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Abstract
The identification of archaeological fruits and seeds is crucial for understanding the relationships
between humans and plants within the cultural and biological history of both wild and cultivated
species. We compared the relative performance of a deep learning approach, namely convolutional
neural networks (CNN), and outline analyses via geometric morphometrics using elliptical Fourier
transforms (EFT) at identifying pairs of plant taxa. We used their seeds and fruit stones that are the
most abundant organs in archaeobotanical assemblages, and whose morphological identification,
chiefly between wild and domesticated types, allows to document their domestication and biogeo-
graphical history. We used existing modern datasets of four plant taxa (barley, olive, date palm and
grapevine) corresponding to photographs of two orthogonal views of their seeds that were analysed
separately to offer a larger spectrumof shape diversity. Sample sizes ranged from473 to 1,769 seeds
per class, which constitute a relatively small dataset for training CNNs models yet typical within ar-
chaeobotanical research. On these eight datasets, we compared the performance of CNN and EFT
coupled with linear discriminant analyses. Our objectives were twofold: i) to test whether CNN can
beat geometric morphometrics in taxonomic identification and if so, ii) to test which minimal sample
size is required.We ran simulations on the full datasets and also on subsets, starting from 50 images
in each binary class. For the CNN network, we deliberately used a candid approach relying on pre-
parameterised VGG19 network. For EFT, we used a state-of-the art morphometrical pipeline. The
main difference rests in the data used by each model: our CNN used bare photographs where EFT
used outline coordinates. This “pre-distilled” geometrical description of seed outlines is often the
most time-consuming part of morphometric studies. Results show that our CNN beats EFT in most
cases, even for very small datasets. We finally discuss the potential of CNNs for archaeobotany, and
how bioarchaeological studies could embrace both approaches, used in a complementary way, to
better assess and understand the past history of species.
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Introduction 

From Aristotle to Darwin, the form of organisms has long inspired our understanding of the 

living world. In some disciplines such as archaeobotany, the shape of plant remains is, most often, 

the only available datum. Both qualitative and quantitative morphological criteria first allowed to 

identify plant remains, particularly seeds and fruit stones, often at the species level (Zohary et al., 

2012; Wallace et al., 2019a). Then, purely quantitative tools, and chiefly geometric morphometrics, 

allowed for finer-grained, statistically assessed identifications, to further explore the morphological 

size and shape variation. 

Geometric modern morphometrics (further abbreviated GMM), is the statistical description of 

shape and its covariation (Kendall, 1989). It uses generic mathematical transformations to convert 

shape and size into quantitative variables. Most GMM studies either uses configuration of 

landmark coordinates, the geometry of curves (closed or not) or, more recently, entire surfaces. 

Curves analyses are often favoured in archaeobotany due to the absence of clear landmarks, if 

any, on botanical organs and elliptical Fourier transforms (further abbreviated EFT) is the most 

popular approach. 

By comparing archaeological material to modern collections of reference, GMM and EFT in 

particular for plants, allowed fine-grained inferences, in particular to document the emergence of 

new morphological types, evidence domestication syndromes, reconstruct the dynamics of their 

diffusion in both time and space, and overall gain insights into the intertwined histories of human 

societies and domesticated plants (Terral et al., 2004, 2010, 2012; Kost & Heil, 2005; Burger et 

al., 2011; Bouby et al., 2013; Ros et al., 2014; Pagnoux et al., 2015; Bonhomme et al., 2017; 

Bourgeon et al., 2018; Wallace et al., 2019a; Tarongi et al., 2021; Jesus et al., 2021; Bonhomme 

et al., 2021a; Evin et al., 2022; Roushannafas et al., 2022). 

Deep learning quickly became a game-changer from academia to industry, through its 

versatility and cutting-edge achievements. Computer vision in general has largely benefited the 

synergy between the massive democratization of computational power and the arrival of software 

frameworks on top of solid mathematical foundations. Convolutional neural networks (further 

abbreviated CNN) (Lecun et al., 1998), in particular, have been at heart of very diverse supervised 

classification tasks, from autonomous vehicles to plant identification (Alzubaidi et al., 2021; 

Berganzo-Besga et al., 2022). However CNN still remain relatively rare in paleontological and 

archaeological studies (Soroush et al., 2020; Romero et al., 2020; Garcia‐Molsosa et al., 2021; 

Loddo et al., 2021; and the review by Bellat et al., 2025) and also in morphometrics (Miele et al., 

2020; Le et al., 2020) yet datasets of large number of images are now available and can be 

employed to develop new tools for specialized tasks like seed recognition (Yuan et al., 2024). 

Date palm (Phoenix dactylifiera L.), grapevine (Vitis vinifera L.) archaeological seeds, barley 

(Hordeum vulgare L.) caryopsis and olive (Olea europaea L.) stones have been intensively studied 

in archaeobotany using geometric morphometrics. They are four important taxa of human 

subsistence in the Mediterranean basin since millennia. The presence of the wild progenitors of 

the domestic forms in vast geographic ranges makes the identification of the wild or domestic 

status of the archaeobotanical remains of date palm, olive and grapevine particularly difficult. In 

addition, the presence of multiple types for barley in the region, exploited for diverse use and with 

different agricultural practices require intra-specific identification. 

The morphological distinction between wild and domestic types using GMM is now very 

accurate for olive (Terral et al., 2004, 2021) and grapevine (Terral et al., 2010; Bonhomme et al., 

2022). On the other hand, distinguishing between wild and domestic date palm seeds (Terral et 

al., 2012; Gros-Balthazard et al., 2017), as well as between two- and six-row barley grains remains 

challenging (Ros et al., 2014; Bonhomme et al., 2017; Wallace et al., 2019b; Jeanty et al., 2024). 

In that context, this paper aims to test the potential of a deep learning approach for 

archaeobotanical identification and ask the following questions: i) can a CNN outperforms 

baselines obtained with GMM and if so, ii) how much data are typically required to train the 

models? Here, we used four plant models presenting binary challenges below the species level, 
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at core in archaeobotanical studies. More precisely, our aim was to distinguish between wild and 

domesticated types of date palm, olive and grapevine, and between two- and six-row barley,  

A CNN model correctly trained on large datasets is expected to outperforms EFT approaches, 

providing taxonomical differences are reflected in some morphological contrasts, at least because 

EFT are limited to the geometrical differences of outlines, while CNN applied on images can 

capture any morphological discriminant feature beyond shape, texture for example. That being 

said, several conditions of our models make such expectation far from granted here: 

• Low inter-class differences: differences tested here, chiefly shape differences, ranged from 

subtle at best to extremely challenging; the group labelling was certain only because the 

identification was obtained through molecular markers (for the date palm) or on entire 

plants cultivated in biological conservation centres (other models).  

• Small sample sizes: the available datasets were particularly small compared to those 

usually deployed in CNN learning tasks. The datasets used here were obtained through 

2D images acquired following rigorous and time-consuming protocols, which limit the 

number of biological objects that can be analysed in the context of archaeobotanical 

studies. 

• Challenging baselines: existing baselines obtained through GMM are already good to very 

good. 

• Accessible models: our intention was to develop CNN-based pipelines, reasonably easy 

to run by non-expert users using general-purpose computers. 

• Taphonomic biais: Charring, desiccation or waterlogging related to the fossilisation of the 

fruit and seed stones can potentially generate important sampling bias in CNN by 

comparison to GMM as the first one might focus on texture rather than outline geometry. 

We first present the models used and compare their performance to geometric morphometrics. 

Finally, we discuss the pros and cons of CNN versus EFT and propose an agenda of future 

researches. 

Material and methods 

Statistical environment 

All analyses were run using R 4.1.3 (R Development Core Team, 2024). We used a MacBook 

Pro 2013 model with a 2,6 GHz Intel Core i5 CPU and 16 Go 1600 MHz DDR3 RAM. Data 

manipulation and visualization was done using tidyverse 2.0.0 (Wickham et al., 2019). Image 

manipulation was done using magick 2.7.3 (Ooms, 2016). All morphometric analyses were 

performed using Momocs 1.4.1  (Bonhomme et al., 2014; Bonhomme et al., 2025a) and linear 

discriminant analyses using MASS (Venables & Ripley, 2002). CNN models used keras 2.15.0 

(Allaire & Chollet, 2017), the R interface to the eponym Python 3.7 architecture, which here ran on 

CPU alone. 

Datasets used 

Among the model species studied by our team, we retained those for which we have enough 

material, secure identification and associated publication record: grapevine pips (Pagnoux et al., 

2015; Bonhomme et al., 2020), barley grains (Jeanty et al., 2023), olive stones (Bourgeon et al., 

2018; Terral et al., 2021) and dates seeds (Terral et al., 2012; Gros-Balthazard et al., 2017) (Table 

1). All models corresponded to a binary classification task with 2- versus 6-row types of barley 

(Hordeum vulgare), and wild versus domestic for the three other taxa. These datasets only 

comprised modern material from collections of references, commonly used to compare with 

archaeological material. 

All seeds/stones/fruits were photographed in dorsal and lateral views using a stereomicroscope 

coupled with a digital camera. It is worth noting that GMM identification is usually obtained by 

combining the information brought by the two orthogonal views but we chose here to not combine 
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these views to increase the number of “independent” datasets and have a larger spectrum of 

shapes (Figure 1).  

 

Figure 1 - Schematic description of the GMM and CNN models used. For each 
taxon, an archetypical individual seed is presented.  

Convolutional neural networks 

Our CNN models used the VGG19 architecture (Simonyan & Zisserman, 2014) with the weights 

trained on the ImageNet reference dataset (Deng et al., 2009), as available in keras. The 

convolutional base, with feature hierarchies learnt on ImageNet, was frozen. Given we did not want 

to predict ImageNet classes, the last three dense layers were replaced with two fully connected 

dense layers and only these last layers were fine-tuned. The first has 32 units and a rectified linear 

unit (ReLU). Because all models were binary classification, the last layer has two units and a 

sigmoid activation (Figure 1). 

The loss was calculated using binary cross-entropy for binary classification tasks. We used two 

callbacks to control the training step. The first controlled the learning rate, based on loss decrease, 

initially fixed to 10-2 with a decay factor of 10, a patience of 10 epochs and a minimal value of 10-

7. The second stopped the training with a patience of 20 epochs with no accuracy improvement. 

These two callbacks were used to homogenise training among models. 

For each dataset, the number of images was balanced between classes, using a random 

sampling without replacement among available images (Table 1). This allowed to explore the effect 

of different sample sizes on final CNNs performance. For each sample size tested, 60% of the total 

number of images was used for the training set, 20% for the validation set and the last 20% for 

evaluating the model. The training set was used to adjust weights while the validation set was used 

to evaluate model performance back-propagate results to the unfrozen layers at the end of each 

epoch. The evaluating set was used only once and after the training step, to report the model 

performance on images never seen before by the model.  

The rgb images were converted to grayscale with pixel values standardized between 0 and 1 

and reduced to a resolution of 120×90 pixels, while maintaining the aspect ratio (Figure 1). The 

first layer of the VGG19 convolutional based was adapted accordingly.  
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Table 1 - Material used. Each of the four taxa provided two views treated separately. 

Dataset Taxa Classification problem Levels Sample sizes 

hordeum Hordeum vulgare 2- vs 6-row 
2-row 981 

6-row 473 

olea Olea europaea wild vs domesticated 
domesticated 1589 

wild 630 

phoenix Phoenix dactylifera wild vs domesticated 
domesticated 776 

wild 662 

vitis Vitis vinifera wild vs domesticated 
domesticated 1769 

wild 872 

 
Geometric morphometrics baseline 

We used outline analysis using elliptical Fourier transforms (EFT) (Kuhl & Giardina, 1982; 

Claude, 2008; Bonhomme et al., 2014). We first converted full-sized images into silhouette masks 

on which 360 outline coordinates were sampled, equally spaced along the curvilinear abscissa. 

We then normalized outlines for their size, position, rotation and first point and obtained enough 

harmonics to gather 95% of the total harmonic power (6 for all datasets). Then, a linear discriminant 

analysis (LDA) was trained on the same dataset as for CNN yet combining the training and 

validation sets (Figure 1). The general methodology is detailed elsewhere (Bonhomme et al., 2014, 

2020). 

Model comparisons 

Ten replicates were used for each of the eight datasets and each was tested with increasing 

sample sizes (Table 1 and Table 2). Given one of the 560 runs, the very same sets of images (or 

masks) was submitted to both CNN and EFT. The only difference is that, for EFT, the two training 

and validation sets were combined for training then evaluated on the same 20% as for CNN (Figure 

1). This cross-validation scheme allowed direct comparisons between the respective performances 

of each model. Performance was measured with accuracy, that is the proportion of correctly 

identified individuals. Sensitivity and specificity were also calculated. 

Results 

In most cases, CNN beat EFT (419 cases over 560, that is 75% - Figure 2, Figure 3, Table 2). 

This is particularly true for larger training sets.  

Table 2 - Mean accuracy (CNN – EFT) differences ± standard deviation, expressed 
as percentages, for each of the 10 replicates. Sample sizes are expressed as the 
total number of images used per class (training/validation + evaluation). Cells with 
‘-’ could not be calculated due to sample size limitations. 

  Sample sizes 

Dataset View 50 100 150 200 300 400 500 600 700 

hordeum 
dorsal 0.1 ± 8.2 -1.7 ± 5 -0.3 ± 7.1 -0.8 ± 6.7 -1.2 ± 5.7 - - - - 

lateral -0.4 ± 5.9 -3.2 ± 5.4 -0.6 ± 5.5 -5.8 ± 6 -0.4 ± 6.3 - - - - 

olea 
dorsal 4.8 ± 3.9 5.2 ± 2.9 7.1 ± 2.8 7.8 ± 2.5 8.9 ± 2.1 8.4 ± 1.9 8.3 ± 1.7 - - 

lateral 2.5 ± 3.2 4.5 ± 4.1 6.7 ± 2.2 6.3 ± 1.6 6.9 ± 2 8.7 ± 2.2 7.3 ± 2.3 - - 

phoenix 
dorsal -4.5 ± 5.1 -0.9 ± 5.4 1.3 ± 2.8 0.2 ± 2.9 1.5 ± 3.7 3.1 ± 3 4.1 ± 2.1 - - 

lateral -6.2 ± 8.8 -4.3 ± 4 0.3 ± 2.4 -2.7 ± 5.7 0.2 ± 3 0.4 ± 2.2 0.7 ± 3 - - 

vitis 
dorsal -0.5 ± 10.5 5.2 ± 3.9 8.5 ± 2.4 5.8 ± 3.6 7.3 ± 3.1 8.4 ± 2.1 7.6 ± 3.6 8.9 ± 3 9.5 ± 2.8 

lateral -3.7 ± 6.3 1.5 ± 3.6 1.4 ± 5.2 4.1 ± 2.6 2.8 ± 2.3 3 ± 2.4 5 ± 1.5 4.5 ± 3.7 5.8 ± 2.4 
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Figure 2 - Model performances for each dataset presented using accuracy, training 
sample sizes and replicates for CNN and EFT. Sample sizes are expressed as the 
total number of images used per class (training/validation + evaluation). The models 
are run for the ventral (VD) and lateral (VL) views. Two-row vs six-row barley 
(hordeum) are compared, as well as the wild and domestic forms of olive (olea), 
date palm (phoenix) and grapevine (vitis). The same graphs for precision and recall 
are available in the supplementary material and show similar trends. 
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Figure 3 - Model performances for each dataset training sample sizes and 
replicates, presented as absolute CNN - EFT accuracies. Sample sizes are 
expressed as the total number of images used per class (training/validation + 
evaluation). The models are run for the ventral (VD) and lateral (VL) views. Two-row 
vs six-row barley (hordeum) are compared, as well as the wild and domestic forms 
of olive (olea), date palm (phoenix) and grapevine (vitis). 
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Among the eight datasets (further referred using their vernacular name) two groups can be 

made: olive and grapevine in one hand, barley and date palm in the other, no matter the view 

considered. For grapevine and olive, where EFT “already” provided good accuracies, CNN perform 

even better, particularly for the large sample sizes. For grapevine with 700 images, average CNN 

accuracies range from 94 to 99% for dorsal view and from 92 to 96% for lateral view. For olive with 

500 images, performances range from 98 to 100% for dorsal view, and from 97 to 99% for lateral 

view. For barley and date palm, the results seem more mitigated at first glance (Figure 2), yet, on 

average (Table 2) the CNN also achieve better accuracies when the datasets are large enough. 

For sample sizes above 150 individuals, CNNs are better in most cases for barley and consistently 

for date palm. These two groups of results are reflected in the mean differences between models 

for the largest sample size: olive and grapevine gained ~10% accuracy where date palm and barley 

gained less than 5%. The patterns observed in sensitivity and specificity mirrored those of accuracy 

and are available in the ESM.  

Finally, to give an idea of computational time, a single iteration of the 56 models pairs took ~17 

hours to complete, with less than 1% dedicated to the EFT. In the other hand, post-treatment time 

for preparing pictures is virtually zero for CNN and about 1 min per picture for EFT, that is about a 

full-time week for each dataset here. 

Discussion 

Our results show that even a candid CNN approach could outperform state-of-the-art EFT to 

identify plant seeds and fruits below the species level. Even if the performance boost is not 

dramatical for all four studied taxa, this was a quite surprising result since the CNN beat almost 

consistently our EFT baselines even when the sample sizes were small. 

Regarding the four pairs of taxa studied, identifying wild and domestic types for olive and 

grapevine is relatively easy using the seed shape but distinguishing between the wild and domestic 

date palm, and the two- and six-row barley is challenging, not to say troublesome. For hordeum 

(lateral view), CNN are even, on average, below the EFT obtained with accuracy. Further research 

using refined CNNs architectures would be helpful on that particular dataset. 

Here, when geometrical differences between studied pairs are quite obvious macroscopically 

(olive and grapevine), the CNN clearly beat GMM identification and is close to perfect when the 

sample sizes of the training sets exceeded 500 hundred seeds. For instance, over the 10 

replicates, a single olive stone in lateral view was wrongly identified among the 1400 evaluated 

images (20% of 10*700). Using outline analyses, accuracies around 95% can now be reached for 

certain taxa (e.g. olive and grapevine), particularly when combining several views (Bonhomme et 

al., 2020), but here CNN only have raw 120×90 images as inputs.  

Perhaps the most surprising result is that CNN also beat EFT baseline even when trained with 

only ~100 images in each class, at least for these two “easy” models (here grapevine and olive). 

Given how costly and time-consuming is the constitution of a reference collection, this means that 

CNN can be tested early and possibly cut off these costs. Also, that methods applied here could 

be easily tested in many other archeological models whether they are plant, animal organs or non-

biological artefacts, imprints, etc.  

One important result here is that CNN can still improve their classification score when 

increasing the training sample size well after the classification score of GMM can no more be 

improved (because of limitations associated with the linear discriminant analyses or because the 

number of available variables is limited). Our results seem also to indicate that GMM and linear 

discriminant analysis allow to fast reach their maximal accuracy but rapidly reach a plateau 

(corresponding to 50 to 150 analyzed individuals). With larger sample size, they are clearly 

performing less well than CNNs. 

Deep learning approaches are now quite common for animal and plant species identification, 

particularly for citizen science projects (Willi et al., 2019; Picek et al., 2022), but remain so far very 

new when it comes to archaeological material (but see Miele et al., 2020) or morphometrics (but 

see Le et al., 2020). To the best of our knowledge, this is the first time CNNs are used for such 
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sub-specific identification task in plants, a fortiori on four different model taxa. The results shown 

here appeal to further studies to test how they could be extended to other archaeological material, 

other plant or animal taxa and at the species level. Here we show that, at least in some cases, the 

diversity at even lower taxonomic levels can be explored. This would be of prime interest to develop 

tools that can be used not only by archaeobotanists but also by any people interested in identifying 

variety (e.g. for conservation purposes). In palynology, another field that may be developed in an 

archaeological context, deep learning using CNNs has already proven to be helpful in the fastidious 

task of pollen and phytolith identification and counting (Sevillano et al., 2020; Berganzo-Besga et 

al., 2022; Gimenez et al., 2024). 

In this paper, our main intention was to take the archaeobotanists point of view: “How can my 

reference collection help me interpret the identity and significance of my unknown seeds?”. Despite 

these encouraging initial results, it remains important to note the most apparent potential pitfalls. 

First, CNN and EFT as implemented here neither work with the same information (CNN use 

images, EFT use an outline geometry), nor use the same method here for the classification (CNN 

use a sigmoid activation, EFT uses LDA). EFT is, by construction, limited to the description of the 

shape and form variations where CNN use a number of other variables that can be useful (and 

also possibly detrimental) for classification, such as colour, texture, or patterns that go beyond the 

outline geometry. This calls for additional research, for the sake of a more direct comparison 

between paths. For example: how would CNNs (and other deep learning tools) behave with more 

or less “distilled” geometric information when given raw images, cropped images, masked images, 

(x, y) outline coordinates, EFT coefficients or even PC scores? Also, would an intermediate 

segmentation model mask (i.e. with texture) seeds be interesting in terms of robustness and 

performance? Future research will help clarify how CNN, and more largely deep learning can really 

be a game changer in archaeobotanical studies. 

Second, CNN models used here may be highly sensible to different image acquisition 

environment, including apparatus, lightning, operator, post-processing, etc. Such biases have 

already been investigated, sometimes with workarounds (Kothari et al., 2014; Fortin et al., 2018; 

Da Rin et al., 2022). Datasets used here were obtained in multiple settings and environments in 

the last twenty years and further experiments will likely share the same potential pitfall, either 

directly by combining cross-laboratory acquisition, by using the reference datasets provided with 

this paper, or by evaluating archaeological material with models trained on modern material. This 

may also call for other approaches using masks or outlines which are often already obtained for 

further outline analyses anyway. Additional work to test for these potential biases is needed. 

More generally, should we expect rivalry or synergy emerge between CNN and geometric 

morphometrics? For rough identification, CNN will likely become a more popular tool for future 

archaeobotanical studies, and possibly the next standard toolkit. Here, we insist on the fact that 

our CNN architecture was deliberately kept simple for both practical and conservative reasons: we 

had many models to run that needed to be generic and the point was to test if a candid CNN 

approach could beat state-of-the-art EFT. There is definitely room for improvement by using better 

models, fine-tuning them, larger datasets, larger images and by combining views or even using 3D 

models of the objects. That being said, with the best will in the world a model cannot see what 

simply does not exist. In some cases, a single ratio of lengths can achieve nearly perfect 

identification when morphological differences are trivial. This is the case for example for grapevine 

(Bonhomme et al., 2022). On the other hand, meaningful differences for human use may just not 

be reflected on the studied organs. Somewhere between these two extremes are a wide range of 

real differences that can only be detected by statistical means (Bonhomme et al., 2021a; 

Bonhomme et al., 2021b). This is where methodological refinement makes the most sense and a 

natural playground for deep learning approaches. 

EFT have the advantage of translating the shape into coefficients that can be directly treated 

as quantitative variables. Also, the inverse transformations are mathematically defined, so that one 

can go “back” to shape from coefficients, which allows rich insights into the morphological space 

of taxa of interest and the comparison between the relative occupancies between taxonomic, 

diachronic or synchronic assemblages. For that matter, the best equivalent CNN have to offer so 
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far are activation maps where one can visualize for each image, the regions that triggered the final 

vote. Even though the reputation of being black boxes is largely erroneous, CNN are and will likely 

remain less handy to that respect mostly because they use images that are difficult to interpret in 

terms of model explainaibility than, say, outline coordinates. More generally, “to predict is not to 

explain” (Thom, 2010), and in our opinion, CNN and EFT should be seen as complementary 

approaches rather than competitors. Future studies will explore this assumption but CNN may 

soon become the go-to tool when identification is of prime interest. Paradoxically, CNN are more 

computationally intensive than GMM models but may prove easier to deploy as applications and 

more accessible to a broad audience, as they can be trained and used directly on raw images 

whereas GMM approaches require meticulously prepared inputs. 

Finally, if deep learning was here restricted to identification using convolutional neural 

networks, it has much more to offer to archaeology and morphometrics: its versatility extends to 

regression problems (e.g. Reese, 2021), segmentation (i.e. automating and/or improving pre-

morphometrics treatment (e.g. Lee et al., 2017), adversarial reconstruction for broken or missing 

parts (e.g. Hermoza & Sipiran, 2018), pose and parallax correction for data acquisition (e.g. Zhang 

et al., 2021). In our view, this also argues for synergy rather than rivalry between CNN and GMM 

approaches, with future research determining the extent to which this holds true. 
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• Scripts used and commented in the folder /R. Raw images in the folder /DATA and .rda in 

the folder /rda are primarily intended to be accessed by the .R scripts. 

• model histories showing accuracies, loss and learning rate for both training and validation 

partitions, for each combination of model x sample size x seed are in the folder /model histories 

• hdf5 images of training weights are also available for seed 2329 in the folder /hdf5 

• Figure 2 with the very same presentation but showing precision and recall instead of 

accuracy. 
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