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Abstract
Spatial Capture-Recapture (SCR) models using least-cost path distance offer an unified framework to
estimate landscape connectivity and population size from individual detection data, while account-
ing for individual and spatial heterogeneity in space use. In our case study on the Pyrenean brown
bear population, two “outliers” individuals were detected more often over very large spatial extent
compared to other individuals. The integration of such individuals made SCR modelling challenging,
especially since it remains unclear how unmodelled heterogeneity in space use may bias connectiv-
ity and population size estimates. To address this gap, we used simulations reflecting the Pyrenean
brown bear population, with two groups of individuals differing in their space use due to individ-
ual characteristics but also in their spatial responses to landscape structure. We compared six SCR
model formulations that varied in whether individual and spatial heterogeneity in space use were (1)
ignored, (2) explicitly modelled, or (3) handled by removing outliers. We then applied the same mod-
els to the empirical bear dataset. By combining simulations and sensitivity analyses, we highlight the
challenges of choosing the appropriate modelling approach when multiple sources of heterogeneity
in space use occur simultaneously. Our results show that the treatment of heterogeneity in space use
shouldmatch the research objective: removing outliers supports accurate population size estimation,
while explicitly modelling heterogeneity is essential for reliable connectivityassessment. Overall, we
provide a practical framework for identifying and addressing heterogeneity in SCR applications, to
guide practitioners in deciding when additional model complexity is warranted.
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Introduction 

Animals move through the landscape according to intrinsic (e.g., locomotion abilities, need to 
feed or to find mates) and extrinsic factors (e.g., resource availability, risk to encounter predators) 
(Bell, 1990). This means that animals do not move randomly through the landscape, but constantly 
have to adjust their movement to the distribution of opportunities and pressures. Identifying the 
spatial features affecting animal movement can be done by quantifying connectivity. Connectivity 
aims at describing “the degree to which the landscape facilitates or impedes movement among 
resource patches” (Taylor et al., 1993). Population-level connectivity can be estimated using a 
map called a resistance surface that quantifies the cost of moving through each pixel of the 
landscape. This surface is estimated from spatial environmental variables and information on the 
cost of movement or space use derived from expert opinion or empirical animal movement data 
(Dutta et al., 2022; Zeller et al., 2012). In landscape management, resistance surfaces are used 
to map corridors, detect barriers or predict population range shift due to climate change (Dutta et 
al., 2022). However, connectivity does not only have a spatial dimension, but also varies with time 
(Zeller et al., 2019), or with individual characteristics: e.g. life stages (Thorsen et al., 2022), or sex 
(García-Sánchez et al., 2022; Zeller et al., 2023). Despite the importance of intraspecific variation, 
group specific connectivity is rarely considered (García-Sánchez et al., 2022; Zeller et al., 2023). 

Spatial capture-recapture (SCR) models, which have become standard in population ecology 
(Efford, 2004; Tourani, 2021), are hierarchical models that use spatially explicit individual detection 
histories to estimate both population size and distribution. A core assumption of SCR models is 
that detection probability declines with distance from an individual’s activity centre (Royle et al., 
2014). In other words, the detection function is designed to reflect individual space use, as it 
shapes where and how often an individual is detected. In the context of SCR models, we define 
space use as the spatial distribution of detection probability, with baseline detection probability set 
to 1 (𝑝! = 1), and conditional on the estimated location of the activity centre. In its most commonly 
used form, a SCR model assumes a circular space use resulting in a symmetrical and stationary 
(invariant across space) space use extent. However, extensions of SCR models allow the 
estimation of nonstationary, asymmetrical individual space use extent caused by spatial 
heterogeneity in the landscape (Royle et al., 2013). In these models, distance in the detection 
function is not Euclidean but based on the least-cost path (LCP) distance, with landscape 
resistance directly inferred from the data. As a result, SCR models with LCP distance provide a 
unified framework for jointly estimating both population size and the effects of landscape resistance 
on space use (Royle et al., 2013; Sutherland et al., 2015), thereby quantifying population-level 
landscape connectivity. This approach has been applied to several species, including American 
mink (Neogale vison, Fuller et al., 2016), black bear (Ursus americanus, Morin et al., 2017), jaguar 
(Panthera onca, Tobler et al., 2018), snow leopard (Panthera unica, Pal et al., 2021), and brown 
bear (Ursus arctos, Kervellec et al., 2023). However, these studies focused on population-level 
connectivity and did not account for individual heterogeneity in space use, particularly in the 
resistance parameter that scales the spatial heterogeneity in space use. 

Individual heterogeneity refers to variability in responses among individuals within a population, 
which may be linked to measurable or non-measurable individual characteristics (Gimenez et al., 
2018). In non-spatial capture-recapture models, it is well established that accounting for individual 
heterogeneity in detection probability is crucial to prevent negative bias in population size 
estimates (Gimenez et al., 2018). In SCR models, heterogeneity in detection probability can arise 
from individual variation in the baseline detection probability as well as from individual and spatial 
heterogeneity in space use. Our focus here is on the latter. Non-Euclidean SCR models typically 
describe heterogeneity in space use with two parameters: (1) the scale parameter 𝜎, which defines 
the extent to which an individual can be detected from its activity centre and is related to home 
range size (Royle et al., 2014), and (2) the resistance parameter 𝛼", which quantifies the influence 
of spatial covariates on space use across the landscape (i.e. spatial heterogeneity). Therefore, the 
scale parameter 𝜎 can vary among individuals to reflect individual variation in space use while the 
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resistance parameter 𝛼" quantifies how individuals adjust their space use to spatial heterogeneity. 
Not all individuals may respond similarly to landscape structure, leaving the possibility for 
individual-specific 𝛼" parameters. Accounting for individual heterogeneity in the scale parameter 
is important to prevent negative bias in population size estimates (Gardner et al., 2010; Sollmann 
et al., 2011). SCR models are generally robust to unmodelled spatial heterogeneity in space use 
(Royle et al., 2016; Theng et al., 2022) but strongly structured landscapes can nevertheless cause 
an underestimation of population size (Sutherland et al., 2015). In addition, unmodelled individual 
heterogeneity in the response of space use to landscape structure remains unknown. Although 
previous studies have shown that unmodelled heterogeneity in space use, whether arising from 
individual traits or from the location of individuals in the landscape, can bias population size 
estimates (Gardner et al., 2010; Sutherland et al., 2015), much less is known about the combined 
effects of individual and spatial heterogeneity on estimates of both population size and 
connectivity. 

The motivation for this study stems from our work on the Pyrenean brown bear population 
(Kervellec et al., 2023; Sanz-Pérez et al., 2025). Nearly extinct in 1995, this population is now 
recolonising human-dominated landscapes (Kervellec et al., 2023; Sanz-Pérez et al., 2025). In this 
context, robust estimates of population size and a clear understanding of how landscape structure 
affects connectivity are critical. In a previous study, Kervellec et al. (2023) identified that two 
individuals were detected far more frequently and had a much larger apparent space use than the 
rest of the population. The common practice in this case is to remove these “outliers” individuals 
from the analyses, in order to avoid biased population size estimates due to unmodelled 
heterogeneity in the space use component of the detection probability (Kendall et al., 2019; 
Schmidt et al., 2022). However, such wide-ranging individuals may in fact play a key role when the 
goal of the study is to quantify population connectivity. 

In this study, we investigate how heterogeneity in space use affects (1) population size estimate 
and (2) connectivity estimates, using non-Euclidean SCR models. For each objective, we built six 
different models to evaluate the consequences of (a) ignoring individual or/and spatial 
heterogeneity in space use or (b) removing the individuals with large space use (“outliers”). We 
first conducted a simulation study inspired by the Pyrenean brown bear population, with two groups 
of individuals differing in both space use extent and response to landscape structure. We then 
applied the same models to the empirical Pyrenean brown bear data. We expected that (1a) 
population size would be underestimated when individual heterogeneity in space use is not 
accounting for (Gimenez et al., 2018; Sutherland et al., 2015), (1b) removing outliers would yield 
unbiased population size estimates, and (2) removing outliers and not accounting for individual 
heterogeneity would undermine estimates of space use and connectivity. 

Materials and Methods 

Spatial Capture Recapture models to estimate connectivity 

Spatial capture-recapture (SCR) models are hierarchical models that estimate the location of 
each individual activity centre denoted s# in the spatial domain S according to a spatial point 
process. This process can be homogeneous, in this case s#	~	Uniform(S) or can be driven by 
spatial variables. For inhomogeneous point process, an intensity function λ(s) = e$%(') describes 
the placement of activity centres, according to the vector of regression coefficients β and the vector 
of spatial covariate X(s) evaluated at cell s (Zhang et al., 2023). SCR models combine an ecological 
sub-model describing the distribution of the population’s activity centres and observational sub-
model. The observation sub-model is based on the detection and non-detection of individuals 
through an array of traps and account for the imperfect detection of individuals by explicitly 
estimating detection probability (Efford, 2004; Royle et al., 2014). Therefore, the detection history 
corresponds to detecting or not the individual i at trap j at the sampling occasion k in session t, and 
is noted y#)*+:  
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(1) y#)*+	~	Bernoulli;p#)*+= 

Where p#)*+ is the detection probability usually modelled by a half-normal function: 

(2) p#)*+ = p!#)*+ × exp	(
,-!"#./$,'%1

&

"2&
) 

In this relation, the detection probability decreases with the Euclidean distance, noted 
d345;x), s#=,	between the trap x)	and the activity centre s#. The baseline detection probability p!#)*+ is 
the probability of detecting an individual if its activity centre is located exactly on the trap. The scale 
parameter σ provides the extent to which an individual can be detected and is correlated with 
space use extent. The larger the σ, the further from its activity centre an individual can be detected. 
These parameters can be constant or varying according to individual covariates (e.g., sex) to 
account for individual heterogeneity in the detection process.  

By using the Euclidean distance, we assume that space use is symmetric and stationary (Royle 
et al., 2014), meaning that the presence of barriers or resources do not affect movements of 
individuals across the landscape. We account for the effect of landscape structure by assuming 
that detection probability is a function of the ecological distance instead of Euclidean distance. The 
ecological distance can be represented by the least-cost path distance, which is based on a 
discrete resistance surface, where each pixel, noted ν6, is given a cost. The distance between two 
pixels in the landscape is the succession of m steps, noted ν7, ν", … , ν8, forming a path. We 
calculate the cost of all possible paths (ℒ7, ℒ", … , ℒ9) connecting these two pixels and keep the one 
with the minimum value: 

(3) d95:(ν, ν;) = min
ℒ',…,ℒ(

∑ cost;ν6, ν6>7= × d345;ν6, ν6>7=8
6?7  

where, cost;ν6, ν6>7= =
3/:@A&B.C)1D>3/:@A&B.C)*'1D

"
 

The resistance parameter α"is explicitly estimated in the SCR model from the encounter data 
and W(ν) is the resistance variable considered to build the resistance surface at cell ν. The 
estimated resistance parameter reflects the extent to which W decreases (α" > 0) or increases 
(α" < 0) the space use extent of individuals across the landscape (Royle et al., 2013; Sutherland 
et al., 2015). When α" = 0, the resistance is null and the distance is exactly Euclidean. The 
resistance parameter therefore quantifies the extent to which spatial characteristics of the 
landscape influences individuals space use (spatial heterogeneity in space use). Similarly to σ, α" 
can vary according to individual characteristics according to a function of individual covariates 
(spatial and individual heterogeneity in space use). Here the least-cost path distance is computed 
by the Dijkstra algorithm implemented in the gdistance R package (version 1.6.4, van Etten, 2017). 

A map of the potential landscape connectivity can be derived from these estimates. Given the 
location of an activity centre, we can compute its space use from equation 2, by setting p! = 1. We 
then assume that an activity centre is present in each pixel of the landscape and compute the sum 
of the space use of each individual at each pixel (Morin et al., 2017) to obtain a measure of potential 
connectivity. Therefore, potential connectivity goes from 0, meaning that not a single individual can 
reach this pixel, to the total number of pixels, where all individuals can reach this pixel. A realized 
measure of landscape connectivity is computed by weighted the potential connectivity map by the 
estimated number of activity centres in each pixel (i.e. realized densities), also called density 
weighted connectivity (Morin et al., 2017).  

Simulations 

We conducted a simulation study to assess the consequences of not accounting for individual 
and spatial heterogeneity in space use on parameter estimation. We considered a population 
composed of two groups differing in their responses to landscape structure. The study area was a 
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25 x 25 distance unit (du) square domain, within which we centred an array of 100 traps spaced 
by a minimum of 2du. We added a 3.5du buffer around traps, following standard recommendations 
(Royle et al., 2014). To represent the landscape structure, we defined the resistance covariate by 
a raster of 0.5x0.5du resolution representing landscape fragmentation with the distance to a road 
(see map Appendix S1).  

The simulation study was designed to mimic issues encountered with the Pyrenean brown bear 
population (Kervellec et al., 2023). We simulated 100 individuals, assuming a homogeneous 
distribution of their activity centres within the spatial domain. The population was composed of two 
groups. The first encompassed 97% of the population (n = 97) and was called the “common group”, 
while the second one gathered the outlier individuals (n=3) characterized by a larger space use 
and was called the “outlier group”. We assumed that the larger space use of the “outlier” group 
was linked to individual variation in home range size (σEF8 = 7; σG4+ = 5), as well as a different 
response to the road. The common group have smaller space use when the distance to road 
decreased (α"EF8= 3) while the outlier group was not affected (α"G4+= 0). To ensure realistic (i.e. 
number of detections per individual ≤ 30) detectability rates between the two groups despite their 
different space use, we also set a higher baseline detection probability for individuals of the 
common group (p!EF8 = 0.2) compared to the outlier group (p!G4+ = 0.1).  

We simulated 25 detection histories. For each simulation, we fitted six models: four using the 
full data (denoted MOx) and two with all detections of all outlier individuals removed (denoted Mx). 
We considered models assuming an effect (MO3, MO4, M4) and no effect (MO1, MO2, M1) of 
landscape structure on space use. For datasets including outliers (MOx), we sequentially 
increased the number of model parameters (𝑝!, 𝜎, 𝛼") that accounted for individual heterogeneity 
through a group effect (Table 1).  

The simulations were performed using the R package nimble (version 1.01 de Valpine et al., 
2017). We ran two chains of 50,000 iterations each and discarded the first 1,000 iterations as burn-
in. For the simulation study, we discarded models that did not converge, based on visual inspection 
of the trace plots, the Gelman–Rubin statistic (RP > 1.1) and effective sample size (neff < 100) 
(Brooks and Gelman, 1998). We used a data-augmentation approach, with an augmented 
population of 150 individuals (Royle et al., 2007), and priors are presented in the Appendix S2 
(Table S2.A). For the six models, we compared parameter estimates with the true values and 
recorded whether 95% credible intervals encompassed the truth. We also illustrated differences in 
connectivity estimates by mapping potential connectivity for models MO3, MO4 and M4 with 
estimates from the simulated dataset 1. because the 25 simulated datasets were primarily intended 
to identify trends, we did not compute bias explicitly. 

Table 1 - Models formulas used for the simulation study and applied on each 
simulated datasets. It present the model name, the dataset, the baseline detection 
probability (p!), the scale parameter (σ), the resistance parameter (α") when 
applicable. The empty cells means that the resistance parameter was not included 
in the model and therefore we used the Euclidean distance instead of the least-cost 
path distance.  

Model name dataset 𝒑𝟎 𝝈 𝜶𝟐 
MO1 all ~1 ~1  
MO2 all ~group ~group  
MO3 all ~group ~group ~1 
MO4 all ~group ~group ~group 
M1 outlier removed ~1 ~1  
M4 outlier removed ~1 ~1 ~1 

 

Case study: Brown bears in the Pyrenees 

Data 
In this case study, we used the spatial capture-recapture dataset of the Pyrenean brown bear 

population monitored across the Pyrenees mountains in France, Spain and Andorra, presented in 
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Kervellec et al. (2023). In this transboundary study, we collected data from three sampling sessions 
from 2017 to 2019, in which we defined seven sampling occasions i.e., the months from May to 
November. We used the data from both the structured and opportunistic monitoring of the 
population (Vanpé et al., 2022). The structured monitoring consisted of a total of 708 DNA hair 
snags set on walking transects, around 10% of which are combined with a camera trap (Figure 1). 
The opportunistic monitoring consisted of 246 traps, defined according to a 25km2 grid over the 
Pyrenees. An opportunistic trap is the centre of each grid cell where at least one depredation of a 
bear to livestock or beehives occurred in the cell between 2010 and 2020. The depredation events 
are reported by the owner. In order to get financial compensation, evidences of bears presence 
and genetic samples (hair or scat) are collected after the depredation (Figure 1). Each sample was 
genetically analysed following details available in Vanpé et al. (2022), to obtain the identity and 
sex of the bear detected at a given trap in a given sampling occasion. To account for individual 
heterogeneity, we divided the population into three groups, females, males and outliers. The 
maximum distance moved per year, which is the maximum distance between the centroid of the 
detections and the detections, for Néré was between 39.8 and 66.5km and was between 27.6 and 
51.1km for Goiat. The maximum distance moved per year per individual between detections was 
between 0 (i.e. individuals detected once) and 24.3km for the females (mean = 3.5km) and 
between 0 and 17.4km for the males (mean = 6.1km) (Figure 2). In average Néré was detected 9 
times, Goiat 35.7 times, while males were detected 5.6 times and females 4.1 times per year.  

 

Figure 1 - Maps of traps distribution from the structured (+) and the opportunistic 
(x) monitoring across the Pyrenees mountains (France, Spain, Andorra). Points 
represents the centroid of detections per individuals and the lines links the centroid 
to the centroid to the traps where each individual was detected in 2019 for females 
(a), males (b) and outliers (c). 
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Table 2 - Number of females, males and outliers detected and number of detections 
across traps and sampling occasions each year (2017, 2018, 2019) by the 
structured and the opportunistic monitoring in the Pyrenean brown bear population. 

 females males outliers 
Number of individuals 
detected  

   

     2017 17 14 2 
     2018 14 17 2 
     2019  16 17 2 
Number of detections     
     2017 47 53 30 
     2018 32 57 32 
     2019 58 89 22 

 

Models 
We applied a SCR model similar to the one used in Kervellec et al. (2023). We assumed that 

the structured and opportunistic monitoring followed different detection processes such as: 

(4) yH+I45+%$+, 	~	Bernoulli(pH+I45+%$+,) 
(5) yG::%$+, 	~	Bernoulli(pG::%$+,) 

where yH+I45+%$+, and yG::%$+, are the encounter histories and pH+I45+%$+,and pG::%$+, are the 
detection probabilities for the structured and opportunistic monitoring, respectively. We modelled 
heterogeneity in the detection probability arising from differences in the sampling protocols or 
according to brown bear ecology on the baseline detection probability (p!) and the scale parameter 
(σ) using Equation 2. 

(6) logit(p!H+I45+%$+,)	~	αH+I45+ + βJ × Behav#)*+ + β+7 × Nvisits)*+ +	β+" × Country) +	β+K ×
Trap) +	β+L ×m* +	β+M ×m*

" 
(7) logit(p!G::%$+,)	~	αG:: + βJ × Behav#)*+ +	β+N × Country) +	β+L ×m* + β+M ×	m*

"   

 

Figure 2 - Boxplot of the maximum distance moved in km for each group (females, 
males and outliers) between 2017 and 2019 for the Pyrenenan brown bear 
population. This distance is the maximum distance between each detection and the 
centroïd of its detections for each individual detected. 

The baseline detection probability (Equation 6) for the structured monitoring was assumed to 
be a function of a quadratic effect (βL, βM) of the sampling occasion (m) to account for higher 
detectability in the summer, the country (Country, β"), the number of visits at the trap each month 
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(Nvisits, β7) as samples can be collected once or twice each month, and if the hair snag was 
combined or not with a camera trap (Trap, βK). For the opportunistic monitoring (Equation 7), the 
baseline detection probability was a function of the country (Country, βN) and the quadratic effect 
of the month (m, βL, βM). Both monitoring accounted for a behavioural effect (Behav, βJ), meaning 
that an individual detected once at a trap within a session was more likely to be detected at this 
trap in the following sampling occasions (Kervellec et al., 2023). We also estimated a different 
intercept for the structured (	αH+I45+) and opportunistic sampling (αG::). 

Additionally, the scale parameter was estimated for each sex: σ#~α' + β' × sex#, for each group: 
σ#~α' + β' × group#, or was constant (Table 3). 

The brown bear densities were assumed to vary according to an inhomogeneous binomial point 
process:  

(8) log;λ(s)= = 	β-7 × Rug' +	β-" × HumDens' 

The intensity function (Equation 8) was a function of the linear and additive effect of ruggedness 
(Rug), defined as average of the absolute values of elevation differences between the focal cell 
and the eight surrounding cells, and human population density (HumDens) (see Kervellec et al., 
2023).  

In this Bayesian formulation of the model, we used a data-augmentation approach. The 
augmented population M has to be large enough to encompass all individuals that were never 
detected (Royle et al., 2007). Here, we used M = 204 individuals, which is four times the number 
of detected individuals. The latent state variable z#	model the inclusion of an individual from the 
augmented population to the population with an inclusion probability Ψ: 

(9) z#	~	Bernoulli	(Ψ)  

From this equation we can derive the total population size N =	∑ z#O
#?7 , which is the sum of the 

individuals included in the population. 
Spatial heterogeneity in space use was modelled using the LCP distance instead of the 

Euclidean distance using Equation 3. The resistance surface was based on road density, 
computed as the length of all roads within each 2.5x2.5km pixel extracted from Open Street Map 
(see Kervellec et al., 2023). We considered two models with no effect of spatial heterogeneity on 
space use, but considering individual variation with an effect of sex (MFO1) and group (MFO2) on 
𝜎. The group is a categorical variable that differentiate between females, males, and outliers. For 
the other models, we added an effect of spatial heterogeneity in space use assuming that all 
individuals responded similarly to landscape structure (MFO3) or that response to landscape 
structure was a function of the group (MFO4). We also added two models where the outliers were 
removed from the dataset, first modelling only individual heterogeneity in 𝜎	between males and 
females with no effect of spatial heterogeneity on space use (MF1) and, second modelling 
individual and spatial heterogeneity in space use (MF4). 

We assumed that we know the group of each detected individual. However, for undetected 
individuals their group η# is estimated according to a categorical distribution: 

(10) η#~Categorical	(pP38Q93, pOQ93, pG4+9#3I) 

Where 𝑝RSTUVS , 𝑝WUVS 	and 𝑝XYZV[S\ are respectively the probability to belong to the group female, 
male or outlier. 

We used the R package nimbleSCR (Bischof et al., 2020; Turek et al., 2021). We run three 
chains of 30,000 iterations each and discarded the first 1,000 iterations as burn-in for each model, 
and priors are presented in Appendix S3 (Table S3.A). We checked model convergence, based 
on visual inspection of the trace plots, the Gelman–Rubin statistic (𝑅̀ < 1.1) and effective sample 
size (neff > 100) (Brooks and Gelman, 1998). We derived potential connectivity maps and density 
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weighted connectivity maps from the distributions of model MFO3 and propagated associated 
uncertainty. All the analysis were conducted in R (R Core Team, 2023, version 4.3.1) 

Table 3 - Models formulas used for the simulation study and applied on each 
simulated datasets. It present the model name, the dataset, the scale parameter (σ), 
the resistance parameter (α") when applicable. The empty cells means that the 
resistance parameter was not included in the model and therefore we used the 
Euclidean distance instead of the least-cost path distance.  

Model name dataset 𝝈 𝜶𝟐 
MFO1 all ~sex  
MFO2 all ~group  
MFO3 all ~sex ~1 
MFO4 all ~group ~group 
MF1 outlier removed ~sex  
MF4 outlier removed ~sex ~sex 

Results 

Simulation 

The simulated data included three outlier individuals that were always detected, while in the 
“common group” between 42 and 59 individuals were detected out of the 97 present in the 
population. As expected from the parameter settings, outliers were detected more frequently, with 
an average of 12.7 detections per individual compared to 2.7 in the common group. All models 
converged with 𝑅̀£	1.08 and n.eff > 113. 

Population size estimates 
Estimates of population size were underestimated when we ignored individual and spatial 

hetereogenity in space use (Figure 3). When keeping all the individuals in the dataset, the model 
MO1, that was not accounting for individual and spatial heterogeneity in space use, consistently 
underestimated population size (95%BCI never cross the true value). Introducing individual 
heterogeneity in space use (model MO2) led to a mean estimate below the true value in all 
simulations, with the  95%BCI overlapping the true value for only 0.08% of the simulations. 
Accounting for spatial heterogeneity in space use (model MO3) resulted in 92% of 95%BCI 
overlapping the true value. When modelling individual heterogeneity on the resistance parameter 
(model MO4), 24% of simulations (8/25) were below the true value, and 92% of 95%BCI 
overlapped the true value (Figure 3). When the three outliers were removed from the dataset, the 
null model that ignored spatial and individual heterogeneity in space use (model M1) 
underestimated population size, with 95%BCI overlapping the true value in only 0.08% of the 
simulations. By contrast, model (M4) that integrated individual and spatial heterogeneity in space 
use achieved 92% overlap (23/25 simulations). 

Connectivity estimates 
Three models (MO3, MO4 and M4) allowed to look into connectivity estimates as they 

simultaneaously estimated individual and spatial heterogeneity in space use. Ignoring individual 
heterogeneity in the resistance parameter led to a resistance parameter close to the common 
group estimate that encompassed most of the population, with mean estimated 𝛼" between 2.2 
and 3.3 (MO3) compared to between 2.6 and 3.5 for the common group and between -0.9 and 1.4 
for the outlier group (MO4) (Figure 3). By contrast, removing outlier indiduals led to results 
comparable to when individual and spatial heteorgeneity in space use was modelled, with mean 
estimated 𝛼" between 2.6 and 3.5 (M4). To illustrate how these differences translate into the 
connectivity maps, we compared relative potential connectivity across these models (Figure 4), 
accounting for space use extent (𝜎) and its variability across the landscape (𝛼"). Using simulated 
dataset 1 as an example, the three model formulations produced similar overall patterns. However, 
ignoring individual variation in the response to spatial heterogeneity in the landscape led to an 
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overestimation of connectivity, especially visible in areas far away from the barrier (MO3 relative 
bias between -15% and 85.3%). Conversely, removing outliers led to an underestimation of 
connectivity close the barrier (M4 relative bias between - 86.7% and 26.1%).  

 

Figure 3 - Model parameter estimates across the six models compared (see Table 
1) in the simulation study. The mean estimate of each simulation is represented by 
a point with errors bar displaying the 95% credible intervals. Violin plots illustrate 
the distribution of the mean estimated parameters for each model across the 25 
simulations. Horizontal lines indicate the true parameter values from model MO4, 
which was used to generate the simulated datasets. The first column shows 
population size estimates for the entire population. The second and third columns 
display parameter estimates for the common group and the outlier group, 
respectively. Within these columns, rows correspond to specific model parameters: 
the resistance parameter 𝛼" (top row), baseline detection probability 𝑝! (middle 
row), and scale parameter 𝜎 (bottom row). Background colors indicate data 
inclusion, with a white background representing models using all the dataset and a 
blue background indicating models with outliers removed. Striped areas denote 
parameters that were not estimated in the model. Empty spaces indicate cases 
where a single parameter was estimated for the entire population, with the reference 
parameter displayed in the common group. 

Case study 

The models MFO1, MFO2, MFO4, MF1 and MF4 did converge with 𝑅̀ £ 1.08 and effective 
sample size > 200. On the contrary, the mixing for the resistance parameter in the model MFO3 
was poor with an effective sample size of only 93 and 𝑅̀ = 1. 

Population size estimates 
In our case study, modelling individual heterogeneity in space use only (i.e. accounting that 

males are made of two groups, model MFO2) led to an increase of the estimated number of males 
(from 𝑁WRX7-./01 =	23 [20; 28] to 𝑁WRX"-./01 = 29 [21; 42] and 2 outliers) and a decrease of the 
estimated number of females (from 𝑁WRX720-./01 =	130 [85; 173] to 𝑁WRX"20-./01 = 79 [50; 122]), 
compared to the null model (MFO1) (Figure 5). However, including spatial heterogeneity in space 
use did not affect population size estimates whether only one resistance parameter was estimated 
(𝑁WRXK20-./01 =	124 [80; 170],  𝑁WRXK-./01 = 23 [20; 29] and 2 outliers) or one resistance parameter 
was estimated for each group (𝑁WRXL20-./01 =	74 [47; 119],  𝑁WRXL-./01 = 29 [21; 42] and 2 outliers).  

Removing the outliers from the dataset led to similar estimated population size than modelling 
individual heterogeneity (𝑁WR7-./01 =	33 [23; 47], 𝑁WR720-./01 =	60 [39; 92]). Similarly, modelling 
spatial heterogeneity in space use when the outliers were removed led to comparable population 
size estimates (𝑁WRL-./01 =	33 [23; 50], 𝑁WRL20-./01 =	60 [39; 91]) (Figure 5). 
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The two models where outliers were removed had comparable estimates of population size 
(𝑁WR7 =	93 [67; 131] to 𝑁WRL =	94 [67; 133] (Figure 5)). 

 

Figure 4 - Illustration, for simulated dataset 1, of mean estimate (top row: a, b, c) 
and relative difference (bottom row: d, e, f) maps of potential connectivity. The left 
panels (a, d) show results for model MO3, which estimated a single resistance 
parameter 𝛼"for the entire population. The central panels (b, e) show results for 
model MO4, which estimated a separate resistance parameter 𝛼"for each group. 
The left panels (c, f) show results for model M4, where outlier individuals were 
removed from the analyses. 

Connectivity estimates 
Integrating outlier individuals without modelling individual heterogeneity (model MFO1) led to 

a 2.7 times increase in the median estimated 𝜎 of males (𝜎WR!7 =	0.15 [0.14; 0.17]), compared to 
when individual heterogeneity in space use was modelled (𝜎WUVS]WRG" = 0.06 [0.06; 0.07] ) or when 
removing outliers (𝜎WUVS]WR7 = 0.06 [0.05; 0.07]) (Figure 5).   

Overall, the estimated resistance parameters was close to 0, whether we kept all the individuals 
in the dataset (𝛼"WUVS]WRXL =	0.21 [0.03; 0.35], 𝛼"345/6071WRXL =	-0.16 [-0.64; 0.24] and 
𝛼"80-./01WRXL

=	0.27 [0.01; 0.43]) or we removed the outliers (𝛼"WUVS]WRL =	0.21 [0.02; 0.35] and 
𝛼"80-./01WRL

=	0.27 [0.11; 0.42] (Figure 5)). However, ignoring individual heterogeneity in the 
resistance parameter when keeping all the individuals in the dataset led to an estimated resistance 
parameter that encompassed 0 and increased parameter uncertainty (𝛼"983: =	-0.26 [-0.45; 0.42]) 
(Figure 5).  

The map of density weighted connectivity predicted from model MFO4 showed that females’ 
movements were more restricted than males’ in high road density areas (Figure 6ac). However, 
the uncertainty of 𝛼"XYZV[S\ was propagated to the potential connectivity map, which did not allow 
us to draw any conclusion about their space use extent (Figure 6ef).  
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Figure 5 - Violin plot of estimated population size N (top row), resistance parameter 
𝛼"  (second row), intercept of baseline detection probability for the structured 
monitoring 𝛼#$%&'$ (third row), intercept of baseline detection probability for the 
opportunistic monitoring 𝛼()) (fourth row), and scale parameter 𝜎 (bottom row) for 
the Pyrenean brown bear population. The median of each distribution is represented 
by a point with errors bar displaying 95% credible intervals. The panels in column 
display the estimated parameter’s posterior distribution for the females (left column), 
males (middle column) and outliers’ (right column) Pyrenean brown bear population 
in 2019 in function of the six models compared. Background colours indicate data 
inclusion, with a white background representing models using all the dataset and a 
blue background indicating models with outliers removed. Striped areas denote 
parameters that were not estimated in the model. Empty spaces indicate cases 
where a single parameter was estimated for the entire population, with the reference 
parameter displayed in the female panel, except for the estimated distribution of the 
scale parameter in model MFO1 and MFO3 that is common to the males and the 
outliers and this parameter is therefore display in the male panel. 
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Figure 6 - Maps of median density weighted connectivity derived from estimates of 
model MFO4, for females (a), males (b) and the two outlier individuals (e) with 
respective standard deviation (b, d, f) for the Pyrenean brown bear population in 
2019. 

Discussion 

Population size estimates 

As predicted, the simulation study revealed a negative bias in population size estimates when 
individual and spatial heterogeneities in space use were ignored (Pledger, 2000; Royle et al., 
2013). This bias was strongest when both types of heterogeneity remained unmodelled. 

Although modelling individual heterogeneity is challenging, especially when part of the 
population remains undetected (Marrotte et al., 2022; Pledger, 2000), we demonstrated how latent 
state formulations in SCR models can distinguish and estimate individual and spatial heterogeneity 
in space use. Conversely, when the primary objective is to estimate population size, removing 
outlier individuals with larger space use extent provides a straightforward way to reduce individual 
heterogeneity in space use and avoid underestimating population size (Kendall et al., 2019; 
Schmidt et al., 2022). However, this strategy is only effective if individual heterogeneity in space 
use is driven by a small number of individuals. Moreover, removing outlier individuals does not 
address spatial heterogeneity in space use that may remain in the population and would still require 
explicit modelling. 

In our case study, understanding the combined effect of individual and spatial heterogeneity in 
space use on population size estimates was not straightforward. Applying the models to the 
Pyrenean brown bear population showed that individual heterogeneity could be accounted for, 
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after accounting for individual heterogeneity (from 𝑁WRX7-./01 =	23 [20; 28] to 𝑁WRX"-./01 = 29 [21; 
42] and 2 outliers). Surprisingly, the estimated number of females was smaller after accounting for 
individual heterogeneity (from 𝑁WRX720-./01 =	130 [85; 173] to 𝑁WRX"20-./01 = 79 [50; 122]). In this 
study, we have not been able to unambiguously identify the reason of this observed pattern. When 
modelling individual heterogeneity, we noticed an increase in the intercept of the opportunistic 
baseline detection probability (from 𝛼X^^983' =	0.04 [0.03; 0.06] to 𝛼X^^983& =	0.07 [0.05; 0.10]), 
while intercept of the structured baseline detection probability remained unchanged (from 
𝛼_Z\`YZ983' =	0.02 [0.01; 0.03] to 𝛼_Z\Y`Z983& =	0.03 [0.02; 0.03]), linked to the presence of outliers 
in the population.  

The estimated number of females was also larger than the 52 individuals detected in 2019 (with 
22 males, 23 females and 7 individuals whose sex remains unknown)(Vanpé et al., 2022). A 
hypothesis to explain this apparent overestimation is that females have a smaller space use extent 
compared to males (𝜎WRX"20-./01 =	0.040 [0.036; 0.044] and 𝜎WRX"-./01 =	0.060 [0.057; 0.070]). 
From the model point of view, the small space use of female makes possible to miss them between 
traps, especially in areas that are covered solely by opportunistic traps. Additionally, in the south 
west part of the study area (Ordesa and Monte Perdido National Park), the monitoring intensity 
was low and even the habitat was perceived favourable (i.e. low human density and high 
ruggedness). This led to the prediction of high density of females in that area, which is unlikely 
given the low number of observed individuals in that area by the additional observations not 
included in this study. Unbiased estimation of population size will require working towards 
alternative model formulation and study design approaches to deal with those undesirable issues. 

Furthermore, including spatial heterogeneity in space use in the model led to similar population 
size estimates compared to when only individual heterogeneity in space use was included 
(𝑁WRXL20-./01 =	74 [47; 119],  𝑁WRXL-./01 = 29 [21; 42] and 2 outliers). The estimated resistance 
parameter was close to zero for each group (respectively 𝛼"983;20-./01

=	0.27 [0.10; 0.43], 
𝛼"983;-./01

=	0.21 [0.03; 0.35] and 𝛼"983;<45/6071 =	-0.16 [-0.64; 0.24]) meaning that accounting for 
spatial heterogeneity in space use was not necessary in our case if the objective is to estimate 
population size (Sutherland et al., 2015).  

Removing the outliers led to similar results that modelling individual heterogeneity (𝑁WR7-./01 =
	33 [23; 47], 𝑁WR720-./01 =	60 [39; 92]) demonstrating that this practice is a cost effective solution 
when the aim was to estimate population size (Kendall et al., 2019; Schmidt et al., 2022). 

Connectivity estimates 

The resistance parameter reflects whether space use extent increases (𝛼" < 0) or decreases 
(𝛼" > 0) as a response to a landscape covariate (Royle et al., 2013; Sutherland et al., 2015). In 
our simulations, the common group had smaller space use extent close to the barrier, while the 
outlier group had larger space use extent and was not affected by landscape structure. Under 
these conditions, the model that ignored the individual heterogeneity in the resistance parameter 
(model MFO3) estimated a resistance parameter skewed toward the common group value, 
suggesting that all individuals in the population reduced space use near the barrier. A comparable 
conclusion would be drawn when removing outlier individuals from the data set with a single 
estimated resistance parameter. 

Potential connectivity maps enable to map population space use by assuming an activity centre 
in each cell of the spatial domain and summing the space use of each individual (Morin et al., 
2017). Comparing maps from models MFO3, MFO4 and MF4 showed consistent reductions in 
connectivity near barriers, but values were sensitive to model specification (Figure 4). Ignoring 
individual heterogeneity in the resistance parameter (model MFO3) led to overestimating potential 
connectivity further away from the barrier, whereas removing outliers (model MF4) led to 
underestimating potential connectivity at the barrier. These results highlight the need for caution 
when comparing potential connectivity maps. 
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In the case study, the estimated resistance parameter demonstrated that both males and 
females exhibited smaller space use extents in areas with higher road density, and their responses 
were similar across sexes (Figure 5). 

Density Weighted Connectivity (DWC) maps provide an integrated representation of population 
space use by combining realized densities, individual heterogeneity in space use extent (scale 
parameter 𝜎), and heterogeneous responses to landscape features (resistance parameter 𝛼"). 
These maps allow delineation of areas with high space use as well as those where accessibility is 
limited by the road network. In addition, the uncertainty maps associated with DWC showed that 
the outlier group map uncertainty is too high to support reliable conclusions, while the map for 
females identifies in Ordesa and Monte Perdido National Park, elevated uncertainty that suggests 
the need for further investigation in this area to refine space use assessment (Figure 6).  

DWC maps are based on realized densities which are known to be sensitive to the location of 
traps in the landscape (Durbach et al., 2024), contrary to predicted maps that are based on the 
estimated relationship between density and landscape variables. Given the difficulty to describe 
spatial variation in the Pyrenean brown bear density based on spatial covariates (Sanz-Pérez et 
al., 2025), and considering the intensive monitoring of the population, it is likely that the realized 
densities more accurately reflect the population distribution than predicted maps. 

Overall, the effects of individual and spatial heterogeneity in space use on connectivity 
estimates are much more challenging to interpret than that on population size: they are sensitive 
to model formulation, trap location, and there is no clear parameter comparison to validate the 
outputs. Thus, interpreting SCR-based connectivity requires caution, even though jointly modelling 
spatial and individual heterogeneity remains conceptually appealing. 

Challenges and perspectives 

Our findings highlight the importance of tailoring the structure of SCR model to the research 
objectives. When the objective is to estimate population size, removing outlier individuals is an 
efficient solution that avoids unnecessary complexity. When the goal is to assess connectivity, 
however, disentangling individual and spatial heterogeneity is essential but more challenging. 

Identifying outliers is a first challenge and itself subjective. In our case, we examined the 
distribution of the capture frequency and the maximum distance moved (MDM) as indicators, both 
of which can reveal unusual detectability patterns. While further research is necessary to identify 
outliers, these summary statistics are a good first approach to detect obvious outliers (Figure 2, 
Table 2). In addition, comparing population size estimates with the presence and absence of 
outliers may be a good test to decide whether accounting for individual heterogeneity is necessary. 
Large differences across models indicate that results are sensitive to heterogeneity assumptions, 
underscoring the importance of testing alternative formulations. 

Accounting for individual heterogeneity also depends on data availability (Schmidt et al., 2022). 
In this study, we assumed known group membership for detected individuals and used latent state 
formulations to assign undetected individuals. When group membership is unknown, finite mixture 
models can be applied (Marrotte et al., 2022; Pledger, 2000), though interpretation of latent groups 
requires caution (Pledger and Phillpot, 2008). We provide the code for the finite mixture SCR model 
with ecological distance in nimble when groups are unknown (Appendix S1). 

Conclusion 

Our study underscores that SCR models must be tailored to research goals. When the objective 
is to estimate population size, removing outliers can provide efficient and unbiased estimates 
without increasing model complexity. When the objective is to assess connectivity, however, 
explicitly modelling both spatial and individual heterogeneity is necessary, despite the challenges. 
Ultimately, model complexity should be matched to both data availability and the ecological 
questions at hand to ensure robust and meaningful inference for management and conservation. 
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