (Muñoz-Tamayo et al., 2021) represented 
the fermentation under batch conditions. We extended the model to account for continuous 
conditions which aimed at providing a model closer to the in vivo conditions, which means a 
representation of the rumen fermentation integrating the animal. This extension allowed to simulate 
dietary scenarios accounting for several doses of AT. These scenarios were set according to an 
in vitro study (Chagas et al., 2019) aimed to reproduce forage-based diets typical of dairy and beef 
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cattle systems, testing several doses of AT. We hypothesized that applying dynamic SA to these 
scenarios could be a way to improve our knowledge of microbial pathway mechanisms according 
to different diets and treatments. 

The SA method implemented was the Shapley effects (Owen, 2014). The added value of the 
Shapley effects is the consideration of the three effects of an input on an output. Here, this is an 
academic exercise, as no dependencies or correlations between parameters are present in the 
model studied, but using this type of methods is crucial in the future. By applying this SA method 
over time in a context considering the effect of a CH4 inhibitor, we are able to identify the 
parameters explaining the variation of CH4 and VFA, and to investigate how the contribution of 
these parameters move according to the inhibitor doses. These parameters are associated with 
different factors representative of different microbial pathways of the fermentation. Therefore, at 
the end, we are able to identify which factors/pathways contribute the most to CH4 and VFA 
variation, and to quantify these contributions. This can be useful, in addition to in vitro and in vivo 
studies, to know on which factors to play to reduce CH4 production. 

Also, the in silico or numerical experiment framework in which SA is conducted was used to 
analyze the uncertainty associated with the outputs of interest over time. 

This work also addresses the limitations pointed out by Tedeschi (2021) in the evaluation 
process of the model in Muñoz-Tamayo et al. (2021), which did not include SA to assess the impact 
of model parameters on the model outputs. 

Methods 

First, a full description of the mechanistic model studied in this work is performed. This 
description includes the conceptual representation of the rumen fermentation phenomenon, the 
presentation of model equations, and the explanation of how the effect of AT on the fermentation 
was integrated in the model. Second, all the elements of the sensitivity analysis implementation 
are presented, with the description of the IPs studied, simulation scenarios considered and 
sensitivity analysis method implemented. Finally, we address how the uncertainty of model 
simulations were investigated. 

Presentation of the mechanistic model 

The model represents a rumen simulation technique (RUSITEC) system on a daily scale. 
Characteristics of the simulated RUSITEC system were taken from the setting used in Belanche 
et al., 2017. In the model, the rumen fermentation is represented as a reactor with a liquid phase 
of volume 𝑉! and a gas phase of volume 𝑉". The total volume of the system was set to 0.8 L with a 
separation of 0.74 L in liquid phase (𝑉!) and 0.06 L in gas phase (𝑉"). The feed “ingested” by the 
reactor is the input flux of the system. The biochemical mechanisms occurring during the 
degradation of the feed by the microbial community of the rumen with AT supply are represented 
according to assumptions described in Muñoz-Tamayo et al. (2016; 2021). The model has 19 
biochemical components in liquid and gas phase. The dynamics of the 19 state variables are 
represented by ordinary differentials equations. The model considers that system is completely 
mixed, which means that spatial variation is not directly modeled. 

Phenomena representation 
The structure of the rumen fermentation model used in this study is determined by the 

representation of two phenomena namely the flow transport and microbial fermentation. The first 
is a biochemical (e.g., liquid-gas transfer) and physical phenomenon (e.g., output flow due to 
dilution rate) describing the transport fluxes in the system, here represented as a reactor. The 
second is a biological phenomenon describing the microbial fermentation of feeds. 

The system studied is displayed in Figure 1. 
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Figure 1 - Representation of the in vitro continuous system. The system is 
composed of  liquid and gas phases associated with the volumes 𝑉! and 𝑉", 
respectively. The liquid-gas transfer phenomena occur with the rate 𝜌#,"%&. 𝑧', 𝑠', 𝑥', 
𝑠",(!, 𝑠",)*! and 𝑠",)(" correspond to the concentrations of the biochemical 
components produced from the fermentation (the polymer components, the soluble 
components, the microbial functional groups, the hydrogen in gas phase, the carbon 
dioxide in gas phase and the methane in gas phase, respectively). They are the 
state variables of the Muñoz-Tamayo et al. (2021) model. 𝐹'+ represents the input 
flux of the system, which is computed based on the feed intake described by the 
polymer component concentration (𝑧'). 𝐹,-.,! and 𝐹,-.," represent the output fluxes in 
liquid and gas phase, respectively. 

This system is represented as a reactor system similar to engineering anaerobic digestion 
reactors (Batstone et al., 2002). It should be noted that Muñoz-Tamayo et al. (2021) model is a 
batch system, not considering input and output flow rates. The daily total dry matter ingested 
(𝐷𝑀#$#%&) was of 11.25 g. In our model, the dry matter intake (DMI) at a given time 𝑡 was set as a 
dynamic equation determined by the number of feed distributions (𝑛'), which corresponds to the 
act of the feed being distributed in the RUSITEC system. For the feed distribution 𝑗, the DMI 
kinetics follows  

(1) 𝐷𝑀𝐼(𝑡) = ∑
(#$ .*+%&%'(

,)
. e-.#,)

/01  

Where 𝐷𝑀#$#%& is the total quantity of dry matter (DM) ingested in one day (g), 𝜆,$ is the fraction 
of 𝐷𝑀#$#%& supplied in the distribution 𝑗 and 𝑘 (h-1) is the intake kinetic rate. 𝐷𝑀#$#%& was set to 
11.25 g supplied in two feed distributions (𝑛' = 2). We set the first feed distribution to account for 
70% of the total DM (𝜆,* = 0.7). This configuration provides a DMI kinetics composed of two 
distributions with a significantly greater amount of DM ingested during the first intake and a medium 
intake kinetic (Figure 2). 
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Figure 2 - Dry matter intake (DMI, g/h) over time (h) simulated for one day with 
𝐷𝑀/0/12 = 11.25	g, 𝑛3 = 2,	𝜆4* = 0.7 and k = 0.015. 

The feed intake constitutes the input flux of the system. The feed is degraded by the rumen 
microbiota, leading to the production of several components in liquid and gas phase. Polymer 
components, soluble components and microbial functional groups are the components in liquid 
phase, and hydrogen, carbon dioxide and CH4 are the components in gas phase. Chemical 
compounds leave the system in liquid and gas phases as shown in Figure 1.  

The representation of the fermentation process is displayed in Figure 3. It corresponds strictly 
to what happens in the liquid phase (blue box of Figure 1). Biochemical assumptions used to 
describe the fermentation and the effect of AT are detailed in Muñoz-Tamayo et al. (2016; 2021). 
The main ones are described in the caption of Figure 3.  

 

Figure 3 - Representation of the in vitro rumen fermentation from Muñoz-Tamayo et 
al., (2021) model. This conceptual representation is based on biochemical 
assumptions described in Muñoz-Tamayo et al. (2016; 2021). The main assumptions 
are: 1) three polymer components are considered in the rumen: fiber carbohydrates, 
non-fiber carbohydrates and proteins, 2) hydrolysis of polymer components releases 
glucose (for fibers and non-fibers) and amino acids (for proteins), constituting two of 
the three soluble limiting substrates available in the rumen. The last soluble limiting 
substrate available is hydrogen, 3) the rumen microbiota is represented by three 
microbial functional groups (glucose utilizers, amino acids utilizers and hydrogen 
utilizers) determined by the microbial utilization of the three soluble limiting substrates 
in the fermentation pathway, 4) the utilization of the soluble substrates by biological 
pathways is done towards two mechanisms: product formation (single arrows) and 
microbial growth (double arrows), 5) acetate, propionate and butyrate are the only 
volatile fatty acids produced from the fermentation and 6) methane, carbon dioxide 
and hydrogen are the gas outputs of the fermentation. The inclusion of bromoform as 
the inhibitor compound of AT impacted the fermentation via two mechanisms. First, 
the bromoform has a direct inhibition of the growth rate of methanogens, resulting in 
a CH4 production reduction and hydrogen accumulation (represented by ). Second, 
the bromoform affects indirectly, through the hydrogen accumulation, the flux 
allocation towards VFA production, as hydrogen exerts control on this component 
(Mosey, 1983) (represented by ). 
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The resulting model comprises 19 state variables corresponding to 19 biochemical component 
concentrations in liquid and gas phases. 

System characteristics, intake and dietary scenarios 
The consideration of feed intake (Figure 1) in the model studied allows to simulate dietary 

scenarios. In the system, the feed intake is composed of one intake scenario, which defines the 
intake dynamic, and one diet scenario, which defines the diet composition. The intake scenario is 
simulated before running the model by computing Equation 1 setting parameters with expert 
knowledge, conducting to Figure 2. Whereas, the diet scenario is set when computing the input 
flux 𝐹2,45 associated with the three polymer components (Equation 2, presented later). The fractions 
of fiber carbohydrates, non-fiber carbohydrates and proteins in the diet (𝑤567, 𝑤589, 𝑤:;<) were set 
using data from an in vitro study assessing several dietary CH4 mitigation strategies, including AT, 
on the fermentation (Chagas et al., 2019). This experiment tested the impact on CH4 production of 
several doses of AT from 0 to 1% DM (containing 6.84 mg/g dry weight of bromoform) in the diet. 
The diet was composed of 38.7% DM of neutral detergent fiber (𝑤567), 39.7% DM of non-structural 
carbohydrates (𝑤589) and 16% DM of crude proteins (𝑤:;<). We analyzed three simulation 
scenarios: A control treatment with 0% of AT, a low treatment with 0.25% of AT and a high 
treatment with 0.50% of AT (Figure 4). 

 

Figure 4 - Summary of system characteristics, intake scenario and diet scenario 
simulated with the mechanistic model. 

The initial condition of bromoform concentration was set to zero for all the three treatments. 
These three scenarios are representative of a typical forage-based diet for dairy or beef cattle, 
testing three reasonable doses of AT, which were also studied in vivo (Roque et al., 2021). 

Model equations 
Model state variables are defined as 𝛏 = 6𝐳, 𝐬, 𝐱, 𝐬𝐠;, where 𝐳 = 6𝑧567, 𝑧589, 𝑧:;<; is the vector of 

concentrations of the polymer components (neutral detergent fiber (𝑧567), non-structural 
carbohydrates (𝑧589) and proteins (𝑧:;<); g/L), 𝐬 = 6𝑠8>, 𝑠??, 𝑠?9, 𝑠@>, 𝑠:;, 𝑠AB, 𝑠AC, 𝑠D! , 𝑠CD" , 𝑠@;; is the 
vector of concentrations of the soluble components (sugars (𝑠8>), amino acids (𝑠??), acetate (𝑠?9), 
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butyrate (𝑠@>), propionate (𝑠:;), inorganic nitrogen (𝑠AB), inorganic carbon (𝑠AC), hydrogen (𝑠D!), CH4 
(𝑠CD") and bromoform (𝑠@;); mol/L), 𝐱 = 6𝑥8>, 𝑥??, 𝑥D!; is the vector of concentrations of the 
microbial functional groups (sugars utilizers (𝑥8>), amino acids utilizers (𝑥??) and hydrogen utilizers 
(𝑥D!); mol/L) ,𝐬𝐠 = 6𝑠",CE! , 𝑠",D! , 𝑠",CD"; is the vector of concentrations in gas phase (carbon dioxide 
(𝑠",CE!), hydrogen (𝑠",D!) and CH4 (𝑠",CD"); mol/L). The polymer components include an input flux 
in their equation and all the components are associated with an output flux in liquid or gas phase. 
The input flux (g/(Lh)) of polymer components is described as  

(2) 𝐹2,45(𝑡) = 	
F+	.		*+H(#)

K,
 

where 𝑤2 is the fraction of polymer component 𝑖 in the diet of the animal, 𝐷𝑀𝐼 is the DM intake 
(g/h) with a total DM of 11.25 g split in two feed distributions along the day with the first distribution 
accounts for 70% of the total DM, and 𝑉! the volume in liquid phase of the rumen (L). 

The output flux in liquid phase (g/(Lh) for polymer components and mol/(Lh) for soluble and 
microbial functional groups components) is described as 

(3) 𝐹2,<>L,! = 	𝐷	. 𝑧2 , for	polymer	components  
(4) 𝐹2,<>L,! = 	𝐷	. 𝑠2 , for	soluble	components  
(5) 𝐹2,<>L,! = 	𝐷	. 𝑥2 , for	microbial	functional	groups  

where 𝐷 is the dilution rate (𝐷 = 0.035 h-1, Bayat et al., 2011), 𝑧2 is the concentration of polymer 
component 𝑖, 𝑠2 is the concentration of soluble component 𝑖 and 𝑥2 is the concentration of microbial 
functional group 𝑖. 

The output flux in gas phase (mol/(Lh)) is described as 

(6) 𝐹2,<>L," =	
M-	.N-,+
K-

 

where 𝑞" =
O	.P	.K,	.QR/,0!SR/,12!SR/,10"T

U-V0!2
 is the output flow of gas phase (L/h) wit 𝑅 the ideal gas 

constant (barL/(molK)), 𝑇 the temperature of the rumen (K), 𝜌W,D!, 𝜌W,CE! and 𝜌W,CD" the liquid-gas 
transfer phenomena rates of hydrogen, carbon dioxide and CH4 (mol/(Lh)), respectively, 𝑃 the total 
pressure (bars) and 𝑝D!E the partial pressure of water vapor (bar). 𝑠",2 is the concentration of 
component 𝑖 in gas phase (mol/L) and 𝑉" is the volume in gas phase of the rumen (L).  

Model equations are derived from mass balance equations described below. 
For polymer components 

(7) 6X345
6L

= 𝐹567,45 −	𝜌567 − 𝐹567,<>L,!  

(8) 6X367
6L

= 𝐹589,45 −	𝜌589 + (𝑓9Y,Z	. 𝑤[@). Z𝜌\68 + 𝜌\99 + 𝜌\0![ − 𝐹589,<>L,!  

(9) 6X:;<
6L

= 𝐹:;<,45 −	𝜌:;< +	6𝑓:;<,Z	. 𝑤[@;. Z𝜌\68 + 𝜌\99 + 𝜌\0![ − 𝐹:;<,<>L,!  

where 𝐹567,45, 𝐹589,45 and𝐹:;<,45 are the input fluxes of neutral detergent fiber, non-structural 
carbohydrates and proteins (g/(Lh)), respectively. 𝜌567, 𝜌589 and 𝜌:;< are the hydrolysis rate 
functions of polymer components (g/(Lh)), indicating the kinetic of hydrolysis of polymer 
components. These functions are described as 

(10) 𝜌2 = 𝑘Y]6,2 . 𝑧2  

With 𝑘Y]6,2 the hydrolysis rate constant (h-1) and 𝑧2 the concentration of polymer component 𝑖 
(g/L). 𝐹567,<>L, 𝐹589,<>L and 𝐹:;<,<>L are the output fluxes of polymer components (g/(Lh)). The middle 
part of equations (8) and (9) represents the recycling of dead microbial cells where 𝑓9Y,Z, 𝑓:;<,Z are 
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the fractions of carbohydrates and proteins of the biomass, 𝑤[@ is the molecular weight of microbial 
cells (g/mol) and 𝜌\68 = 𝑘6	. 𝑥8>, 𝜌\99 = 𝑘6	. 𝑥??, 𝜌\0! = 𝑘6	. 𝑥D! are the cell death rate of sugars 
utilizers, amino acids utilizers and hydrogen utilizers (mol/(Lh)) with 𝑘6 the rate of dead of microbial 
cells (h-1). 

For soluble components 

(11) 6N68
6L

= R345
F68

+ R367
F68

− 𝜌8> − 𝐹8>,<>L,!  

(12) 	6N99
6L

= R:;<
F99

− 𝜌?? − 𝐹??,<>L,!  

(13) 6N0!
6L

= 𝑌D!,8>	. 𝜌8> + 𝑌D!,??	. 𝜌?? −	𝜌D! − 𝜌W,D! − 𝐹D!,<>L,!  

(14) 6N97
6L

= 𝑌?9,8>	. 𝜌8> + 𝑌?9,??	. 𝜌?? − 𝐹?9,<>L,!  

(15) 6N=8
6L

= 𝑌@>,8>	. 𝜌8> + 𝑌@>,??	. 𝜌?? − 𝐹@>,<>L,!  

(16) 6N:;
6L

= 𝑌:;,8>	. 𝜌8> + 𝑌:;,??	. 𝜌?? − 𝐹:;,<>L,!  

(17) 6N>?
6L

= 𝑌AB,8>	. 𝜌8> + 𝑌AB,??	. 𝜌?? + 𝑌AB,D! 	. 𝜌D! − 𝐹AB,<>L,!  

(18) 6N>1
6L

= 𝑌AC,8>	. 𝜌8> + 𝑌AC,??	. 𝜌?? + 𝑌AC,D! 	. 𝜌D! − 𝜌W,CE! − 𝐹AC,<>L,!  

(19) 6N10"
6L

= 𝑌CD",D! 	. 𝜌D! − 𝜌W,CD" − 𝐹CD",<>L,!  

Let us detail how the amino acids are produced and used by the biological pathways in the 
fermentation process. Equation (12) indicates that amino acids are produced (positive sign in the 
equation) from the degradation of proteins, occurring with the kinetic rate 𝜌:;< (g/L h), which is 
divided by the molecular weight of the amino acids 𝑤?? (g/mol). Moreover, amino acids are utilized 
(negative sign in the equation) by the biological pathways during the fermentation with the kinetic 
rate 𝜌?? (mol/Lh). The kinetic rate 𝜌?? is a function indicating the kinetic of utilization of amino acids 
during the fermentation and is described as 

(20) 𝜌?? =
.@,99.N99.\99
^A,99SN99

 

With 𝑘[,?? the maximum specific utilization rate constant of amino acids (mol substrate/(mol 
biomass h)), 𝑠?? the concentration of amino acids (mol/L), 𝑥?? the concentration of amino acids-
utilizing microbes (mol/L) and 𝐾_,?? the Monod affinity constant associated with the utilization of 
amino acids (mol/L). 𝐹??,<>L is the output flux of amino acids concentration (mol/(Lh)). Then, further 
in the fermentation, amino acids are utilized by the specific microbial functional group 𝑥?? and 
contributed to the production of hydrogen (Equation 13), VFA (Equations 14, 15, 16), inorganic 
nitrogen (Equation 17) and inorganic carbon (Equation 18) with a stoichiometry represented by the 
yield factors 𝑌D!,??, 𝑌?9,??, 𝑌@>,??, 𝑌:;,??, 𝑌AB,?? and 𝑌AC,??, respectively. These components are also 
produced from glucose metabolism. In the last step of the biochemical conversion cascade, 
inorganic nitrogen and inorganic carbon are utilized during the reaction of hydrogen utilization in 
liquid phase with the kinetic rate function 𝜌D! (mol/L h), described similarly as Equation (20). An 
additional term (𝐼@;) is included to represent the inhibition effect of bromoform on the hydrogen 
utilizers (methanogens) as detailed later on. Hydrogen in liquid phase is also associated with a 
transfer phenomenon with hydrogen in gas phase given by the rate 𝜌W,D! (mol/(Lh)). This liquid-
gas transfer phenomenon also concerns carbon dioxide with the rate 𝜌W,CE! (mol/(Lh)) and CH4 
(Equation 19) with the rate 𝜌W,CD"(mol/(Lh)). The general equation of the liquid-gas transfer rate is 
described as 

(21) 𝜌W,2 = 𝑘`a. 6𝑠2 − 𝐾D,2 . 𝑝",2;  
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With 𝑘`a the mass transfer coefficient (h-1), 𝑠2 the concentration (mol/L), 𝐾D,2 the Henry’s law 
coefficient (M/bar) and 𝑝",2 the partial pressure (bars) of soluble component 𝑖. 

Finally, CH4 in liquid phase is produced using hydrogen in liquid phase with the stoichiometry 
𝑌CD",D!. 

For microbial functional groups 

(22) 6\68
6L

= 𝑌8>	. 𝜌8> − 𝜌\68 − 𝐹\68,<>L,!  

(23) 6\99
6L

= 𝑌??	. 𝜌?? − 𝜌\99 − 𝐹\99,<>L,!  

(24) 6\0!
6L

= 𝑌D! 	. 𝜌D! − 𝜌\0! − 𝐹\0! ,<>L,!  

Microbial functional groups of glucose utilizers (Equation 22), amino acid utilizers (Equation 23) 
and hydrogen utilizers (Equation 24) are produced from their respective substrates with the yield 
factors 𝑌8>, 𝑌?? and 𝑌D!, respectively. 

For the gas phase 

(25) 
6N-,12!
6L

= 𝑉!	.
R/,12!
K-

− 𝐹CE!,<>L,"  

(26) 
6N-,0!
6L

= 𝑉!	.
R/,0!
K-

− 𝐹D!,<>L,"  

(27) 
6N-,10"
6L

= 𝑉!	.
R/,10"
K-

− 𝐹CD",<>L,"  

The dynamics of carbon dioxide (Equation 25), hydrogen (Equation 26) and CH4 (Equation 27) 
in gas phase are driven by the liquid-gas transfer phenomena given by the rates 𝜌W,CE!, 𝜌W,D! and 
𝜌W,CD" (mol/(Lh)), respectively. 

Model parameters were either set with values extracted from the literature (Batstone et al., 
2002; Serment et al., 2016), set with values reported from in vitro study providing the experimental 
data (Chagas et al., 2019) or estimated using the maximum likelihood estimator as reported in 
Muñoz-Tamayo et al. (2021). In the present study, initial conditions of state variables were 
determined by running the model for 50 days without AT supply (control condition). The idea was 
to reach a quasi-steady state of the state variables. Values corresponding to the last time step 
simulated were selected as initial conditions of the model for the further analysis explained below. 

Integration of the macroalgae Asparagosis taxiformis 
The integration of bromoform contained in AT conducted to the incorporation of the 19th state 

variable representing the dynamic of bromoform concentration. 

(28) 6N=;
6L

= 𝐹@;,45 − 𝑘@;	. 𝑠@; − 𝐹@;,<>L  

Where 𝐹@;,45 =	
F=;	.		*+H

K,
 is the input flux of bromoform concentration (g/(Lh)) with 𝑤@; the fraction 

of bromoform in the diet of the animal. 𝑘@; corresponds to the kinetic rate of bromoform utilization 
(h-1) and 𝐹@;,<>L = 	𝐷	. 𝑠@; is the output flux of bromoform concentration (g/(Lh)). The value of 𝑘@; 
was obtained from data reported in Romero et al. (2023a). 

The direct effect of bromoform on the CH4 production is represented through the factor 𝐼@; 
(Equation 29) impacting the kinetic rate function of hydrogen utilization (𝜌D!). This factor is a function 
of the bromoform concentration and is modeled by a sigmoid shape. Whereas the indirect effect 
of bromoform on the flux allocation towards VFA production is represented through the flux 
allocation parameters 𝜆, describing the three reactions driving flux allocation from glucose 
utilization to VFA production. 𝜆1, 𝜆a and 𝜆b indicates the molar fraction of glucose utilized to 
produce acetate, to produce propionate and to produce butyrate, respectively. They follow 𝜆1 +
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	𝜆a + 𝜆b = 1. λ1 (Equation 30) and 𝜆a (Equation 31) are represented by affine functions described 
below. 

(29) 𝐼@; = 1 − 1
1ScZ:Q-V*.(N=;SV!)T

 

With 𝑠@; the bromoform concentration (g/L) and 𝑝1, 𝑝a the parameters of sigmoid function. 

(30) 𝜆1 = 𝑝b − 𝑝d. 𝑝D!  

With 𝑝D! the hydrogen partial pressure (bars) and 𝑝b, 𝑝d the parameters of affine function. 

(31) 𝜆a = 𝑝e + 𝑝f. 𝑝D!  

With 𝑝D! the hydrogen partial pressure (bars) and 𝑝e, 𝑝f the parameters of affine function. 
These factors are displayed in Figure 5.  

 

Figure 5 - Representation of the direct effect of Asparagosis taxiformis on the 
methane production (𝐼56) against the bromoform concentration (𝑠56, mg/L), and of 
the indirect effect of Asparagosis taxiformis, through the hydrogen accumulation, on 
the flux allocation towards acetate production (𝜆7) and propionate production (𝜆8) 
against the hydrogen partial pressure (𝜌(!). 

It should be noted that the model version of Muñoz-Tamayo et al. (2021) includes an inhibition 
factor of glucose utilization by hydrogen (𝐼D!). This factor was incorporated to account for the 
reduced production of VFA under AT supply observed in the experiments of Chagas et al. (2019). 
However, in the present study, we decided not to include this term. Some studies have shown that 
high doses of AT decrease total VFA both in vitro (Chagas et al., 2019; Kinley et al., 2016; Machado 
et al., 2016; Terry et al., 2023) and in vivo (Li et al., 2016; Stefenoni et al., 2021). However, in other 
studies the total VFA was unaffected by AT supplementation under in vitro (Romero et al., 2023b; 
Roque et al., 2019) and in vivo (Kinley et al., 2020) conditions. These discrepancies might be due 
to the variability of physical processing of the macroalgae (e.g., drying, storage). The incorporation 
of the hydrogen inhibition factor was indeed challenged by Henk van Lingen in the evaluation of 
the model in Muñoz-Tamayo et al., (2021) (Tedeschi, 2021). Accordingly, we acknowledge that 
this aspect requires further studies, and it is not then included in the present work. We then run 
again the calibration of the model without the 𝐼D! factor under batch conditions using the 
experimental data from Chagas et al. (2019) to estimate the parameters from equations (28-30). 
In the process, with the aim of model simplification, we set the allocation factors 𝜆1, 𝜆a as linear 
functions of 𝑝D!. The updated version of the model under batch conditions is available at Muñoz-
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Tamayo (2020). Table 1 shows the stoichiometry matrix of the biochemical reactions represented 
in the model. Table 2 shows the model parameters. 

Table 1 - Stoichiometry matrix of biochemical reactions occurring during the rumen 
fermentation. 

 Component → i 1 2 3 4 5 6 7 8 Kinetic 
rate 

j Microbial process   ↓  𝑧!"#  𝑧!$%  𝑧&'(  𝑠$)  𝑠**  𝑠+!  𝑠*%  𝑠,)  
1 Hydrolysis of NDF -1    1 𝑤$)⁄       𝜌!"# 
1 Hydrolysis of NSC  -1   1 𝑤$)⁄       𝜌!$% 
2 Hydrolysis of proteins   -1  1 𝑤**⁄      𝜌&'( 
3 Utilization of glucose    -1   𝑌+!,$)  𝑌*%,$)  𝑌,),$)  𝜌$) 

4 Utilization of amino 
acids     -1  𝑌+!,**  𝑌*%,**  𝑌,),**  𝜌** 

5 Utilization of hydrogen      -1    𝜌+! 
6 Death of sugars utilizers   𝑓%.,/	. 𝑤0,  𝑓&'(,/	. 𝑤0,       𝜌/"# 

7 Death of amino acids 
utilizers   𝑓%.,/	. w0,  𝑓&'(,/	. 𝑤0,       𝜌/$$ 

8 Death of hydrogen 
utilizers   𝑓%.,/	. 𝑤0,  𝑓&'(,/	. 𝑤0,       𝜌/%!  

9 Inhibition of bromoform          
           
           

 Component → i 9 10 11 12 13 14 15 16 Kinetic 
rate 

j Microbial process ↓  𝑠&'  𝑠12  𝑠13  𝑠3+&  𝑥$)  𝑥**  𝑥+!  𝑠,'  
1 Hydrolysis of NDF           𝜌!"# 
1 Hydrolysis of NSC          𝜌!$% 
2 Hydrolysis of proteins          𝜌&'( 

3 Utilization of glucose  
𝑌&',$)  𝑌12,$)  𝑌13,$)   𝑌$)     𝜌$) 

4 Utilization of amino 
acids 

 
𝑌&',** 

 𝑌12,**  𝑌13,**    𝑌**    𝜌** 

5 Utilization of hydrogen   𝑌12,+!  𝑌13,+!  𝑌3+&,+!   𝑌4!   𝜌+! 
6 Death of sugars utilizers     -1     𝜌5"# 

7 Death of amino acids 
utilizers      -1    𝜌5$$ 

8 Death of hydrogen 
utilizers       -1   𝜌5%!  

9  Inhibition of bromoform         −𝑘,'  
           

 
  

Table 2 - Model parameters. Parameters studied in the sensitivity analysis are 
highlighted with *. 

 Definition Unit Value Reference/Criteria 
used 

Rates     

 𝜇6 
Growth rate of the microbial 
group 𝑗 mol j/(L h)  𝑌6 . 𝜌6 Monod equation 

 𝜌6 
Kinetic rate of microbial 
process 𝑗 Mol (or g) j/(L h)  𝑘0,6

7'
8",'97'

𝑥6 Monod kinetics 

 𝜌5' Death cell rate of microbes 𝑗 mol j/(L h)  𝑘". 𝑥:  

 𝜌;,6 
Liquid-gas transfer rate of 
component 𝑗 mol j/(L h)  𝑘<a. (𝑠6 − 𝐾+,6 . 𝑝=*$,6) 

Mass transfer 
phenomena 
between the liquid 
and gas phases 

Biochemical parameters 

 𝜆> 
Molar fraction of the sugars 
utilized to produce acetate mol/mol  𝑝? − 𝑝@	. 𝑝+!  

 𝜆A Molar fraction of the sugars 
utilized to produce acetate mol/mol  𝑝B + 𝑝C	. 𝑝+!  

 𝜆? Molar fraction of the sugars 
utilized to produce acetate mol/mol  1 − (𝜆> + 𝜆A)  

 𝜎*%,** 
Stoichiometry coefficient of 
acetate production from mol/mol 0.67 Stoichiometry of 

amino acids 
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 Definition Unit Value Reference/Criteria 
used 

amino acids utilization fermentation 
(Muñoz-Tamayo et 
al., 2021) 
 
 

 𝜎,),** 
Stoichiometry coefficient of 
butyrate production from 
amino acids utilization 

mol/mol 0.24 

 𝜎&',** 
Stoichiometry coefficient of 
propionate production from 
amino acids utilization 

mol/mol 0.062 

 𝜎+!,** 
Stoichiometry coefficient of 
hydrogen production from 
amino acids utilization 

mol/mol 0.82 

 𝜎13,** 
Stoichiometry coefficient of 
inorganic carbon production 
from amino acids utilization 

mol/mol 0.88 

 𝑓+! 
Fraction of hydrogen utilized 
for product formation mol/mol  1 − 10	. 𝑌+! 

Stoichiometry of 
reactions 
represented in the 
model 
 

 𝑓$) Fraction of glucose utilized 
for product formation mol/mol  1 − B

C
	 . 𝑌$) 

 𝑓%.,/ 
Mass fraction of 
carbohydrates in the 
microbial cells 

g/g 0.20 Reichl and Baldwin, 
1975 

 𝑓&'(,/ 
Mass fraction of proteins in 
the microbial cells g/g 0.55 Reichl and Baldwin, 

1975 

 𝑘,'* Kinetic rate constant of 
bromoform utilization h-1 0.095 Romero et al., 

2023a  
 𝑘" Death cell rate constant h-1 8.33e-04 Batstone et al., 2002 
 𝑘.D",!"#* 

Hydrolysis rate constant of 
cell wall carbohydrates h-1 0.024 Chagas et al. 2019 

 𝑘.D",!$%* 
Hydrolysis rate constant of 
non-structural carbohydrates h-1 0.06 Estimated 

 𝑘.D",&'(* 
Hydrolysis rate constant of 
proteins h-1 0.09 Estimated 

 𝑘0,*** 
Maximum specific utilization 
rate constant of amino acids mol /(mol h) 2.00 Estimated 

 𝑘0,+!* 
Maximum specific utilization 
rate constant of hydrogen mol /(mol h) 16 Estimated 

 𝑘0,$)* Maximum specific utilization 
rate constant of glucose mol /(mol h) 1.00 Muñoz-Tamayo et 

al., (2021) 

 𝐾$,*** 
Monod constant associated 
with the utilization of amino 
acids 

mol/L 6.40e-03 Baldwin et al., 1987 

 𝐾$,+!* 
Monod constant associated 
with the utilization of 
hydrogen 

mol/L 5.84e-06 Robinson and 
Tiedje, 1982 

 𝐾$,$)* Monod constant associated 
with the utilization of glucose mol/L 9.00e-03 Baldwin et al., 1987 

 K$,12 Nitrogen limitation constant mol/L 2.0e-04 Baldwin and 
Denham, 1979 

 𝑌** 
Microbial biomass yield 
factor of amino acids 
utilizers 

mol/mol 0.31 Estimated 

 𝑌+! Microbial biomass yield 
factor of hydrogen utilizers mol/mol 0.006 Muñoz-Tamayo et 

al., (2021) 

 𝑌$) Microbial biomass yield 
factor of glucose utilizers mol/mol 0.16 Muñoz-Tamayo et 

al., (2021) 

 𝑌*%,$) Yield factor of the acetate 
during utilization of glucose mol/mol  𝑓$)	. (2	. 𝜆> +

A
?
	 . 𝜆A) 

Stoichiometry of 
reactions 
represented in the 
model 
 
 
 
 
 

 𝑌,),$) Yield factor of the butyrate 
during utilization of glucose mol/mol  𝑓$)	. (𝜆?) 

 𝑌&',$) Yield factor of the propionate 
during utilization of glucose mol/mol  𝑓$)	. (

@
?
	 . 𝜆A) 

 𝑌+!,$) Yield factor of the hydrogen 
during utilization of glucose mol/mol  𝑓$)	. (4	. 𝜆> + 2	. 𝜆?) 

 𝑌12,$) 
Yield factor of the inorganic 
nitrogen during utilization of 
glucose 

mol/mol  −𝑌$) 

 𝑌13,$) 
Yield factor of the inorganic 
carbon during utilization of 
glucose 

mol/mol  𝑓$)	. (2	. 𝜆> +
A
?
	 . 𝜆A + 2	. 𝜆?) 

 𝑌3+&,+! Yield factor of the methane 
during utilization of hydrogen mol/mol  𝑓+! 	. (

>
@
	) 

 𝑌13,+! Yield factor of the inorganic 
carbon during utilization of mol/mol  −(A>

@
B . 𝑓+! + A B

>E
B . C1 − 𝑓+!D) 
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 Definition Unit Value Reference/Criteria 
used 

hydrogen 

 Y12,+! 
Yield factor of the inorganic 
nitrogen during utilization of 
hydrogen 

mol/mol  −𝑌+! 

 YF,** 
Yield factor of the 
component i during 
utilization of amino acids 

mol/mol  (1 − 𝑌**). 𝜎F,** 

 Y12,** 

Yield factor of the 
component inorganic 
nitrogen during utilization of 
amino acids 

mol/mol  𝑁** − 𝑌**	.I)* 

Physicochemical parameters 

 𝐾*,3J! 
Equilibrium constant of 
bicarbonate  5.13e-07 Batstone et al., 2002 

 𝐾*,2+& 
Equilibrium constant of 
ammonium  1.44e-09 Batstone et al., 2002 

 𝐾*,KLM Equilibrium constant of VFA  1.74e-05 Batstone et al., 2002 

 𝐾N Equilibrium coefficient of 
water  2.75e-14 Batstone et al., 2002 

 𝑘<a Liquid-gas transfer constant h-1 8.33 Batstone et al., 2002 
 𝐾+,3J! 

Henry’s law coefficient of 
carbon dioxide M/bar 2.46e-02 Batstone et al., 2002 

 𝐾+,3+& 
Henry’s law coefficient of 
methane M/bar 1.10e-03 Batstone et al., 2002 

 𝐾+,+! 
Henry’s law coefficient of 
hydrogen M/bar 7.23e-04 Batstone et al., 2002 

 𝑃 Pressure bars 1.01325 Serment et al., 2016 
 𝑇 Temperature K 312.15 Serment et al., 2016 

 𝑤** 
Molecular weight of average 
amino acid g/mol 134 Feedipedia 

 𝑤*% Molecular weight of acetate g/mol 60.05 Wikipedia 
 𝑤,) Molecular weight of butyrate g/mol 88.10 Wikipedia 

 𝑤0, Molecular weight of 
microbial cells g/mol 113 Batstone et al., 2002 

 𝑤&' 
Molecular weight of 
propionate g/mol 74.1 Wikipedia 

 𝑤$) Molecular weight of glucose g/mol 180.16 Wikipedia 
 𝑉= Volume of the gas phase L 0.06 Belanche et al., 

2017 

 𝑉O Volume of the liquid phase L 0.74 Belanche et al., 
2017 

Parameters of factors modeling the effect of bromoform on rumen fermentation 

 𝑝>* 

Parameter of the factor 𝐼,'  
modeling the direct effect of 
bromoform on the CH4 
production  

 72551 Estimated 

 𝑝A* 

Parameter of the factor 𝐼,'  
modeling the direct effect of 
bromoform on the CH4 
production 

 -1.0837e-04 Estimated 

 𝑝?* Intercept of 𝜆>    0.3655 Estimated 
 𝑝@* Slope of 𝜆>  0.6371 Estimated 
 𝑝B* Intercept of 𝜆A  0.3787 Estimated 
 𝑝C* Slope of 𝜆A  0.1160 Estimated 

 

Sensitivity analysis 

Based on the representation of Figure 3, we focus on the hydrolysis of polymer components 
(fiber carbohydrates, non-fiber carbohydrates and proteins), the fermentation of microbial 
functional groups (glucose utilizers, amino acids utilizers and hydrogen utilizers) and the effect of 
bromoform on rumen fermentation. They are the components of interest, those whose impact on 
the variability of CH4 and VFA production is to be studied, when implementing the SA. 

We implemented a SA method for quantifying the contribution of 16 IPs to the variability of four 
state variables of the mechanistic model described in the previous section. This method is 
grounded on a strong theoretical framework and provide easy-to-interpret sensitivity indices (SI). 
Moreover, the SI were computed over time allowing studying the dynamics of IP sensitivity during 
the fermentation. The Shapley effects (Owen, 2014) were computed for quantifying the individual, 
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interaction and dependence/correlation effects of an IP to the variability of an output. Although the 
model studied here provides no correlated or dependent IPs, this method was used to introduce a 
new SA method in the animal nutrition field. In addition to Shapley effects, we explored also the 
Sobol method. The interested reader is referred to the supplementary material (Blondiaux et al., 
2024). 

This work was done with the support of MESO@LR-Platform at the University of Montpellier, 
which was used to run the algorithms computing Shapley effects. They were run using one node, 
28 cores and 125 GB of RAM of memory. 

Input parameters and output variables studied 
State variables of the model considered as output variables of the SA were the rate of CH4 

production (in gas phase) (𝑞CD",",<>L, mol/h) and VFA (acetate (𝑠?9), butyrate (𝑠@>) and propionate 
(𝑠:;)) concentrations (mol/L). The model was run for four days, similarly to the RUSITEC of Roque 
et al., (2019), and the SA was performed on the last day of simulation,  from 72 to 96h with a time 
step of 1h. 

Components constituting the model represent different factors associated to microbial 
pathways involved in in vitro rumen fermentation. These factors include polymer hydrolysis and 
microbial growth. The sensibility of hydrolysis rate constants associated with the three polymer 
components (𝑘Y]6,567, 𝑘Y]6,589 and 𝑘Y]6,:;<, h-1) was studied for quantifying the impact of feed 
polymer hydrolysis on output variables of interest during the fermentation. In addition, the 
sensibility of maximum specific utilization rate constants (𝑘[,8>, 𝑘[,?? and 𝑘[,D!, mol substrate/(mol 
biomass h)) and Monod constants (𝐾_,8>, 𝐾_,?? and 𝐾_,D!, mol/L) associated with the three microbial 
groups was studied for quantifying the impact of microbial growth on output variables of interest 
during the fermentation. 

In addition to the IPs quantifying the impact of polymer components and microbial functional 
groups, IPs related to the effect of bromoform on the fermentation were considered. The kinetic 
rate constant of bromoform utilization (𝑘@; , h-1), quantifying the consumption of anti-methanogenic 
compounds, was added to the SA. Moreover, the parameters of sigmoid and affine functions 
associated with the factor representing the impact of bromoform on methanogens (𝐼@; associated 
with parameters 𝑝1 and 𝑝a) and with the flux allocation from glucose utilization to VFA production 
(𝜆1 associated with parameters 𝑝b and 𝑝d, and 𝜆a associated with parameters 𝑝e and 𝑝f) were 
added to the SA. Therefore, in total, 16 IPs were considered. 

The first step in SA was to set the variability space of IPs. To perform that, information about 
the variability of each IP was required. This information was available from two sources: data and 
expert knowledge (Table 3). Based on the low number of data available for each IP, uniform 
distributions were selected for quantifying hydrolysis rate constants, maximum specific utilization 
rate constants and Monod constants variability. Lower and upper bounds of uniform distributions 
were set by selecting the minimum and maximum values among all the references. Furthermore, 
the parameters associated with the effect of bromoform on the fermentation were not biological 
parameters and no data were available for modeling their variability. Therefore, a uniform 
distribution varying of ± 10% the baseline model parameter value was used for parameters 𝑝1 to 
𝑝f.  

Shapley effects 
Definition  
The SA method implemented was the Shapley effects, which come from the field of cooperative 

game theory (Shapley, 1953). The Shapley effect of an IP 𝑥4 (𝑠ℎ4) measures the part of variability 
of the output variable caused by the variability of 𝑥4, and allocate to 𝑥4 a fair value regarding its 
individual contribution, its contribution due to interactions with other IPs and its contribution due to 
dependence/correlation with other IPs (Owen, 2014, Song et al., 2016). It is described as 

(32) 𝑠ℎ4 =
1
g
∑ a𝑑 − 1|𝑢| e

-1
(∑ var(E[𝑦|𝑥h])i⊆kS2 −	k⊆-{4} ∑ var(E[𝑦|𝑥h])i⊆k )  
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where 𝑑 is the number of IPs, 𝑢 ⊆ {1,…𝑑} is a subset of IPs, 𝑦 is the output variable and 𝑥 is 
an IP. 

Table 3 - Variation range (minimum (min) and maximum (max)) and 
sources/references of uniform distributions used for exploring the variability of input 
parameters studied in the sensitivity analysis. 

Parameter Min Max References 
 𝑘.D",!"# 0.01 0.33 Chapoutot et al., 2010; Muñoz-Tamayo et al., 2016; van Lingen et al., 2019 
 𝑘.D",!$% 0.06 0.22 Muñoz-Tamayo et al., 2016; van Lingen et al., 2019 
 𝑘.D",&'( 0.05 0.25 Muñoz-Tamayo et al., 2016; van Lingen et al., 2019 
 𝑘0,$) 0.94 4.33 Batstone et al., 2002; Muñoz-Tamayo et al., 2016, 2021 
 𝐾P,$) 1e-04 9e-03 Batstone et al., 2002; Muñoz-Tamayo et al., 2016, 2021 
 𝑘0,** 1 5 Batstone et al., 2002; Muñoz-Tamayo et al., 2016, 2021 
 𝐾P,** 3e-04 8e-03 Batstone et al., 2002; Muñoz-Tamayo et al., 2016, 2021 
 𝑘0,+! 12 25 Batstone et al., 2002; Muñoz-Tamayo et al., 2016, 2021 
 𝐾P,+! 1e-07 1e-05 Batstone et al., 2002; Muñoz-Tamayo et al., 2016, 2021 
 𝑘,' 8.55e-02 1.04e-01  
 𝑝> 6.52e+04 7.98e+04  
 𝑝A -1.19e-04 -9.75e-05  
 𝑝? 0.33 0.40  
 𝑝@ 0.57 0.70  
 𝑝B 0.34 0.42  
 𝑝C 0.10 0.13  

 
Interpretation 
The Shapley effects are condensed and easy-to-interpret. Their sum is equal to 1, allowing us 

to interpret them as the percentage of contribution of the IPs to output variability. Nevertheless, 
the distinction of individual, interaction and dependence/correlation effects are not possible. Each 
IP is associated with one value, integrating the three effects. 

Numerical computation 
Several methods are available for estimating the Shapley effects. In our study, the random 

permutation method was used (Song et al., 2016). This method provides a consistent estimation 
of the Shapley effects adapted in the case of numerous IPs (Iooss and Prieur, 2019). It is based 
on an alternative definition of the Shapley effects, expressing it in terms of all the possible IPs 
permutations (Castro et al., 2009). The computational cost of this method is 𝑁i + (𝑑 − 1)𝑁$𝑁2 with 
𝑁i the sample size for estimating the output variance, 𝑚 the number of permutations randomly 
sampled from the space of all the possible IP permutations, 𝑑 the number of IPs considered, 𝑁$ 
the sample size for estimating the expectation and 𝑁2 the sample size for estimating the conditional 
variance. 𝑁$ and 𝑁2 were set at 1 and 3, respectively, as recommended in Song et al. (2016). In 
addition, 𝑁i = 1e04 and 𝑚 = 1e04 were considered, conducting to 460000 model evaluations. 
Estimation of the Shapley effects was performed using the R package “sensitivity” (Iooss et al., 
2023). 

Uncertainty analysis 

SA provides a framework combining an IP sampling matrix, developed by randomly drawing 
values from IP probability distributions (Table 3), to simulations of our four outputs of interest. This 
in silico framework was used for analyzing uncertainty associated with the simulations of CH4, 
acetate, butyrate and propionate concentrations (mol/L). Similarly to SA, uncertainty associated 
with outputs of interest was studied dynamically by computing summary statistics (median, 
standard deviation (SD), and quantiles 10 and 90%) and the coefficient of variation (CV) of the 
output simulations at each time step. 
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Results and discussion 

Analysis of the simulations of the mechanistic model 

Comparison with in vitro and in vivo studies for methane production 
Figure 6 displays the dynamic of 𝑞CD",",<>L of the three dietary scenarios (control: 0% of AT, low 

treatment: 0.25% of AT and high treatment: 0.50% of AT) for a four days simulation.  

 

Figure 6 - Rate of CH4 production in gas phase (𝑞)(",",,-., mol/h) over time (h) of 
the three dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 
0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis 
taxiformis) for a four days simulation. 

Increasing the dose of AT decreased 𝑞CD",",<>L with, at the end of the four days of simulations, 
a CH4 (g/d) reduction of 17% between control and low AT treatment and of 78% between control 
and high AT treatment. This reduction increased from one day to the next with computed 
reductions of 9%, 14%, 16% and 17% between control and low AT treatment, and of 65%, 72%, 
75% and 78% between control and high AT treatment, from day 1 to 4, respectively. 

These reductions between AT treatments were lower than those reported in in vitro and in vivo 
studies. Chagas et al. (2019) indicated that the inclusion of AT (10 g/kg OM) decreased predicted 
in vivo CH4 production (mL/g DM) of 99% under in vitro condition. Whereas, the RUSITEC of 
Roque et al. (2019) and the in vitro study of Romero et al. (2023b) reported reductions of CH4 
production (mL/g OM and mL, respectively) of 95% (with a 5% OM dose) and 97% (with a 2% DM 
dose), respectively. 

Under in vivo conditions, Roque et al. (2021) tested AT doses similar to our simulations. This 
work reported in vivo CH4 production (g/d) reduction of 32.7 and 51.9% between control, and low 
and high AT treatments, respectively. The model simulated a lower reduction for low AT treatment 
and a higher reduction for high AT treatment. 

These results highlighted that some interactions occurring during the fermentation are not 
represented in the model (e.g. forage wall content might inhibit the effect of AT). Improving the 
model involves a finer representation of the interactions between feed characteristics and 
fermentation, as discussed by  Bannink et al. (2016). 

Analysis of the behavior of VFA proportions 
The dynamic of VFA proportions and propionate to acetate ratio of the three dietary scenarios 

for a four days simulation is displayed in Figure 7.  
The dynamic of VFA proportions showed that increasing AT dose in the diet decreased acetate 

proportion of 5% and 31% at the end of the fermentation between control, and low and high AT 
treatments, respectively. Whereas, butyrate and propionate proportions increased when 
increasing AT dose in the diet, with increases at the end of the fermentation (t = 96h) of 13% and 
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74% for butyrate proportion and of 4% and 22% for propionate proportion between control, and 
low and high AT treatments, respectively. These behaviors were similar to those of in vitro studies. 
In Chagas et al. (2019), the AT treatment was associated with lower molar proportion of acetate (- 
75%) and higher molar proportions of propionate and butyrate (+ 38% and + 47%, respectively). 

 

 

Figure 7 - Acetate proportion (%), butyrate proportion (%), propionate proportion 
(%) and propionate to acetate ratio over time (h) of the three dietary scenarios 
(control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis 
taxiformis and high treatment: 0.50% of Asparagopsis taxiformis) for a four days 
simulation. 

Propionate to acetate ratio was also associated with an increase of 10% between control and 
low AT treatment and of 76% between control and high AT treatment. This increase was 
highlighted in Roque et al. (2019) and Romero et al. (2023b). 

These results highlight that the VFA dynamic behavior between AT treatment simulated by the 
model was consistent with the in vitro experiments. 

Shapley effects - General contribution of the input parameters to the variability of methane 
and volatile fatty acids production 

Figures 8, 9, 10 and 11 display the Shapley effects computed over time for the fourth day of 
simulation (from 72 to 96h) of 𝑞CD",",<>L (mol/h), 𝑠?9 (mol/L), 𝑠@> (mol/L) and 𝑠:; (mol/L), respectively, 
for the three dietary scenarios (control, low AT treatment and high AT treatment) studied. This 
implementation will be able to identify the microbial pathways explaining the variation of CH4 and 
VFA, and to investigate how these pathways change according to the inhibitor doses. Only the IPs 
associated with a contribution higher than 10% for at least one time step were displayed. 

For some time steps, the computation led to negative indexes. In this case, the estimates were 
set to 0. These issues mainly concerned 𝑞CD",",<>L of the two AT treatments and were either due to 
the outliers in the variability explored in the simulations or to the lack of variability in the simulations 
for some time steps. The computational time for one dietary scenario was of 24h using the 
MESO@LR-Platform. 

The comparison of our results with those of previous SA conducted on mechanistic models of 
rumen fermentation is not straightforward given the specific model structures and their 
mathematical formulation. Consequently, the model structure, and the variables and parameters 
considered in these models are different from those used in our representation, except for Merk et 
al. (2023) which conducted its SA on an adapted version of the model of Muñoz-Tamayo et al. 
(2021). Moreover, regarding the other references than Merk et al., 2023 the comparison of SA 
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results is only valid for the control as other models did not consider AT treatments. Nevertheless, 
despite these limitations considering our results in relation to those obtained in previous studies 
provides useful information to improve our knowledge of the whole picture of the rumen 
fermentation. 

Rate of methane production  
Figure 8 indicated that the action of the microbial group of hydrogen utilizers represented by 

the Monod affinity constant 𝐾_,D!, contributed largely the most to the variability of 𝑞CD",",<>L over the 
fermentation for control and low AT treatment, explaining more than 50% of 𝑞CD",",<>L variation over 
time for both scenarios. The dynamic of the impact of this microbial group was constant over time 
and slightly followed the dynamic of DMI. 

The other influential IP for control was related to microbes degrading the fibers, via the 
hydrolysis rate constant 𝑘Y]6,567, highlighting a contribution of c.a. 10% to 𝑞CD",",<>L variability with 
a constant dynamic over time. This IP showed a low influence (c.a. 10%) for low and high AT 
treatments. 

When no dose of AT was considered, Merk et al. (2023) and Huhtanen et al. (2015) also 
highlighted the impact of fibers degradation component on CH4 production variation of Muñoz-
Tamayo et al. (2021) and Karoline models, respectively. The initial neutral detergent fiber 
concentration, which was largely associated with the highest contribution (= 43%) to CH4 
production variation, and 𝑘Y]6,567 were the influential IPs in Merk et al. (2023). The other influential 
IP for the control was related to the flux allocation parameter from glucose utilization to propionate 
production (𝜆a). This last IP was not considered in our SA as we modified the flux allocation 
parameters in our model version. 

 

 

Figure 8 - Shapley effects of the influential input parameters (i.e, parameters with a 
contribution higher than 10% for at least one time step) over time (h) computed for 
the fourth day of simulation of the rate of CH4 production in gas phase (𝑞)(",",,-., 
mol/h) for the three dietary scenarios (control: 0% of Asparagopsis taxiformis, low 
treatment: 0.25% of Asparagopsis taxiformis and high treatment: 0.50% of 
Asparagopsis taxiformis). 

For the other SA works carried out under control condition, fat and the degradation of starch 
and insoluble protein were the other factors associated with an influence on CH4 production in 
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Huhtanen et al. (2015). Whereas van Lingen et al. (2019) highlighted that IPs associated with the 
fractional passage rate for the solid and fluid fractions in the rumen and NADH oxidation rate 
explained 86% of CH4 predictions variation of a modified version of the Dijkstra model. Our model 
does not include the different passage rates between solid and liquid fractions. Finally, Dougherty 
et al. (2017) found that influential IPs on daily CH4 production predicted with the AusBeef model 
were associated with ruminal hydrogen balance and VFA production. 

For AT treatments, some IPs associated with the factors modeling the effect of AT on the 
fermentation were highlighted as influential on 𝑞CD",",<>L variability. The IPs 𝑝a, which is related to 
the sigmoid function modeling the direct inhibition effect of AT on methanogenesis, and 𝑘@;, which 
describes the kinetic of bromoform utilization, showed a low (c.a. 10%, at t = from 77 to 78h for 𝑝a, 
and at t = 87h for 𝑘@;) and intermediate (> 20%, at t = from 81 to 83h and from 87 to 93h for both 
𝑝a and 𝑘@;) contribution to 𝑞CD",",<>L variability for low and high doses of AT, respectively. 

Furthermore, AT treatments highlighted the differences of the role of microbial pathways 
explaining the variation of 𝑞CD",",<>L when increasing the dose of AT. When a high dose of AT was 
supplemented, 𝑘@; and 𝑝a explained more than 50% of 𝑞CD",",<>L variability in the middle (t = from 
81 to 83h) and middle end (t = from 88 to 92h) of the fermentation, replacing a part of the variability 
explained by 𝐾_,D!. Their influence decreased at the end of the fermentation but was still higher 
than 20%. When comparing both IPs, 𝑘@; showed a slightly higher influence (< 10%) than 𝑝a. 
Moreover, other IPs associated with the direct (𝑝1) or indirect (𝑝d, 𝑝e and 𝑝f) effect of bromoform 
on the fermentations showed a low influence on 𝑞CD",",<>L variation for high AT treatment. This 
highlights that the use of AT to mitigate CH4 production led to a shift in the factors associated to 
microbial pathways of the rumen fermentation impacting the CH4 production. The low participation 
of these IPs to the variability of 𝑞CD",",<>L when a low dose of AT was supplemented suggested that 
the AT dose of this treatment was too low to highlight this shift. 

However, the impact of 𝐾_,D!was still important over time for the high AT treatment, especially 
at the beginning (t = from 73 to 76h) and at the end (t = from 87 to 89h and from 93 to 96h) of the 
fermentation. Moreover, the hydrogen utilizers microbial group also showed an influence via the 
maximum specific utilization rate constant 𝑘[,D! for low and high AT treatments. This influence 
was low (c.a. 10%) for low AT treatment over the fermentation and was of c.a. 20% or higher at t 
= 73h, from 81 to 83h and from 87 to 96h for high AT treatment, confirming the importance of this 
factor on 𝑞CD",",<>L variation. 

In presence of a dose of AT (included at a 5% inclusion rate) , the high impact of IPs associated 
with bromoform concentration and the factor 𝐼@; on CH4 production variation was also highlighted 
in Merk et al. (2023). The initial bromoform concentration and 𝑝1 showed the highest contributions 
(= 46%) to CH4 production variation. This study also mentioned the low but non-negligible impact 
(c.a. 10%) of IPs related to methanogen abundance, total microbial concentration and hydrogen 
utilizers microbial group, represented by 𝑘[,D!. This last IP showed also an influence on 𝑞CD",",<>L 
variation for high AT treatment in our work. Therefore,  Merk et al. (2023) also identified a shift in 
the key factors driving CH4 production variation in presence of AT. 

 

Volatile fatty acids concentration 
Figures 9, 10 and 11 highlighted that similar IPs contributed to the variability of 𝑠?9, 𝑠@> and 𝑠:;. 
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Figure 9 - Shapley effects of the influential input parameters (i.e., parameters with 
a contribution higher than 10% for at least one time step) over time (h) computed 
for the fourth day of simulation of the acetate concentration (𝑠%9, mol/L) for the three 
dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of 
Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis taxiformis). 

 

 

Figure 10 - Shapley effects of the influential input parameters (i.e., parameters with 
a contribution higher than 10% for at least one time step) over time (h) computed 
for the fourth day of simulation of the butyrate concentration (𝑠5-, mol/L) for the three 
dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 0.25% of 
Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis taxiformis). 
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Figure 11 - Shapley effects of the influential input parameters (i.e., parameters with 
a contribution higher than 10% for at least one time step) over time (h) computed 
for the fourth day of simulation of the propionate concentration (𝑠:6, mol/L) for the 
three dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 
0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis 
taxiformis). 

VFA concentration variation were highly impacted by fibers degradation represented by the 
kinetic 𝑘Y]6,567 for the control and two AT treatments. 𝑘Y]6,567 was always associated with the 
highest contribution for 𝑠?9, 𝑠@> and 𝑠:; and the three dietary scenarios studied. This result was 
expected as fiber hydrolysis is the limiting step of the fermentation and VFA proportion. This 
contribution was very high (> 50%) for 𝑠?9 control, 𝑠@> high AT treatment and 𝑠:;. While, it was 
intermediate (between 30 and 40% over the fermentation) for 𝑠?9 low and high AT treatments, and 
𝑠@> control and low AT treatment. The dynamic of this influence was globally constant over time 
slightly following the dynamic of DMI, except for 𝑠?9 low AT treatment which showed a decrease 
during the first feed distribution. 

Regarding the impact of increasing AT doses on 𝑘Y]6,567 contribution, it decreased for 𝑠?9 while 
it was still the most influential IP, with an influence over time varying from 29 to 42% for low AT 
treatment and from 26 to 37% for high AT treatment.Whereas, it increased for 𝑠@> and 𝑠:; with an 
influence over time, varying from 34 to 42% and 60 to 65% for control, from 34 to 43% and 61 to 
68% for low AT treatment and from 54 to 62% and 67 to 71% for high AT treatment, respectively. 

Regarding the other influential IPs, hydrogen utilizers microbial group slightly impacted (< 30%) 
the variation of 𝑠?9 and 𝑠@> for low AT treatment, with the two IPs representing this group (𝐾_,D!and 
𝑘[,D!). The influence of these IPs was increasing at the beginning of the fermentation, constant in 
the middle of the fermentation and decreasing at the end of the fermentation. For both variables, 
this influence was mainly due to 𝐾_,D!, being the second most influential IP from t = 74h to the end 
of the fermentation with a contribution varying from 17 to 27% over this period of time for 𝑠?9, and 
explaining a maximum of 16% of the variation of 𝑠@> (second most influential IP). 𝑘[,D!was 
associated with a low contribution, varying from 11 to 16% over the fermentation for 𝑠?9, and 
showing a constant dynamic at c.a. 10% for 𝑠@>. Moreover, the degradation of non-fiber 
compounds with the IP 𝑘Y]6,589 showed a non-negligible contribution for the control with an 
influence varying from 13 to 19% for 𝑠?9, for the high AT treatment with an influence of c.a. 10% 
for 𝑠@>, and for the three dietary scenarios with an influence of c.a. 10% for 𝑠:;. 
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Furthermore, IPs associated with the functions describing the indirect effect of bromoform on 
rumen fermentation and quantifying reactions driving flux allocation from glucose utilization to 
acetate (λ1 associated with 𝑝b and 𝑝d) and propionate (λa associated with 𝑝e and 𝑝f) production 
showed a low impact on VFA concentration variation under our conditions. IP 𝑝b was associated 
with an impact on 𝑠?9 and 𝑠@> variation. This impact was highlighted for the control and two AT 
treatments studied, with a contribution lower than 20% for control and low AT treatment, which 
decreased at the beginning of the fermentation and then increased over time, and of c.a. 25% for 
high AT treatment for 𝑠?9. Whereas, the contribution over time was more important for the control 
(c.a. 25%) than for the two AT treatments (<20%) for 𝑠@> with the same dynamic. 𝑝d, the negative 
slope of λ1, slightly impacted 𝑠?9 variation of high AT treatment with a constant dynamic. Regarding 
λa, 𝑝e slightly impacted (<30%) 𝑠@> and 𝑠:; variation over the fermentation for the three dietary 
scenarios with a dynamic slightly decreasing at the beginning of the fermentation and then 
increasing over time, similarly to 𝑝b. The positive slope 𝑝f did not contribute to VFA concentration 
variation. 

Nevertheless, no shift of the factors associated to microbial pathways impacting VFA 
production was highlighted when increasing the dose of AT. Moreover, IPs related to the direct 
effect of bromoform on the fermentation (𝑝1 and 𝑝a) did not contribute to VFA concentration 
variation. This suggests that under the conditions evaluated AT had no impact on the biological 
mechanisms responsible for VFA production, in contrast with the one responsible for CH4 
production. However, AT supply does have an indirect effect on VFA production to its effect on the 
lambdas and a variation was observed when considering the molar proportions of VFA (Figure 7). 
Moreover, new influential IPs were highlighted from a dietary scenario to another for all the VFA, 
except 𝑠:;. 

Morales et al., (2021) studied the sensitivity of 19 IPs on VFA concentration predicted with 
Molly. It found that the intercept used for rumen pH prediction was the only influential IP, explaining 
more than 79% of the variation of acetate, butyrate and propionate concentration predictions of 
Molly. In this study this result was expected as Molly is a whole animal model, which was not the 
case of our model. No IPs related to rumen pH were considered in our SA, explaining that the 
selection of this component was not possible in our case. 

Uncertainty analysis 

The uncertainty of 𝑞CD",",<>L and VFA concentration simulations used to compute the Shapley 
effects was assessed by studying the variability over time of these simulations. The results were 
displayed only for 𝑞CD",",<>L. 

Rate of methane production 
Figure 12 displays the median and quantiles 10% and 90% over time of 𝑞CD",",<>L simulations 

computed by exploring the variability of six factors associated to microbial pathways of the rumen 
fermentation (fiber carbohydrates, non-fiber carbohydrates, proteins, glucose utilizers, amino acids 
utilizers, hydrogen utilizers) and four factors of the effect of bromoform on the fermentation (𝑠@;, 
𝐼@;, 𝜆1 and 𝜆a) for the three dietary scenarios. 
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Figure 12 - Median and 0.1 and 0.9 quantiles of the rate of methane production in 
gas phase (𝑞)(",",,-., mol/h) over time (h) computed from the simulations used to 
calculate the Shapley effects for the three dietary scenarios (control: 0% of 
Asparagopsis taxiformis, low treatment: 0.25% of Asparagopsis taxiformis and high 
treatment: 0.50% of Asparagopsis taxiformis). 

When not considering the 10% more extreme simulations, the CV highlighted that 𝑞CD",",<>L 
simulations showed a lower variability for low and high AT treatments with a median CV of 0.74 
and 0.59, respectively. Whereas, the control showed a median CV of 0.78. 

SA results indicated that the variability of 𝑞CD",",<>L simulations was only explained by the 
variation of hydrogen utilizers microbial group via 𝐾_,D! for control and low AT treatment. Whereas, 
the variability of 𝐾_,D! explained an important part, but also with the variability of other factors, of 
𝑞CD",",<>L simulation variability for high AT treatment. This suggests that reducing uncertainty 
associated with 𝑞CD",",<>L predictions involves to reduce the uncertainty of IPs describing the activity 
of the hydrogen utilizers microbial group. A way to achieve that is to increase the information 
available for estimating the variability of parameters describing this microbial group, involving an 
improvement of our knowledge of it. 

Finally, when comparing control and AT treatments, 𝑞CD",",<>L simulation variability was more 
important for the control than for low and high AT treatments. This indicates that the shift and 
increase of factors explaining the variation of 𝑞CD",",<>L did not lead to an increase of simulation 
variability, especially for high AT treatment. Merk et al., (2023) found a different result, computing 
a CV of 0.23 against 1.22 for simulations associated with control and AT treatment, respectively. 

However, the range of variation of IPs explored in our study led to outlier simulation for AT 
treatments. For instance, an IP simulation scenario led to 𝑞CD",",<>L values of 96 and 0.07 mol/h at 
t = 74 and 73h for low and high AT treatments, respectively. These outliers were not identified for 
the control. This suggests that some of the range of variation explored for 𝐾_,D!, 𝑘[,D!, 𝑝a and 𝑘@; 
was not appropriate when considering AT treatments. 

Moreover, Figure 13 highlighted that 𝑞CD",",<>L variability varied over time and that this variability 
was related to the dynamic of DMI (g/h). The time periods associated with the highest intake activity 
(represented by the level of decay of the curve of Figure 2) were between 72 and 78h for the first 
feed distribution and 84 and 90h for the second feed distribution. The first feed distribution time 
period was systematically associated with the highest variability of 𝑞CD",",<>L simulations with a 
maximum SD of 7e-04 mol/h at t = 75h, 6e-04 mol/h at t = 74h and 7e-05 mol/h at t = 73h for 
control, and low and high AT treatments, respectively. This feed distribution represented 70% of 
the total DM. The second feed distribution, representing 30% of the total DM, was also associated 
with an important variability of 𝑞CD",",<>L simulations for the three dietary scenarios. Therefore, 
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simulation variability increased during the high intake activity periods of both feed distributions and 
decreased at the end of it. These results go in line with model developments predicting CH4 with 
dynamic data DMI as single predictor (Muñoz-Tamayo et al., 2019, 2022). 

 

Figure 13 - Standard deviation of the simulations of rate of methane production in 
gas phase (𝑞)(",",,-., mol/h) over time (h) used to calculate the Shapley effects for 
the three dietary scenarios (control: 0% of Asparagopsis taxiformis, low treatment: 
0.25% of Asparagopsis taxiformis and high treatment: 0.50% of Asparagopsis 
taxiformis). 

Volatile fatty acids concentration 
VFA concentrations were associated with much less variability than 𝑞CD",",<>L. simulations, with 

a maximum CV of 0.08, 0.12 and 0.09 for 𝑠?9, 𝑠@> and 𝑠:;, respectively. This suggests that these 
variables were less sensitive to the variation of factors associated to microbial pathways involved 
in the rumen fermentation analyzed here. Perhaps the consideration of other parameters such as 
the yield factors would lead to a higher variability of VFA simulations. The variability of these 
variables was only explained by the individual variability of the kinetic of fibers degradation 𝑘Y]6,567. 
This suggests that the uncertainty related to 𝑘Y]6,567 measurements generates a low uncertainty 
on VFA concentrations. 

Similarly to 𝑞CD",",<>L, the dynamic of the variability of VFA concentration simulations was 
related to the dynamic of DMI. This variability increased during the high intake activity periods of 
the first and second feed distributions, with the highest variability reached for the first feed 
distribution, and decreased at the end of both feed distributions. 

Limitations and perspectives of methods 

Sensitivity analysis approaches 
The computation of the Shapley effects allowed to identify the influential and non-influential IPs 

on the variation of 𝑞CD",",<>L and VFA concentration. This analysis was conducted in a context 
where the IPs studied were related to factors associated to microbial pathways of the rumen 
fermentation. Therefore, the aim of the dynamic SA implemented was to gain knowledge on the 
biological impact of these factors on CH4 and VFA production. The use of sensitivity indices for 
this purpose is becoming increasingly widespread in animal nutrition modeling and our work 
contributes to this movement. For instance, Merk et al. (2023) conducted local and global SA for 
identifying key drivers of CH4 production with or without AT. 

The main originality of our work is the computation of SI over time, leading to a dynamic 
interpretation of the impact of key drivers on CH4 and VFA variation. Moreover, this interpretation 
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was conducted by simulating a typical forage-based diet associated with several realistic dose 
levels of a highly promising CH4 inhibitor. Investigating the dynamic impact of microbial pathways 
on fermentation outputs, considering diets and treatments applied in the field, is of great interest 
for animal nutrition, in a context where the combining effect of CH4 inhibitors is relevant to study 
(Muñoz et al., 2024). Integrating the dynamic characteristic is important, as no additive effect of 
inhibitors was showed under static condition (Muñoz et al., 2024). This highlights that the 
implementation of dynamic SA on mechanistic models representing the effect of these inhibitors 
could be used to identify optimal times, frequencies and doses for inhibitor delivery, in order to 
help develop mitigating strategies using two or more inhibitors. In our work it has not been possible 
to go that far, but we developed a dynamic SA approach that can be used to reach this aim. 

A second originality is the proposition of an approach allowing to discriminate the nature of the 
contribution of IPs to output variable variation. Although, considering the contribution due to the 
dependence/correlation between IPs was not relevant in our case study, this work proposes a first 
methodology to handle this kind of contribution in the case of development of more complex 
models involving dependent or correlated IPs. 

Our study used simulation conditions based on RUSITEC in vitro experiments. Future work can 
use our SA framework to identify useful sampling times and experimental conditions to provide 
informative data for model refinement in the context of optimal experiment design for parameter 
estimation. 

Regarding our SA results, it is important to mention that they are inherently linked to the 
representation of the rumen fermentation considered in our case study. Another limitation concerns 
the range of variation set on IPs studied. Due to the lack of data available, a non-informative 
distribution was set to explore their variability. By having more information about the variability of 
these IPs, it will be possible to have more robust results. 

Uncertainty analysis 
The in silico framework used for the SA shows that the factors associated to microbial pathways 

modeled in our case study mainly impacted CH4 prediction uncertainty. This suggests that an 
improvement in the range of variation of parameters associated with the methanogenesis should 
lead to a reduction of the uncertainty associated with model predictions. The high AT treatment 
also showed that the parameters associated with the bromoform effect on the fermentation 
impacted negatively the prediction uncertainty. These suggestions should be carefully interpreted 
because limited by the low information available on the numerical values of parameters of the 
equations representing the rumen fermentation. 

Conclusions  

A dynamic sensitivity analysis of a model describing the effect of bromoform (via Asparagopsis 
taxiformis) on rumen fermentation under in vitro continuous condition was conducted. The 
hydrogen utilizers microbial group was identified as the key factor explaining CH4 variation over 
time for the control and low dose treatments. This factor was associated with the microbial 
methanogenesis. The high AT dose treatment showed a shift in the factors associated to microbial 
pathways explaining CH4 variation, highlighting the emergence of parameters associated with 
bromoform concentration and direct effect of bromoform on methanogenesis. Moreover, the 
individual variability of kinetic of fibers degradation explained most of the VFA variation. The 
uncertainty analysis of simulations computed for SA suggested that reducing the uncertainty of the 
parameters associated to the kinetics of hydrogen utilizers microbial group should lead to a 
reduction of model prediction uncertainty. Our work showed that implementing dynamic sensitivity 
analysis is a promising approach to improve our understanding of mechanisms involved in the 
rumen fermentation and can help to design optimal experiments assessing CH4 mitigation 
strategies. 
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