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Abstract
Introduction: Electromyography (EMG) remains the gold standard for estimating the Rest-
ing Motor Threshold (RMT) in Transcranial Magnetic Stimulation (TMS) studies, but its cost
and limited accessibility often lead researchers to use visual inspection (VIS). However, VIS
may introduce variability and systematic bias. Accelerometry (ACC) offers a cost-effective,
objective alternative to capture TMS-evoked responses. Objective: To compare the RMT
as estimated using EMG, ACC, and VIS.Methods: Five participants underwent TMS while
EMG, ACC, and video recordings were collected. Separately, 64 observers judged hand
movement in videos to estimate RMT via VIS. RMTs were compared across the three meth-
ods using Bayesian model comparison, Bland-Altman analyses, and Intraclass Correlation
Coefficients (ICCs). Results: RMTs estimated via EMG were lower than those obtained us-
ing either ACC or VIS. Compared to EMG, VIS tended to overestimate RMT (mean bias
= 5.23%, 95%CI = [1.00–11.00]), while ACC and VIS estimates were more closely aligned
(mean bias = 0.43%, 95%CI = [–4.00 – 5.00]). ICC (2,1) values indicated moderate reliability
for VIS vs EMG (mean = 0.580, 95%CI = [0.389 – 0.748]), and good-to-excellent reliability
for VIS vs ACC (mean = 0.845). However, bootstrapped 95% confidence intervals identified
significant variability in the estimates provided by visual inspection, ranging from +1 to +11
for VIS vs EMG, but as low as -4 to +5 for VIS vs ACC. Conclusions: EMG remains the most
sensitive technique for estimating the RMT, but when EMG is not feasible, accelerometery
provides a quantifiable, more objective, and less variable alternative than visual inspection.
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Introduction 

Research on the effects of Transcranial Magnetic Stimulation (TMS) has largely focused 
on the primary motor cortex of the human brain (Hallett, 2000). When an area of the primary 
motor cortex linked to a target muscle is stimulated, it can activate the corticospinal pathway 
leading to muscle contractions, and potentially induce movements in that muscle. By 
employing electromyography (EMG), the resulting muscle activity from this stimulation can be 
recorded as a ‘Motor Evoked Potential’ or MEP (Barker et al., 1985). Among the features of 
the MEP, the most commonly analysed is its amplitude, often measured from peak to peak in 
microvolts (µV). Measuring MEP amplitudes is central to defining the intensity of TMS that is 
delivered in most TMS studies, which is typically defined based on the Resting Motor 
Threshold (RMT) — the minimal stimulator output necessary to produce MEPs with an 
amplitude of  ≥50µV in at least 5 out of 10 trials. 

Although much of the early research on TMS has focused on fundamental motor 
responses, over time, TMS has garnered significant attention for its wide-ranging applications 
across diverse fields. In neurology, TMS has been used to examine conditions such as multiple 
sclerosis (Aloizou et al., 2021; Beer et al., 1995; Hess et al., 1986; Rossini et al., 1989; Šoda 
et al., 2023), stroke (McDonnell & Stinear, 2017; Richards et al., 2008), epilepsy (Badawy et 
al., 2014; Theodore, 2003), Parkinson’s disease (Brys et al., 2016; Cohen et al., 2018; Elahi 
et al., 2009; Ollanova & Ugli, 2023), dystonia (Brighina et al., 2009; Lozeron et al., 2016; 
Quartarone, 2013) and myopathy (Liepert et al., 2004; Molenaar et al., 2023; Nardone et al., 
2017). The application of repetitive TMS has demonstrated substantial promise in treating 
psychiatric disorders, leveraging its ability to modulate neural activity in targeted brain regions. 
Conditions such as major depressive disorder (MDD) (Pridmore et al., 2023; Tendler et al., 
2021; van Rooij et al., 2024), obsessive-compulsive disorder (OCD) (Carmi et al., 2015, 2018; 
Harmelech et al., 2022; Tendler et al., 2021), anxiety (Cirillo et al., 2019), post-traumatic stress 
disorder (PTSD) (Karsen et al., 2014; Yan et al., 2017) and schizophrenia (Cole et al., 2015; 
Hou et al., 2021) have all benefited from TMS interventions. Additionally, its efficacy extends 
to behavioral disorders, including addiction (Gersner et al., 2023), attention-
deficit/hyperactivity disorder (ADHD) (Hoegl et al., 2014), and eating disorders (Jáuregui-
Lobera & Martínez-Quiñones, 2018). Beyond these possible therapeutic applications, TMS 
has also proven to be a valuable tool in cognitive research, to improve our understanding of 
cognitive processes such as mental imagery, decision making and action preparation 
(Chepurova et al., 2022). Thus, while TMS was initially developed to probe motor system 
function through the measurement of MEPs, it has since evolved into a versatile tool with broad 
applications.  

Regardless of the exact field of study, EMG remains the gold standard for assessing TMS 
responses. However, EMG presents several drawbacks. The initial cost of EMG equipment 
such as apparatus and amplifiers, combined with recurring expenses for consumables like 
electrodes, electrode gel, and cleaning alcohol, makes it a relatively expensive technique 
(Ambrosini et al., 2018). Additionally, precise electrode placement requires understanding of 
muscle anatomy and physiology (Micera et al., 2010). Preparatory steps, including skin 
cleaning, hair removal, and verifying the clarity of the signal, all add to the time required to 
create optimal recordings using this method (Peri et al., 2017). Despite its widespread use 
among research teams investigating motor control and neurophysiology, many laboratories 
employ EMG solely to evaluate the RMT (Cantello	et	al.,	2007;	Hoogendam	et	al.,	2010;	
Ikeguchi	et	al.,	2005). However, due to the costs and preparation time associated with EMG, 
some groups instead measure the “visually determined” RMT. This approach defines RMT as 

2 Gautier Hamoline et al.

Peer Community Journal, Vol. 6 (2026), article e2 https://doi.org/10.24072/pcjournal.659

https://doi.org/10.24072/pcjournal.659


the lowest stimulator output that generates a visible movement (usually of the hand) in at least 
5 out of 10 trials (Pridmore et al., 1998). While more accessible and less expensive than using 
EMG, the visual inspection method is inherently subjective (Pridmore et al., 1998) and 
therefore subject to inter- and intra-individual variability; moreover, it focuses on identifying the 
presence/absence of movement without providing other quantifiable measures (e.g. the speed 
or magnitude of the induced movement). Furthermore, previous reports provide conflicting 
accounts of the relationship between measures collected using visual inspection and EMG, 
with research indicating the visually defined threshold can differ from that identified using EMG 
by between –10 to +2% of maximal stimulator output (Balslev et al., 2007; Pridmore et al., 
1998). This is notable as under- or over-estimating the RMT could in turn lead to the application 
of stimulation intensities that are too low to be effective, or that may exceed TMS safety 
guidelines (Rossi et al., 2009). Together, these limitations underscore the need to investigate 
alternative methods to EMG that are both cost-effective and efficient, but also allow precise 
quantification of TMS evoked responses. 

Accelerometry emerges as a promising solution to address the issues with EMG and visual 
inspection in assessing TMS responses. Specifically, accelerometry is more cost-effective 
than EMG, requiring smaller initial outlays and incurring lower recurring expenses. 
Accelerometry also enables researchers to objectively quantify TMS responses, and is 
therefore likely to be more reliable than the subjective assessments provided by visual 
inspection. Past studies have used accelerometry to examine how TMS-evoked movement 
direction and magnitude change with training (Classen et al., 1998; Duque et al., 2008; 
Mawase et al., 2017). Recently, our laboratory has explored using accelerometry as a tool to 
measure different characteristics of TMS evoked responses; although accelerometry tends to 
overestimate the RMT, comparisons of measurements of MEP amplitudes and accelerometer 
jerk readings were highly correlated, demonstrating this measurement tool shows promising 
potential (Hamoline et al., 2024). 

In this paper, the aim is to investigate and compare the measurement of the Resting Motor 
Threshold (RMT) using three different methods: electromyography (EMG), accelerometry 
(ACC), and visual inspection (VIS). By evaluating the accuracy, reliability, and practical 
application of each technique, the present study will determine their respective strengths and 
limitations in capturing the RMT.  

Materials and Methods 

All code and data are available on the following OSF repository: 
https://doi.org/10.17605/OSF.IO/2MPXF 

General Design 

The study leveraged a mixed-model design to examine data from a total sample of 105 
participants. The final sample after application of exclusion criteria (see below) included 69 
participants. This final sample comprised two groups of participants.  

Data from Group 1 provided direct recordings of responses to TMS. Data collection 
involved recording data from five participants using three methods: electromyography, 
accelerometry, and video recordings of the hand during TMS (i.e. recordings demonstrating 
whether the intensity of TMS was sufficient to produce movement or not).  

Data from Group 2 then focused on the visual determination of the resting motor threshold 
by individual observers. Participants in this second group observed video recordings taken 
from the first group, providing responses to indicate whether they observed a movement in 
each trial in response to TMS.  
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Group 1: Recording of responses to TMS (EMG, Accelerometry, and Video) 

Participants 
Five participants (2 females, 3 males), all right-handed, with an average age of 24.2 years 

(ranging from 21 to 29 years, SD = ± 2.31) took part in this part of the study. The safety 
screening checklist recommended by Lefaucheur et al. (2011) was administered prior to 
stimulation to confirm participant eligibility and ensure safe application for the use of TMS. The 
study was approved by the Ethics Committee Saint-Luc Hospital, UCLouvain (2020/30JUL/389 
- DNMT-TMS – amendment 2), and each participant provided written informed consent prior 
to the experiment. Participants also consented to video recordings of their hands to be 
presented to other participants (see below).  

Transcranial Magnetic Stimulation (TMS) 
TMS was administered using a monophasic Magstim 2002 stimulator with a figure-of-eight 

coil (2 x Ø70 mm) directed posteriorly and toward the ipsilateral side with a random interval of 
4 to 6 seconds between each stimulation. To ensure precise targeting, participants wore a 
head tracker (NT-103) and the Visor2 neuronavigation system (ANT Neuro, Netherlands) was 
used with the standard brain model, which provided real-time guidance for accurate coil 
positioning.   

Electromyography (EMG) 
EMG was utilized to record Motor Evoked Potentials (MEPs) from the First Dorsal 

Interosseus (FDI) muscle of the index finger on the dominant hand. Before placing the 
electrodes, the skin was cleaned with an alcohol solution and shaved if necessary to remove 
hair and enhance conductivity. Two self-adhesive, pre-gelled bipolar surface electrodes (Blue 
Sensor N, Ambu®, Denmark) were positioned on the muscle body and its distal insertion. A 
reference electrode was placed on the styloid process of the ulna. EMG signals were sampled 
at 2 kHz with an online digital notch filter (50Hz), bandpass filtered at 20–450Hz, and amplified 
using a D360 8-Channel Patient Amplifier (Digitimer®, England).  

Accelerometer Recordings 
A 8791A250 K-Shear® Miniature Triaxial Accelerometer (Kistler, USA) was secured to the 

nail of the index finger using micropore adhesive tape (Figure 1). The accelerometer captured 
movement in the x, y, and z axes, enabling a complete reconstruction of the motion. The data 
were collected using a 4-Channel PiezoSmart® (TEDS) Power Supply/Signal Conditioner 
(Kistler, USA) and recorded as the finger’s acceleration (m/s²). Prior to analysis, the data were 
low-pass filtered offline using a 20 Hz 4th order Butterworth filter. 

Video recordings 
Video recordings of the experiment were captured using a GoPro Hero 8 Black, set to 

record at 1080p resolution and 120 frames per second. The camera was mounted on a tripod, 
positioned to film the hand from above and from the contralateral side (see Figure 1). This 
setup was chosen to simulate the perspective of an experimenter during a typical experimental 
session and offered a clear view of the hand.  

Protocol Design 
Participants sat on a chair with the palmar side of the dominant hand resting face down on 

the table, and were able to make adjustments until they found a comfortable position that they 
could maintain throughout testing. The corticomotor area over the left hemisphere 
corresponding to the right first dorsal interosseous (FDI) muscle was identified, and the motor 
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hotspot was determined using a figure-of-eight coil (2 × Ø70 mm) held tangentially to the scalp 
and positioned at approximately 45° to the sagittal midline, with the handle pointing posteriorly 
and laterally to induce a posterior–anterior current in the cortex, which is the standard 
orientation for FDI hotspotting (Brasil-Neto et al., 1992; Bruton et al., 2020). The coil placement 
is determined by record stimulation sites based on the standard MRI template embedded in 
the software. A theoretical FDI hotspot was first located within the hand area of the motor 
cortex. The coil was then systematically moved in 0.5 cm steps in posterior–anterior and 
medial–lateral directions until the optimal scalp position eliciting the largest and most MEPs 
were identified. The final hotspot coordinates were stored within the neuronavigation system 
to ensure consistent coil placement throughout the session. RMT was assessed using EMG, 
defined as the lowest intensity of maximal stimulator output (MSO) to produce a MEP of ≥50µV 
in at least 5 out of 10 trials. Stimulation was randomly applied at intensities ranging from -
5%MSO to +20%MSO of the EMG-defined RMT. An external experimenter (A.L.) visually 
monitored the participant’s hand and signaled to the experimenter delivering TMS (G.H.) if an 
intensity of TMS that produced a movement on each trial (i.e. 10/10 trials) was observed, and 
future intensities of stimulation were applied only below this intensity. This procedure identified 
the lowest stimulator intensity above the EMG-defined RMT that consistently elicited visible 
movements in all trials (i.e., 10/10) (range: +9% to +19% MSO). 

Data Processing 
EMG and accelerometer data were recorded using a Power1401–3A system and Signal 

software (both from Cambridge Electronic Design, England). The data were processed using 
custom MATLAB scripts.  

EMG signal analysis focused on identifying the ‘peak-to-peak’ amplitude of the Motor 
Evoked Potential (MEP), which was calculated as the difference between the highest positive 
and negative peaks of the response in a post-stimulation window of 200ms. 

Accelerometer data, capturing movements in the x, y, and z axes, were combined using 
the Cartesian formula (absolute acceleration = √ (x² + y² + z²)) to generate a single value 
representing the total acceleration of the sensor (i.e. a measure sensitive to any movement of 
the finger in response to TMS, analogous to visual inspection). The derivative of the 
acceleration was then calculated to determine the ‘jerk’ (m/s³), with the absolute peak jerk 
being the primary signal of interest. Jerk is particularly useful for analysing rapid or transient 
movements, which are common in TMS-induced responses. 

The processed accelerometer data were also used to identify the RMT as determined by 
accelerometry. The RMT was defined as the intensity of the maximal stimulator output (MSO) 
at which at least 5 out of 10 trials exhibited a peak jerk (m/s³) exceeding the 95% confidence 
interval calculated from the 200 ms preceding the TMS stimulation (Hamoline et al., 2024) (i.e., 
a baseline, motionless period for each participant). 

Group 2: Video observations to determine the visual RMT 

Participants 
Initially, 100 participants were recruited through a combination of in-person sessions (20 

participants) and the Prolific online platform (80 participants). However, after data verification 
and attention checks were considered (see below), a total of 64 participants were retained for 
analysis. These 64 participants (33 females, 31 males) had an average age of 34.1 years 
(range: 18–62 years, SD = ±9.4 - for full descriptive data for the final sample see appendix 1). 
The study was approved by the Ethics Committee Saint-Luc Hospital, UCLouvain 
(2020/30JUL/389 - DNMT-TMS – amendment 3), and participants gave informed consent 
though a computerized form. Participants received compensation of up to 8€ for their time.  
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Procedure and stimuli 
The experimental protocol was implemented using PsychoPy version 2024.4, running on 

Python 3.10 (Peirce et al., 2019) and transformed to PsychoJS experiment to be hosted online 
on Pavlovia servers (Bridges et al., 2020).  

The experiment began with initial screens that provided instructions to the observer  (see 
appendix 2). Each trial of the experiment then began with a preparation screen (see Figure 1), 
displaying a fixation cross in the center of the screen for 1 second. The main stimuli in this 
experiment consisted of short video clips, each lasting 2 seconds, with a single pulse of TMS 
being delivered at a specific intensity 1 second into the video. Following the video, participants 
were given a 10-second response window in which they answered “yes” (right arrow) “no” (left 
arrow) to indicate whether they observed any movement in the hand. In the case of a technical 
issue with the stimulus presentation (video freezing, images or sound missing), participants 
could select the option “problem” (down arrow), which would mark the trial for removal from 
any subsequent analysis. 

After the initial instructions were provided, participants observed two example videos: one 
without any movement in response to TMS, and one with a pronounced movement in response 
to TMS. Participants then completed blocks in which they observed 10 trials where TMS was 
delivered at a fixed intensity of MSO. The intensity assigned to each block was determined 
randomly by the program, so that the order of presentation did not follow a progressive or 
predictable sequence. At the end of each block (i.e., after viewing all 10 videos for a given 
intensity level), participants encountered a pause screen and were able to rest as long as they 
required before beginning the next block of trials. 

Each participant in Group 2 was randomly assigned to view videos taken from one of the 
participants in Group 1 (from this point onwards we refer to participants in Group 2 as 
“observers” to help distinguish them from participants in Group 1). Notably, the number of trials 
required to produce a clear visual response in all trials at a fixed intensity varied from 
participant to participant in Group 1. As a result, the total number of videos available for 
observation also differed across participants in Group 2, meaning that not all observers viewed 
the exact same video set. Importantly, however, all observers completed the full set of videos 
assigned to them. Observers saw trials delivered across at least 15 intensities, and a maximum 
20 intensities (average 17.8 intensities – see also table 1 for summary information). Every 5 
blocks, an attention task appeared and asked the observer to press the “up” arrow during both 
offline or online session; this attention check was designed to be able to catch any participants 
who were not following the instructions given (e.g. simply repeatedly pressing the same 
response button across all trials, or randomly selecting one of the three buttons that were 
normally used to provide a response) (see appendix 3) 
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Figure 1 - Trial structure for the visual inspection task. From left to right: (1) 
fixation cross (1 s); (2) video of the hand during the visual inspection phase (2 
s); (3) response screen asking “Did the hand move?” with response options 
“NO” (left arrow), “YES” (right arrow), and “Problem” (down arrow) (10 s); (4) 
end-of-block screen (“End of block 1”); (5) pause screen displaying “Pause 
screen. Press an arrow when you’re ready to resume.” The trial sequence was 
repeated ten times per block. 

Data processing 
For each observer, the number of “movement” and “non-movement” responses were 

recorded. These responses were then collapsed across each intensity level to determine the 
RMT, defined as the intensity at which the proportion of trials with a “movement” response 
reached or exceeded 50%. This approach is equivalent to the standard EMG/visual method 
but accounts for any trials that were removed due to technical errors. In total 34 trials were 
removed (i.e. 0.3% of all trials presented). 

Statistical analyses 

Bayesian ANOVA 
A Bayesian ANOVA was implemented to analyze the effect of the conditions on the 

dependent variable RMT. This approach allows for the estimation for the effects of conditions 
(EMG, ACC, and VIS) while accounting for model uncertainty. Random effects, including video 
series (i.e. different participants from Group 1) and observers (i.e. different participants from 
Group 2), were incorporated to control inter-individual variability. To interpret the Bayes factors 
(BFs), statistical analysis followed the classification proposed by Lee & Wagenmakers (2005). 
A grouped scatter plot was created to visualize the data distribution and inter-individual 
variability in RMT measurements. To further refine the analysis, a Model-Averaged Posterior 
Summary was conducted, providing weighted mean estimates of condition effects while 
integrating model selection uncertainty. The posterior mean, standard deviation, and 95% 
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credible intervals were extracted for each condition (EMG, ACC, VIS) to offer a more robust 
evaluation of their impact on RMT. 

Bland-Altman Plots 
Separate Bland-Altman Plots were generated to examine the agreement between EMG 

(i.e. the gold standard) and ACC, as well as EMG and VIS, by analyzing systematic biases 
and limits of agreement. The Bland-Altman plot takes the difference between two measures 
plotted against their mean, and is therefore useful to observe systematic bias from one method 
to the other. This visualization was essential for identifying potential measurement 
discrepancies between the different methods, and assessing their level of agreement. For data 
examining VIS conditions, we calculated 95% confidence intervals based on a bootstrapping 
procedure. For each of the video series presented (i.e. data from a single participant in Group 
1), 10,000 resamples of the corresponding VIS data (i.e. observers from Group 2 who saw 
videos from that specific participant in Group 1) were generated with replacement. The mean 
for each resample was then taken, allowing us to identify a 95% confidence interval (i.e. the 
2.5th and 97.5th percentiles). This approach thus ensured that the analyses were not biased by 
unequal observer contributions or systematic rating sequences, allowing us to obtain more 
robust estimations of the effects across conditions. 

Intraclass Correlation Coefficient (ICC) analyses 
Several reliability and agreement analyses were performed to model condition effects. 

First, Intraclass Correlation Coefficient (ICC) with a two-way random effect model of absolute 
agreement and single measures (i.e. ICC (2,1), used to evaluate the agreement across 
raters/measurements) was computed to assess the absolute agreement between EMG (gold 
standard) and VIS, considering differences across observers (Koo & Li, 2016). Given that the 
number of observers varied between participants and video series, we implemented a 
bootstrap-based resampling procedure. We resampled the data 10,000 times, such that each 
of the 5 different video series (depicting data from Group 1) was assessed by one randomly 
selected observer (i.e. a single participant from Group 2 was selected from all those available 
who had watched the corresponding video series). The ICC (2,1) was then calculated for each 
resample. This approach allowed us to calculate both the mean value, and a bootstrapped 
95% confidence interval (taking the 2.5% and the 97.5% percentile ICC values), allowing us 
to generate a more detailed estimation of the distribution of ICC values.  To verify that this 
resampling did not bias the results, an ICC analysis based on the mean ratings per condition 
(i.e. ICC (2,k)) analysis with a two-way random effect model of absolute agreement and 
multiple measures was also calculated and compared with the ICC (2,1) confidence interval. 

Additionally, an ICC (2,1) was computed to assess agreement between ACC and VIS 
conditions, following the same bootstrapping resampling to ensure robustness despite the 
variability in observer numbers. The ICC (2,k) was computed following the same methodology 
as described above. 

Finally, the ICC (2,1) was computed to assess agreement between ACC and EMG 
conditions following without bootstrapping due to the number of data acquired (no ICC (2,k) 
analysis was performed as only one measure was available per participant in Group 1). 

To establish reliability thresholds, analysis referred to the classification proposed in Koo & 
Li (2016) as values below 0.5 indicate poor reliability, those between 0.5 and 0.75 reflect 
moderate reliability, values ranging from 0.75 to 0.9 suggest good reliability, and values 
exceeding 0.90 denote excellent reliability. 
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Results 

Bayesian Model Comparisons 

Bayesian Model Comparison of a null model (which included video series and observers 
as random effects), and a ‘condition’ model (which included the conditions EMG, ACC, and 
VIS as fixed effects) indicated there was “extreme” evidence in favour of the model including 
the factor of condition (BF10 = 11381). A grouped scatter plot demonstrates the effect of the 
different conditions (Figure 2). 

 

Figure 2 - Individual Resting Motor Threshold (RMT) estimates by method and 
participant. Each panel shows data for one of the five participants from Group 
1. Grey dots represent RMT estimates based on visual inspection responses 
from one of the individual observers in Group 2. Dashed lines indicate the mean 
RMT obtained via each method: electromyography (EMG, blue), accelerometry 
(ACC, yellow), and visual inspection (VIS, black). 

The Model Averaged Posterior Summary provides estimates for key variables (Table 1). 
Notably, the RMT as estimated by EMG was lower than that for either ACC or VIS, with non-
overlapping confidence intervals for these comparisons indicating there was a statistically 
meaningful difference when estimating the RMT using EMG compared to other techniques. By 
contrast, the overlapping 95% confidence intervals for ACC and VIS indicates their estimates 
are statistically indistinguishable within the model, suggesting no meaningful difference in 
estimates of the RMT exists between these two techniques.  Furthermore, the positive 
estimates for ACC and VIS and the fact that the 95% credible intervals remain entirely above 
zero, suggesting a tendency to overestimate RMT when compared to EMG. 
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Table 1 - Model-averaged posterior summary statistics for the effects of 
condition on Resting Motor Threshold (RMT). The intercept reflects the grand 
mean baseline RMT (in % of maximum stimulator output), while condition 
estimates indicate the deviation from the intercept for each technique: 
accelerometry (ACC), electromyography (EMG), and visual inspection (VIS). 
Positive values represent an overestimation relative to the baseline, and 
negative values represent an underestimation. Posterior means, standard 
deviations (SD), and 95% credible intervals are reported. 

 95% Credible Interval 
 Level Mean SD Lower Upper 

Intercept  50.1 2.1 45.6 54.4 

Condition 
ACC 1.3 0.6 0.1 2.4 
EMG -3.0 0.6 -4.3 -1.8 
VIS 1.7 0.5 0.6 2.8 

 
Bland-Altman analysis  

When comparing EMG to VIS (Figure 3A), the analysis revealed a systematic bias, as the 
95% confidence interval of the mean difference did not include zero, indicating that VIS 
consistently overestimated RMT relative to EMG rather than fluctuating randomly around it 
(mean = 5.30, 95%CI = 2.30-7.22) Additionally, the wide confidence interval suggested 
substantial variability in the differences between VIS and EMG data. 

 

Figure 3 - Bland-Altman plots comparing Visual Inspection with 
Electromyography (A), Visual Inspection with Accelerometry (B) and 
Accelerometry with Electromyography (C) as reference methods for resting 
motor threshold. The x-axis represents the mean RMT (%) between the two 
methods, while the y-axis shows the difference in RMT (%) between visual 
inspection and the reference method. Each dot represents an individual 
measurement pair (though note that the data presented here are representative 
of a bootstrap analysis with 10,000 resamples; due to the high density of data, 
numerous data points overlap). The solid horizontal line indicates the mean 
bias, representing the systematic difference between the methods, while the 
dashed lines denote the 95% confidence interval. Each plot includes 10,000 
data points from the resamples. Due to the high density of data, numerous 
points overlap in regions, leading to visual clustering. 
 

10 Gautier Hamoline et al.

Peer Community Journal, Vol. 6 (2026), article e2 https://doi.org/10.24072/pcjournal.659

https://doi.org/10.24072/pcjournal.659


By contrast, when comparing ACC to VIS (Figure 3B), the analysis indicated no systematic 
bias, as the 95% confidence interval of the mean difference included zero (mean = 0.44, 
95%CI = -1.25-1.90). However, despite this absence of bias, the broad confidence interval 
suggested high variability across observers, indicating that while VIS did not consistently over- 
or underestimate ACC, individual assessments varied considerably between observers. 

Finally, comparing EMG to ACC (Figure 3C), the analyses showed systematic bias, as the 
95% confidence interval of the mean difference is higher than zero (mean = 4.8, 95%CI = 1.20-
7.00). 

Intraclass Correlation Coefficient Analyses 

Summary statistics for the bootstrapped analysis are provided in Table 2.  
For the bootstrap based ICC (2,1) analyses, when comparing VIS to EMG, the mean ICC 

value identified only ‘acceptable’ reliability, and the 95% confidence interval included 
responses ranging from ‘unacceptable-to-good’ (mean ICC = 0.58, 95%CI = 0.39-0.74), with 
the majority of resamples indicating only ‘acceptable’ reliability. By contrast, when comparing 
VIS to ACC, the mean ICC value identified ‘good’ reliability, with a 95% confidence interval 
including a range of responses spanning from ‘acceptable-to-excellent’ (mean ICC = 0.84, 
95%CI = 0.62-1.00) (Figure 4).   

To complement these results, ICC (2,k) values based on averaged ratings were also 
calculated. These showed “excellent” reliability for VIS vs ACC (point estimate = 0.980, 95% 
CI = 0.815–0.997) and “good” reliability for VIS vs EMG, though the 95% confidence interval 
indicated considerable variability, including responses ranging from ‘unacceptable-to-
excellent’ (point estimate = 0.753, 95% CI = 0.132–0.973).  

Finally, the ICC (2,1) comparison between EMG and ACC showed “acceptable” reliability, 
again with a wide 95% confidence interval, which included responses ranging from 
‘unacceptable-to-excellent’ (point estimate = 0.587, 95%CI = 0.108-0.943). No ICC (2,k) was 
calculated for this comparison due to the limited number of observations available for EMG 
and ACC. 

Table 2 - Intraclass Correlation Coefficient (ICC) values comparing Resting 
Motor Threshold (RMT) point estimates across methods. ICC (2,1) values 
reflect agreement between individual observer responses, while ICC (2,k) 
values reflect agreement based on average ratings per condition. Comparisons 
include visual inspection (VIS), accelerometry (ACC), and electromyography 
(EMG). Values are presented with their corresponding 95% confidence 
intervals. No ICC (2,k) was calculated for the ACC–EMG comparison as only 
one comparison was available per  due to limited sample size. 

 ICC (2,1) ICC (2,k) 

 
Mean Point 
Estimate 

95% CI 

Point Estimate 

95% CI 

 Lower Upper Lower Upper 

VIS vs ACC 0.845 0.615 1.000 0.980 0.815 0.997 

VIS vs EMG 0.580 0.389 0.748 0.753 0.132 0.973 

ACC vs EMG 0.587 -0.108 0.943 N/A N/A N/A 

Gautier Hamoline et al. 11

Peer Community Journal, Vol. 6 (2026), article e2 https://doi.org/10.24072/pcjournal.659

https://doi.org/10.24072/pcjournal.659


 

Figure 4 - Results of the bootstrap analysis demonstrating the distribution of 
Intraclass Correlation Coefficients (ICC 2,1) for visual inspection compared to 
accelerometry (Yellow) and electromyography (Blue). Violin plots represent the 
full distribution of ICC values with the dot representing the mean and vertical 
line the 95%CI, while box plots indicate the median, interquartile range, and 
overall dispersion. Each dashed line represents the reliability threshold based 
on Koo and Li (2016). 

Discussion 

The present study compared the resting motor threshold as estimated using 
electromyography, accelerometry, and visual inspection. A series of analyses indicated that 
while estimates of the resting motor threshold produced by accelerometry and visual 
inspection are generally similar, these techniques typically over-estimate the threshold as 
determined using electromyography. However, further analysis supported the view that 
accelerometry provides a more objective and quantifiable approach to determining the resting 
motor threshold than visual inspection, which varied considerably between observers. These 
findings support the view that electromyography remains the gold-standard for estimating the 
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resting motor threshold, but in cases where the use of electromyography is not feasible, the 
objective and less variable nature of accelerometry provides a preferable alternative to visual 
inspection.  

The present manuscript supports the view that estimation of the resting motor threshold 
using electromyography represents the ‘gold standard’. Bayesian Model comparison and 
Bland-Altman analyses both indicated that visual inspection over-estimated the RMT when 
compared to the use of EMG. This overestimation is easily explained by the fundamental 
differences in what each method measures. EMG captures an intrinsic characteristic of the 
muscle—its electrical activity—providing a direct assessment of neuromuscular activation. In 
contrast, accelerometry and visual inspection rely on an extrinsic characteristic (i.e., overt 
movement of the finger). Muscle contraction (detectable by EMG) does not always result in 
displacement of the finger (as measured using ACC and VIS), and movement requires 
overcoming factors such as inertia and frictional forces. These differences would explain why 
ACC and VIS tend to overestimate RMT, as they may fail to detect subtle contractions that do 
not produce sufficient movement. 

These results are partially in line with the previous research that has compared the use of 
visual inspection to EMG when estimating the resting motor threshold (Balslev et al., 2007; 
Pridmore et al., 1998). However, the protocols and findings of these previous studies remain 
subject to discussion. Pridmore et al. (1998) reported that motor thresholds determined using 
EMG compared to visual inspection showed a difference of less than 10% in percent of 
maximum stimulator output, suggesting a general consistency between these approaches. 
However, they also found that in most cases, the threshold detected through visual inspection 
was reached at lower intensities than with EMG. This discrepancy raises questions about the 
comparability and sensitivity of these methods in assessing cortical excitability, particularly 
regarding the potential influence of methodological differences on threshold determination. 
Meanwhile, Balslev et al. (2007) employed a visual inspection protocol assessing the effects 
of eight different coil orientations on the resting motor threshold as estimated using EMG and 
visual inspection. While their results indicated that visual inspection typically over-estimated 
the RMT as determined by EMG by approximately 2% of MSO, as the comparison between 
these two methods was not the main focus of their study, only data from four participants using 
a primarily repeated-measures design (i.e. 8 different coil orientations were assessed for each 
participant) was collected. This procedure may therefore have led to an under-estimation of 
differences between the RMT as estimated using EMG compared to visual inspection.  We 
also note that the results of the present study are generally in line with the findings of our 
previous research (Hamoline et al., 2024), in which we found that the RMT as estimated via 
EMG and ACC were highly correlated, but that RMTs identified by EMG were generally lower 
than those identified using accelerometry. An important consideration when interpreting our 
findings is the pronounced measurement error inherent to VIS, which distinguishes it from 
techniques such as EMG and accelerometry. When the same motor event is recorded and 
analyzed using EMG or accelerometry, and the same detection algorithm is applied, the 
outcome is reproducible, yielding a single, objective value per trial. In contrast, VIS introduces 
considerable variability, as it relies on subjective human judgment. 

Further analyses considered whether accelerometry provided any benefits compared to 
visual inspection. Here we note that while accelerometry provides a single measurement that 
can be quantified objectively, visual inspection, by comparison, remains a more subjective 
approach to identifying the Resting Motor Threshold. Bland-Altmann analysis indicated that 
while the average RMT provided by visual inspection matched well to that of estimates 
provided by EMG, there was considerable variability around the mean (95%CI ranging from –
4 to +5 MSO). Similarly, our ICC bootstrapping analysis indicated that while on average VIS 
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has “good” reliability when compared to ACC, there was again a large disparity in the 95%CI, 
indicating that, in the best-case scenario, an observer (VIS) may provide a value close to ACC, 
but in other cases, their estimate of the RMT could be far from it. 

Given these findings, we propose that researchers who are not able to use EMG to 
determine the RMT should prefer the use of accelerometry, rather than visual inspection, 
wherever possible. Unlike VIS, which depends on individual observers and introduces 
variability, accelerometry provides a single, consistent measurement per trial, reducing 
subjectivity and improving measurement reliability. Nonetheless, a limitation of the 
accelerometry is that it requires real-time (online) data processing through a dedicated script. 

However, several limitations should be acknowledged. First, the sample size for the EMG 
and the accelerometry conditions was limited to five participants, which constrains the 
generalizability of these findings and increases the risk of sampling bias. We note, however, 
that the results of the comparisons between EMG and ACC in the present study are in 
agreement with our previous work which has demonstrated the same effects in a larger sample 
size (Hamoline et al., 2024). Second, a large proportion of the data for visual inspection were 
collected in a remote, online experiment, which prevented close monitoring of participant 
engagement. The inclusion of attention checks therefore helped to maintain high quality data 
(i.e. approximately 1/3 of participants were rejected based on this measure). Notably, no 
participants were rejected in the in-person condition, suggesting that the physical presence of 
the experimenter likely contributed to sustained engagement and compliance with the task. 
Third, the visual inspection condition relied on a participant reviewing recorded videos, rather 
than observing the stimulation in real time. 

A further limitation is that the observers in the present study were relatively ‘naive’ 
compared to experienced TMS experimenters. While training might reduce variability, 
individual perceptual differences would likely persist, meaning that visual inspection would still 
be less reliable than accelerometry. However, VIS could be considered in studies using ‘main’ 
protocols delivered at submaximal RMT-based intensities (e.g. 90% of RMT) to avoid safety 
issues (Rossi et al., 2009). 

In addition, the recorded hands used for Group 1 were limited to a small sample (n = 5), 
which restricted the diversity of visible features such as gender, skin tone, and hand or digit 
morphology. As a result, observer–actor mismatching may have contributed, even in a small 
part, to the perceptual judgments of finger twitches. While unlikely to account for the main 
effects observed, this highlights the need for future studies to examine visual detection of MEP 
responses across more demographically diverse samples. 

Thus, visual inspection would still introduce variability to the measurement of the resting 
motor threshold that accelerometry would remove. Additionally, the convergence of our 
findings with previous research (e.g., our prior work on EMG and ACC correspondence) further 
supports the reliability of the present data. In particular, the strong agreement observed 
between EMG and ACC measurements confirms the replicability of our previous results, and 
highlights the potential of using an equation to convert the RMT as calculated by accelerometry 
to an estimated value of the RMT as would be determined by EMG. Accelerometry therefore 
remains a viable alternative when EMG is not available. 

In conclusion, the present study indicates that EMG provides the most sensitive approach 
to identifying the RMT, most likely due to its ability to measure the intrinsic excitability of the 
corticospinal system. In situations where access to electromyography is limited, researchers 
should consider using accelerometry in the place of visual inspection, as accelerometry 
provides a more objective and reliable approach. 
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Appendices 

Appendix 1 
Group 2 (Observers) 

 Video Series Source  
(i.e. Group 1 Participant ID) 

1 2 3 4 5 Total 

Valid 10 17 13 9 15 64 

Rejected 10 3 7 11 5 36 

Mean age (years) 35.3 34,2 35.3 35.5 30.2 34.1 

Min age (years) 20 20 18 19 18 18 

Max age (years) 54 54 53 59 62 62 

Intensities presented 20 15 19 20 15 86 

 
Appendix 2 

Screen 1 
Hello, 
Thank you for participating in this experiment. 
The purpose of this experiment is to evaluate the ability of humans to discriminate hand 

movement during transcranial magnetic stimulation. 
Your data will be identified with your Prolific ID or a random number generated if you don’t 

fill it 
If you understand, press one of the arrow keys. If you have any questions, contact 

gautier.hamoline@uclouvain.be and press ESC. 
 
Screen 2 

Each video takes place as follows: 
• A cross will appear for one second to allow you to be ready 
• The video starts and you will hear a clicking sound (turn on the sound) and a flashlight. 

This click is the stimulation signal, and is part of the experience. 
• After the video, a window will appear, asking you to answer whether your hand has 

moved or not. 
 
No = left arrow <-- 
Yes = right arrow --> 
You have 10 seconds to respond 
If a video has a minor problem respond if your able too, 
if not = down arrow 
There are 20 blocks of 10 stimulations, after each block, there will be a pause screen to 

allow you to take a breath. 
! There doesn’t have to be parity in the answers. the videos presented to you are randomly 

chosen. 
If you understand, press one of the arrow keys. If you have any questions, contact 

gautier.hamoline@uclouvain.be and press ESC. 
 
Screen 3 
You will be given two examples to prepare you for the experience. 
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Screen 4 
The first video was an example of a moving hand, the second one was a non-moving hand. 
Let’s get started. 
If you understand, press one of the arrows. If you have any questions, contact 

gautier.hamoline@uclouvain.be and press ESC. 

Appendix 3 

Descriptive Statistics  

 RMT 

  1 2 3 4 5 

Valid  11  17  14  10  17  

Missing  0  0  0  0  0  

Mean  57.9  49.6  52.3  52.0  47.3  

Std. Deviation  1.6  1.6  2.8  2.7  1.3  
Coefficient of 
variation  0.027  0.033  0.053  0.053  0.027  

Range  4  5  10  7  6  

Minimum  57  47  47  50  45  

Maximum  61  52  57  57  51  
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