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Abstract

Gene trees play an important role in various areas of phylogenomics. However, their re-
construction often relies on limited-length sequences and may not account for complex
evolutionary events, such as gene duplications, losses, orincomplete lineage sorting (ILS),
which are not modeled by standard phylogenetic methods. To address these challenges,
it is common to first infer gene trees using fast algorithms for conventional models, then
refine them through species tree-aware correction methods. Recently, it has been ar-
gued that such corrections can lead to overfitting and force gene trees to resemble the
species tree, thereby obscuring genuine gene-level variation caused by ILS. In this pa-
per, we challenge and refute this hypothesis, and we demonstrate that, when applied
carefully, correction methods can offer significant benefits, even in the presence of ILS.
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Introduction

Gene trees are fundamental components in several downstream phylogenomics analyses.
Deciphering the evolutionary histories of gene families provides insights into how genes diversify
and adapt, and has applications ranging from the prediction of genes with similar functions, to
enhancing our understanding of the processes of gain and loss and of the mechanisms that
can lead to the expansion of gene families. Naturally, the accuracy of such biological inferences
depends heavily on the accuracy of the gene trees themselves.

This contrasts with the fact that gene trees are difficult to infer with precision. Gene se-
guences are typically of limited length and thus convey only limited evolutionary signals (Simion
etal., 2020; Xu et al., 2006). Furthermore, genes undergo evolutionary events that are not incor-
porated into typical phylogenetic reconstruction models. In particular, gene duplication events
followed by divergent evolutionary fates can lead to heterogeneous mutation rates across the
tree, with gene losses complicating the picture (Gout et al., 2023; Kalhor et al., 2024; Ohno,
2013).

These challenges can be overcome by first reconstructing gene trees using standard models,
then correcting them while accounting for such events. A common strategy is to collapse low-
support branches of a gene tree and resolve the resulting polytomies using information from
the species tree. For instance, the tool TRACTION finds a refinement of the gene tree with mini-
mum Robinson-Foulds distance to the species tree (Christensen et al., 2020), whereas ecceTERA
and profileNJ find the refinement with a minimum duplication and loss cost (Jacox et al., 2016;
Noutahi et al., 2016) (see also Zheng et al., 2013; Zheng and Zhang, 2017). TreeFix uses a differ-
ent approach and explores the space of trees around the input one, to find one with a smaller
duplication and loss cost but a comparable likelihood (Wu et al., 2013). Such correction meth-
ods were shown useful in joint inference of gene trees and species trees (Boussau et al., 2013),
detecting whole genome duplications (Dondi et al., 2019), or predicting orthology and paralogy
relationships (Lafond et al., 2013), for example.

These correction algorithms only consider duplications, losses, and horizontal gene trans-
fers (HGT, which exchange genes between co-existing species) even though incomplete lineage
sorting (ILS) is also known to hinder the reconstruction process. Under ILS, alleles may persist
through speciation events, producing gene trees that diverge from the species tree even in the ab-
sence of duplications or losses (Degnan and Rosenberg, 2009; Meng and Kubatko, 2009; Zhang,
2011). While there are methods that take ILS into account (Maddison and Knowles, 2006; Ogilvie
etal.,, 2017), they are often computationally intensive and impractical at the genome scale, where
thousands of gene families are analyzed. For instance, StarBEAST2 (Ogilvie et al., 2017), Mr-
Bayes (Ronquist et al., 2012), and BPP (Flouri et al., 2018) are Bayesian approaches that were
shown to be very accurate in the presence of ILS, but are quite slow compared to IQ-TREE, a
maximum likelihood (ML) phylogenetic inference tool (Nguyen et al., 2015). In Yan et al., 2023,
it is reported that the latter always takes less than 33 seconds to infer 100 gene trees on their
datasets, whereas StarBEAST2 and MrBayes require up to 2 hours and 37.5 hours, respectively.
Other statistical approaches such as PHYLDOG (Boussau et al., 2013) can accurately perform
joint reconstruction of gene and species trees, but suffer from the same scalability issues. This
prevents these accurate tools from scaling up to run on larger datasets and, for that reason, are
rarely used in phylogenomics studies where many gene trees are involved. Instead, fast but possi-
bly less accurate methods such as ML phylogenetic inference tools, which do not account either
for HGT or ILS, are much more popular in practice. This motivates the need for quick correction
procedures that can address gene tree estimation errors of ML tools while retaining efficiency.

However, Yan et al., 2023 recently made a case against gene tree correction in the presence
of ILS. One of the main arguments against current methods for correction is that ILS results in
gene and species tree discordance, and thus that correcting the gene tree without accounting
for ILS will make it resemble the species tree and inevitably produce errors. To support this, they
perform simulations to compare TreeFix and TRACTION against the uncorrected predictions
from IQ-TREE, and their results demonstrate that the two correction approaches often increase
gene tree estimation error.
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First, we note here that the tool ecceTERA was not evaluated in Yan et als study, despite
showing very good performances for non-ILS data sets (Jacox et al., 2017). Also, TreeFix, unlike
several other correction algorithms, had already been shown to over-fit the data (Scornavacca
et al., 2015), so we do not consider it as representative method. Moreover, a single bootstrap
support threshold of 75% was evaluated, which is arguably high and can lead to heavy modifi-
cations of the gene trees. Thus we decided to re-evaluate the dataset from Yan et al., 2023 and
demonstrate that gene tree correction, when applied judiciously, does improve accuracy even in
the presence of ILS.

Results

We first summarize the previous work and proceed with the results of our re-analysis.

Previous simulations, runs and findings

In Yan et al., 2023, a species tree S with 11 taxa (including one outgroup) was simulated us-
ing TreeSim (Stadler, 2011). The branch lengths were rescaled to make the root of the ingroup
of height of 2, 5, and 10 in coalescent units, respectively, corresponding to high, medium, and
low ILS rates (shorter branches are more subject to ILS). Then, coalescent simulations were per-
formed along S to generate datasets composed of 100 gene trees (each with 10 replicates and
a single individual per species, with no duplications nor losses). Seq-Gen (Rambaut and Grass,
1997) was used on each gene tree to simulate a multiple sequence alignment. The authors tested
two mutation rates 6 € {0.001, 0.01} and three possible number of sites in {200, 800, 2000}. 1Q-
TREE was used to reconstruct the gene trees with 100 bootstrap replicates. This produced 120
datasets of 100 gene trees, and each gene tree was corrected with TreeFix and TRACTION. For
the latter, branches with bootstrap support below 75% were contracted. As a measure of gene
tree estimation error, the uncorrected and corrected gene trees were compared to the true sim-
ulated tree using the unrooted Robinson-Foulds distance.

To summarize the findings of Yan et al., 2023 on these datasets, TreeFix generally improves
accuracy on short sequences of length 200, has mixed results on sequences of length 800, and
has decreased accuracy on longer sequences of length 2000, especially on higher mutation rates
@ = 0.01. As for TRACTION, in most cases its accuracy is close but slightly worse than the
uncorrected gene trees, with a more pronounced decrease under high levels of ILS. See Yan et
al., 2023, Figure 2 for detailed results.

Our runs and findings

For rehabilitating the benefits of gene tree correction, we choose to rerun tests using ec-
ceTERA, a program that implements a fast parsimony reconciliation algorithm accounting for
gene duplication, gene loss and HGTs (Jacox et al., 2016). Here, we reconstruct gene trees us-
ing IQ-TREE and use the correction feature of ecceTERA, in which branches with a bootstrap
support lower than the given threshold are collapsed by ecceTERA, and rearranged by finding a
refinement with a minimum duplication and loss cost, or duplication, loss and transfer cost (we
used the ecceTERA default costs for each event).

We corrected gene trees under two different settings: the first considers only duplications
and losses as the macro-evolutionary events influencing gene histories, while the second addi-
tionally incorporates gene transfer events. All other ecceTERA parameters are set to their default
values. For both settings, we run ecceTERA with three different support thresholds: 50, 70 and
90 (in the Appendix, we also include an analysis with thresholds between 10 and 40, but they
do not give better accuracy, see Figures A1, A2).

We then computed the normalized unrooted Robinson-Foulds distance between the simu-
lated gene trees and the ones reconstructed with IQ-TREE, and between the simulated gene
trees and the IQ-TREE trees corrected by ecceTERA. Figure 1 shows the result when correcting
using duplications and losses, while Figure 2 also considers HGTs.

Looking at Figure 1, the initial observation to highlight is that implementing corrections gen-
erally proves beneficial across all parameters examined. The box plots using threshold 50 exhibit
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a lower or equal estimation error box than the uncorrected version, being strictly better in most
cases. This becomes particularly noticeable for the combination of a mutation rate of 0.001 and
200 sites, where reconstruction errors tend to occur more frequently and where correction has
more impact.

IQ-TREE vs ecceTERA with duplications and losses
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Figure 1 - Gene tree error estimation (via the normalized unrooted Robinson-Foulds
distance) of IQ-TREE and ecceTERA under thresholds 50, 70, and 90, under the DL model.
Black circles represent mean distances.

Additionally, using a threshold of 50 generally appears to be more beneficial than the higher
thresholds, with exceptions occurring with 200 sites and low/medium ILS, and 800 sites and
low ILS. Moreover, while the advantages of correction are more pronounced when ILS is low,
the benefits of correction are also noticeable under high ILS, contrasting with the hypothesis
proposed in Yan et al., 2023 that correction frequently increases errors.

In Figure 2, we can see that correcting taking into account gene transfer is still beneficial
compared to the IQ-TREE reconstructions, even if less pronouncedly. In almost all cases, the
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IQ-TREE vs ecceTERA with duplications, losses and HGTs
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Figure 2 - Gene tree error estimation (via the normalized unrooted Robinson-Foulds dis-
tance) of IQ-TREE and ecceTERA under thresholds 50, 70, and 90 under the DTL model.

mean error is slightly higher than in Figure 1 (see for example with 200 sites and medium ILS,
the median is higher for threshold 90 on mutation rate 0.001, and on mutation rate 0.01 the box
is extended upwards). Nonetheless, the error on threshold 50 corrections is very similar to the
duplication and loss corrections, and still generally better than the uncorrected trees. For those
cases, additionally considering gene transfer as possible macro-evolutionary events seems to
add too much liberty to the correction of gene topologies, leading to overfitting.

Discussion

The results shown in the previous section contrast with the findings of Yan et al. We believe
that this is due to several key factors.

First, while it is true that branches of gene trees discordant with the species tree may re-
sult from ILS and should not always be corrected, such regions are often well-supported by

Peer Community Journal, Vol. 6 (2026), article e7

https://doi.org/10.24072/pcjournal 674


https://doi.org/10.24072/pcjournal.674

6 Manuel Lafond & Celine Scornavacca

bootstrap analyses. A conservative threshold thus preserves these branches. On the other hand,
poorly supported branches may reflect reconstruction errors which methods such as ecceTERA
are specifically designed to correct. The analysis in Yan et al., 2023 was limited to a support
threshold of 75%, which probably explains how this was overlooked. Our results, including the
data on lower thresholds shown in the Appendix, suggest that a bootstrap of 50% is safe as
it does not make the trees worse, while offering good error reduction potential. The threshold
echoes earlier studies (Holder et al., 2008, among others), which advocated using the majority-
rule criterion in phylogenetics. Second, the methods chosen by the authors may not be the most
appropriate for gene tree correction. TRACTION optimizes the Robinson-Foulds distance, which
is not directly related to evolutionary events that affect genes (although it may build accurate
species trees from gene trees). TreeFix, while more sophisticated, explores a vast tree space
and may overfit gene trees to the species tree, as shown in Scornavacca et al., 2015. In contrast,
methods such as ecceTERA address both concerns by explicitly modeling duplications and losses
and only modifying poorly supported regions.

Let us also note here that the dataset that we re-analyzed contains gene trees that evolve
exclusively under ILS, without duplications, HGTs, or losses. While this is sufficient for our goals
here, that is, to rehabilitate correction methods when ILS is present, future experiments should
focus on gene trees that also include these events in addition to ILS. In this case, the gene trees
are probably much more difficult to reconstruct using sequence-based methods, and we ex-
pect correction methods to provide even more meaningful improvements. Future experiments
should also question the impact of ILS on gene and species tree co-estimation methods such as
AleRax (Morel et al., 2024).

While we agree that caution is required when correcting gene trees in the presence of ILS,
our results show that applying correction methods appropriately has clear benefits. Rather than
discarding these approaches, they should be used with care to improve the reliability of phyloge-
nomic inferences, even when ILS is present in the data.
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Appendix

Below we include the results for all considered bootstrap thresholds.

IQ-TREE vs ecceTERA with duplications and losses
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Figure A1 - Box-plot of normalized unrooted RF distances for each threshold under the
DL model.
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IQ-TREE vs ecceTERA with duplications, losses and HGTs

1
1.01 ! B |Q-TREE ecceTERA40
| - _OC ecceTERA-10 W ecceTERA-50
0.8 A | HEE ecceTERA-20 ecceTERA-70
v i ecceTERA-30 WM ecceTERA-90
1
S 0.6 - JoCCm N
S ! 1S3
w 1 u,
E 0.4 - i i:i=|. §
o |
o) i
0.2 :
1
|
0.0 000000 | 1
Medium ILS High ILS Low ILS Medium ILS High ILS
Mutation rate 0.001 Mutation rate 0.01
1.0 i o)
1
! 00
0.8 1 i
! 00000000
9 i
© 46 | 00000770 ®
8 ! ©
1o 1 v,
o 1 —+
2 0.4 | th
o« |
i
0.2 :
1
1
1
0.0 ooiillo |
Low ILS Medium ILS High ILS Low ILS Medium ILS High ILS
Mutation rate 0.001 Mutation rate 0.01
1.0 - i
i
00000000 H 0000 000 (o]
0.8 1 i
! o O
o] | N
£ 06 - | 00000 © S
1
i ! 0000000 ©
S 0.4 1 Z
é . i 0000000 o
1
0.2 1 |
1
!
0.0 1 !

Low ILS

Medium ILS
Mutation rate 0.001

High ILS

Low ILS

Medium ILS High ILS
Mutation rate 0.01

Figure A2 - Box-plot of normalized unrooted RF distances for each threshold under the

DTL model.
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