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Abstract
Gene trees play an important role in various areas of phylogenomics. However, their re-construction often relies on limited-length sequences and may not account for complexevolutionary events, such as gene duplications, losses, or incomplete lineage sorting (ILS),which are not modeled by standard phylogenetic methods. To address these challenges,it is common to first infer gene trees using fast algorithms for conventional models, thenrefine them through species tree-aware correction methods. Recently, it has been ar-gued that such corrections can lead to overfitting and force gene trees to resemble thespecies tree, thereby obscuring genuine gene-level variation caused by ILS. In this pa-per, we challenge and refute this hypothesis, and we demonstrate that, when appliedcarefully, correction methods can offer significant benefits, even in the presence of ILS.
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Introduction
Gene trees are fundamental components in several downstream phylogenomics analyses.Deciphering the evolutionary histories of gene families provides insights into howgenes diversifyand adapt, and has applications ranging from the prediction of genes with similar functions, toenhancing our understanding of the processes of gain and loss and of the mechanisms thatcan lead to the expansion of gene families. Naturally, the accuracy of such biological inferencesdepends heavily on the accuracy of the gene trees themselves.This contrasts with the fact that gene trees are difficult to infer with precision. Gene se-quences are typically of limited length and thus convey only limited evolutionary signals (Simionet al., 2020; Xu et al., 2006). Furthermore, genes undergo evolutionary events that are not incor-porated into typical phylogenetic reconstruction models. In particular, gene duplication eventsfollowed by divergent evolutionary fates can lead to heterogeneous mutation rates across thetree, with gene losses complicating the picture (Gout et al., 2023; Kalhor et al., 2024; Ohno,2013).These challenges can be overcome by first reconstructing gene trees using standard models,then correcting them while accounting for such events. A common strategy is to collapse low-support branches of a gene tree and resolve the resulting polytomies using information fromthe species tree. For instance, the tool TRACTION finds a refinement of the gene tree with mini-mum Robinson-Foulds distance to the species tree (Christensen et al., 2020), whereas ecceTERAand profileNJ find the refinement with a minimum duplication and loss cost (Jacox et al., 2016;Noutahi et al., 2016) (see also Zheng et al., 2013; Zheng and Zhang, 2017). TreeFix uses a differ-ent approach and explores the space of trees around the input one, to find one with a smallerduplication and loss cost but a comparable likelihood (Wu et al., 2013). Such correction meth-ods were shown useful in joint inference of gene trees and species trees (Boussau et al., 2013),detecting whole genome duplications (Dondi et al., 2019), or predicting orthology and paralogyrelationships (Lafond et al., 2013), for example.These correction algorithms only consider duplications, losses, and horizontal gene trans-fers (HGT, which exchange genes between co-existing species) even though incomplete lineagesorting (ILS) is also known to hinder the reconstruction process. Under ILS, alleles may persistthrough speciation events, producing gene trees that diverge from the species tree even in the ab-sence of duplications or losses (Degnan and Rosenberg, 2009; Meng and Kubatko, 2009; Zhang,2011).While there aremethods that take ILS into account (Maddison andKnowles, 2006;Ogilvieet al., 2017), they are often computationally intensive and impractical at the genome scale, wherethousands of gene families are analyzed. For instance, StarBEAST2 (Ogilvie et al., 2017), Mr-Bayes (Ronquist et al., 2012), and BPP (Flouri et al., 2018) are Bayesian approaches that wereshown to be very accurate in the presence of ILS, but are quite slow compared to IQ-TREE, amaximum likelihood (ML) phylogenetic inference tool (Nguyen et al., 2015). In Yan et al., 2023,it is reported that the latter always takes less than 33 seconds to infer 100 gene trees on theirdatasets, whereas StarBEAST2 and MrBayes require up to 2 hours and 37.5 hours, respectively.Other statistical approaches such as PHYLDOG (Boussau et al., 2013) can accurately performjoint reconstruction of gene and species trees, but suffer from the same scalability issues. Thisprevents these accurate tools from scaling up to run on larger datasets and, for that reason, arerarely used in phylogenomics studies wheremany gene trees are involved. Instead, fast but possi-bly less accurate methods such as ML phylogenetic inference tools, which do not account eitherfor HGT or ILS, are much more popular in practice. This motivates the need for quick correctionprocedures that can address gene tree estimation errors of ML tools while retaining efficiency.However, Yan et al., 2023 recently made a case against gene tree correction in the presenceof ILS. One of the main arguments against current methods for correction is that ILS results ingene and species tree discordance, and thus that correcting the gene tree without accountingfor ILS will make it resemble the species tree and inevitably produce errors. To support this, theyperform simulations to compare TreeFix and TRACTION against the uncorrected predictionsfrom IQ-TREE, and their results demonstrate that the two correction approaches often increasegene tree estimation error.
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First, we note here that the tool ecceTERA was not evaluated in Yan et al.’s study, despiteshowing very good performances for non-ILS data sets (Jacox et al., 2017). Also, TreeFix, unlikeseveral other correction algorithms, had already been shown to over-fit the data (Scornavaccaet al., 2015), so we do not consider it as representative method. Moreover, a single bootstrapsupport threshold of 75% was evaluated, which is arguably high and can lead to heavy modifi-cations of the gene trees. Thus we decided to re-evaluate the dataset from Yan et al., 2023 anddemonstrate that gene tree correction, when applied judiciously, does improve accuracy even inthe presence of ILS.
Results

We first summarize the previous work and proceed with the results of our re-analysis.
Previous simulations, runs and findings

In Yan et al., 2023, a species tree S with 11 taxa (including one outgroup) was simulated us-ing TreeSim (Stadler, 2011). The branch lengths were rescaled to make the root of the ingroupof height of 2, 5, and 10 in coalescent units, respectively, corresponding to high, medium, andlow ILS rates (shorter branches are more subject to ILS). Then, coalescent simulations were per-formed along S to generate datasets composed of 100 gene trees (each with 10 replicates anda single individual per species, with no duplications nor losses). Seq-Gen (Rambaut and Grass,1997) was used on each gene tree to simulate amultiple sequence alignment. The authors testedtwo mutation rates θ ∈ {0.001, 0.01} and three possible number of sites in {200, 800, 2000}. IQ-TREE was used to reconstruct the gene trees with 100 bootstrap replicates. This produced 120datasets of 100 gene trees, and each gene tree was corrected with TreeFix and TRACTION. Forthe latter, branches with bootstrap support below 75% were contracted. As a measure of genetree estimation error, the uncorrected and corrected gene trees were compared to the true sim-ulated tree using the unrooted Robinson-Foulds distance.To summarize the findings of Yan et al., 2023 on these datasets, TreeFix generally improvesaccuracy on short sequences of length 200, has mixed results on sequences of length 800, andhas decreased accuracy on longer sequences of length 2000, especially on higher mutation rates
θ = 0.01. As for TRACTION, in most cases its accuracy is close but slightly worse than theuncorrected gene trees, with a more pronounced decrease under high levels of ILS. See Yan etal., 2023, Figure 2 for detailed results.
Our runs and findings

For rehabilitating the benefits of gene tree correction, we choose to rerun tests using ec-ceTERA, a program that implements a fast parsimony reconciliation algorithm accounting forgene duplication, gene loss and HGTs (Jacox et al., 2016). Here, we reconstruct gene trees us-ing IQ-TREE and use the correction feature of ecceTERA, in which branches with a bootstrapsupport lower than the given threshold are collapsed by ecceTERA, and rearranged by finding arefinement with a minimum duplication and loss cost, or duplication, loss and transfer cost (weused the ecceTERA default costs for each event).We corrected gene trees under two different settings: the first considers only duplicationsand losses as the macro-evolutionary events influencing gene histories, while the second addi-tionally incorporates gene transfer events. All other ecceTERA parameters are set to their defaultvalues. For both settings, we run ecceTERA with three different support thresholds: 50, 70 and90 (in the Appendix, we also include an analysis with thresholds between 10 and 40, but theydo not give better accuracy, see Figures A1, A2).We then computed the normalized unrooted Robinson-Foulds distance between the simu-lated gene trees and the ones reconstructed with IQ-TREE, and between the simulated genetrees and the IQ-TREE trees corrected by ecceTERA. Figure 1 shows the result when correctingusing duplications and losses, while Figure 2 also considers HGTs.Looking at Figure 1, the initial observation to highlight is that implementing corrections gen-erally proves beneficial across all parameters examined. The box plots using threshold 50 exhibit
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a lower or equal estimation error box than the uncorrected version, being strictly better in mostcases. This becomes particularly noticeable for the combination of a mutation rate of 0.001 and200 sites, where reconstruction errors tend to occur more frequently and where correction hasmore impact.
IQ-TREE vs ecceTERA with duplications and losses
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Figure 1 – Gene tree error estimation (via the normalized unrooted Robinson-Fouldsdistance) of IQ-TREE and ecceTERA under thresholds 50, 70, and 90, under theDLmodel.Black circles represent mean distances.
Additionally, using a threshold of 50 generally appears to be more beneficial than the higherthresholds, with exceptions occurring with 200 sites and low/medium ILS, and 800 sites andlow ILS. Moreover, while the advantages of correction are more pronounced when ILS is low,the benefits of correction are also noticeable under high ILS, contrasting with the hypothesisproposed in Yan et al., 2023 that correction frequently increases errors.In Figure 2, we can see that correcting taking into account gene transfer is still beneficialcompared to the IQ-TREE reconstructions, even if less pronouncedly. In almost all cases, the
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IQ-TREE vs ecceTERA with duplications, losses and HGTs
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Figure 2 – Gene tree error estimation (via the normalized unrooted Robinson-Foulds dis-tance) of IQ-TREE and ecceTERA under thresholds 50, 70, and 90 under the DTL model.
mean error is slightly higher than in Figure 1 (see for example with 200 sites and medium ILS,the median is higher for threshold 90 on mutation rate 0.001, and on mutation rate 0.01 the boxis extended upwards). Nonetheless, the error on threshold 50 corrections is very similar to theduplication and loss corrections, and still generally better than the uncorrected trees. For thosecases, additionally considering gene transfer as possible macro-evolutionary events seems toadd too much liberty to the correction of gene topologies, leading to overfitting.

Discussion
The results shown in the previous section contrast with the findings of Yan et al. We believethat this is due to several key factors.First, while it is true that branches of gene trees discordant with the species tree may re-sult from ILS and should not always be corrected, such regions are often well-supported by
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bootstrap analyses. A conservative threshold thus preserves these branches. On the other hand,poorly supported branches may reflect reconstruction errors which methods such as ecceTERAare specifically designed to correct. The analysis in Yan et al., 2023 was limited to a supportthreshold of 75%, which probably explains how this was overlooked. Our results, including thedata on lower thresholds shown in the Appendix, suggest that a bootstrap of 50% is safe asit does not make the trees worse, while offering good error reduction potential. The thresholdechoes earlier studies (Holder et al., 2008, among others), which advocated using the majority-rule criterion in phylogenetics. Second, the methods chosen by the authors may not be the mostappropriate for gene tree correction. TRACTION optimizes the Robinson-Foulds distance, whichis not directly related to evolutionary events that affect genes (although it may build accuratespecies trees from gene trees). TreeFix, while more sophisticated, explores a vast tree spaceand may overfit gene trees to the species tree, as shown in Scornavacca et al., 2015. In contrast,methods such as ecceTERA address both concerns by explicitly modeling duplications and lossesand only modifying poorly supported regions.Let us also note here that the dataset that we re-analyzed contains gene trees that evolveexclusively under ILS, without duplications, HGTs, or losses. While this is sufficient for our goalshere, that is, to rehabilitate correction methods when ILS is present, future experiments shouldfocus on gene trees that also include these events in addition to ILS. In this case, the gene treesare probably much more difficult to reconstruct using sequence-based methods, and we ex-pect correction methods to provide even more meaningful improvements. Future experimentsshould also question the impact of ILS on gene and species tree co-estimation methods such asAleRax (Morel et al., 2024).While we agree that caution is required when correcting gene trees in the presence of ILS,our results show that applying correction methods appropriately has clear benefits. Rather thandiscarding these approaches, they should be used with care to improve the reliability of phyloge-nomic inferences, even when ILS is present in the data.
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Appendix
Below we include the results for all considered bootstrap thresholds.

IQ-TREE vs ecceTERA with duplications and losses

0.0

0.2

0.4

0.6

0.8

1.0

RF
 d

ist
an

ce

Low ILS Medium ILS High ILS Low ILS Medium ILS High ILS
Mutation rate 0.001 Mutation rate 0.01

IQ-TREE
ecceTERA-10
ecceTERA-20
ecceTERA-30

ecceTERA-40
ecceTERA-50
ecceTERA-70
ecceTERA-90 200 sites

0.0

0.2

0.4

0.6

0.8

1.0

RF
 d

ist
an

ce

Low ILS Medium ILS High ILS Low ILS Medium ILS High ILS
Mutation rate 0.001 Mutation rate 0.01

800 sites

0.0

0.2

0.4

0.6

0.8

1.0

RF
 d

ist
an

ce

Low ILS Medium ILS High ILS Low ILS Medium ILS High ILS
Mutation rate 0.001 Mutation rate 0.01

2000 sites

Figure A1 – Box-plot of normalized unrooted RF distances for each threshold under theDL model.
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IQ-TREE vs ecceTERA with duplications, losses and HGTs
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Figure A2 – Box-plot of normalized unrooted RF distances for each threshold under theDTL model.
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