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Abstract
There are many open-source tools available for the processing of neuronal data acquiredusing Neuropixels probes. Each of these tools, focuses on a part of the process from rawdata to single neuron activity. For example, SpikeInterface is an incredibly useful Pythonmodule for pre-processing and spike sorting of individual recordings. However, thereare more steps in between raw data and spikes, such as synchronization of spike timesbetween probes and histological reconstruction of probe insertions. Therefore, we devel-oped Power Pixels, combining the functionality of several packages into one integratedpipeline, which may be run in any lab workflow. It includes pre-processing, spike sorting,neuron-level quality control metrics, synchronization betweenmultiple probes, compres-sion of raw data, and ephys-to-histology alignment. Integrating all these steps into onepipeline greatly simplifies Neuropixels data processing, especially for novel users whomight struggle to find their way around all the available code and tools.
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Introduction
The processing of electrophysiological recordings, from raw data to spike-sorted neurons in de-
fined brain regions, is a very labor-intensive task for many researchers. This in particular with
the advent of high-density silicon probe, such as Neuropixels (Jun et al., 2017). Large collabora-
tions, like the International Brain Laboratory (IBL), have developed fully integrated end-to-end
pipelines, this takes the workload away from the researchers and allows them to spend more
time doing experiments, analysis and writing. These pipelines, however, are embedded in the
database architecture used by the collaboration and do not run out-of-the-box on recordings
made by external researchers. (International Brain Laboratory et al., 2022). Even when the code
base is open-source, it’s challenging for external researchers to apply the code to their data be-
cause the code is written for large-scale deployment instead of running a single local recording
session. Furthermore, collaborationsmight have access to advanced equipmentwhich is typically
not available to individual labs.

Advances are made to streamline and standardize processing and spike sorting of electro-
physiological recordings, most notably by SpikeInterface (Buccino et al., 2020). SpikeInterface is
a powerful tool which is aimed at the first stages of processing: preprocessing, spike sorting, and
curation of the spike sorting output. To get a full end-to-end pipeline, however, several additional
steps are required, namely: synchronization betweenmultiple probes, histological reconstruction
of probe tracts, and alignment of histology to electrophysiological markers. We present here
the Power Pixels pipeline, covering all these steps and additionally calculates several different
neuron-level Quality Control (QC) metrics which can help, or even completely replace, manual
curation of spike sorting output. In short, the Power Pixels pipeline combines SpikeInterface, the
IBL pipeline, and probe tracing software into one end-to-end pipeline from raw recorded data
to spike sorted neurons in defined anatomical regions in the brain.
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Figure 1 – Process diagram of the pipeline. The inputs are the raw recording and the per-fused brain and the outputs are single neurons and LFP power, in defined brain regions.
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Methods
The Power Pixels pipeline combines processing steps from SpikeInterface, elements from the IBL
pipeline, and a standaloneMATLABpackage into one end-to-end pipeline (Figure 1). The pipeline
takes raw data electrophysiological time series as input and generates curated spike-sorted neu-
rons, along with the anatomical location of the recorded neurons as output. The backbone of
the pipeline is the powerpixels Python class that contains several functions related to the differ-
ent steps of the pipeline. To establish in which brain region each recording channel ended up,
histological reconstruction of the probe tracts is done using the MATLAB package AP_Histology
or Universal Probe Finder (Montijn and Heimel, 2022). Finally, the electrophysiological signa-
tures along the probe are aligned with the inferred brain regions from the probe tract using the
Ephys-Histology Alignment GUI developed by the IBL.
Supported data formats and hardware
The pipeline supports recordings done with Neuropixels 1.0 and 2.0 using SpikeGLX or OpenE-
phys on a National Instruments acquisition system. Accepted raw data formats are therefore
.bin and .dat files, from SpikeGLX and OpenEphys respectively. Also the compressed raw data
formats .cbin and .zarr are accepted, these are decompressed before the pipeline is run because
some steps require uncompressed raw binary data (e.g. Bombcell). Other Neuropixels probes,
like the 1.0 NHP, 2.0 Quad Base, or Ultra, will most likely be accepted by the pipeline but
have not been tested. Non-Neuropixel probes, like the SiNAPS from NeuroNexus (Angotzi et
al., 2019), are less likely to work out-of-the-box. The same goes for other acquisition devices,
like the OneBox, they have not been tested but might work with some manual tweaking.
Preprocessing
Long-shanked, high-density silicon probes, such as Neuropixels, pose specific challenges for data
preprocessing and the achievement of high-quality spike sorting. The Power Pixel pipeline reca-
pitulates the steps in the pipeline used by the International Brain Laboratory (International Brain
Laboratory et al., 2022). The backbone for this is the SpikeInterface implementation of the pre-
processing steps, these are all done "lazily". This means that the result of each step does not
result in a new raw binary file which is saved on the disk, instead SpikeInterface creates a virtual
processing pipeline of all the steps which is executed and saved to disk only once, just before
spike sorting. This preprocessed raw binary file is subsequently deleted after the spike sorting
is done to save disk space. This means that these preprocessing steps only impact spike sorting
output, the raw data remains unchanged after the pipeline has run.
High-pass filter. Raw data that is recorded in broadband, such as is the case with Neuropixel 2.0
probes, first has to be high-pass filtered. To this end, the first step of the pipeline is to apply a
300Hz high-pass Butterworth filter.
Inter-sample shift correction. On a Neuropixel probe, the active channels are not sampled exactly
simultaneously. Instead, groups of channels are sampled consecutively within each sample ac-
quisition. This results in a shift in the acquisition time between channel groups in the order
of tens of microseconds. These shifts, albeit minuscule, can cause artifacts while applying a
common-average reference (CAR) over the entire probe. Therefore, these shifts are corrected
by the pipeline.
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Figure 2 – Preprocessing steps the pipeline employs before starting spike sorting.

Detect and remove channels. Before performing any common average referencing the channels
that are noisy, or outside of the brain, should be removed, this prevents these signals from con-
taminating the reference signal. First, dead channels and channels outside of the brain are de-
tected and removed. Subsequently, common average referencing is used to denoise the remain-
ing channels, channels that are still noisy after CAR are detected and interpolated over neigh-
boring channels (Figure 2, step 1). The method by which bad channels are detected is described
in detail in International Brain Laboratory et al., 2022.
Artifact removal. Electrical artifacts can have many different sources, but they share one feature:
their signal is the same over nearby channels. Electrical artifacts which are identical across all
channels of the probe can be filtered out using common average referencing. Neuropixel probes,
however, are so long that electrical artifacts can have slightly different amplitudes at the tip ver-
sus at the base of the probe. Therefore, performing a common average reference, whereby the
median of all channels is subtracted from each channel, can be insufficient to filter out electri-
cal noise (Figure 2, step 2 Common reference). Therefore, the user has the option to employ a
spatial filtering method developed by the IBL called destriping. This method takes into account
that artifacts can vary smoothly over the length of the probe. Besides destriping, a third option
is to apply a local reference whereby the median of channels in close vicinity of each channel are
subtracted from it. Local channels are selected by drawing an annulus around each channel with
an inner diameter of 50 µm and an outer diameter of 200 µm (these values can be changed in
the settings), channels are selected which fall inside the inner and outer diameter of the annulus.
This approach ensures that neighboring channels are not subtracted from each other since they
might contain highly similar signals which could cancel each other out. The user can set which
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artifact removal strategy they wish to employ: common average referencing, destriping, or local
average referencing (default).
High-frequency noise removal. Recordings sometimes have high frequency noise in specific fre-
quency bands. These are automatically detected in the power spectrum of the recording and
removed using notch filters targeted to the peaks in the power spectrum (Figure 2, step 3). A
plot of the power spectrum with the detected peaks is saved in the session folder together with
a plot of the power spectrum after the notch filters have been applied. Peak detection is done
with scipy’s find_peaks, the threshold value of the peak detection can be set by the user if they
are not happy with the default threshold.
Spike sorting
The pipeline is developed using Kilosort (Pachitariu et al., 2024, 2016), other spike sorters will
probablywork aswell but have not been tested. Fileswith the recommended parameters for Kilo-
sort 2.5, 3, & 4, and pykilosort are included in the pipeline repository but can be changed if nec-
essary. Spike sorting is run by SpikeInterface which allows seamless integration in the pipeline,
MATLAB-based sorters (such as Kilosort 2.5 and 3) are deployed in a Docker container, alterna-
tively the user can install Python-based Kilosort 4 locally.
Neuron-level QC metrics
Modern spike sorters, like Kilosort, tend to be overzealouswhen detecting units. Only a subset of
the detected units are well isolated single units, with the majority of detected units being multi-
unit activity or noise. Therefore, after spike sorting has detected putative single units, quality
metrics are calculated for these units. These metrics give an indication of how clean the unit
is, for example, by computing the number of inter-spike interval violations. On the other hand,
metrics can also be used to characterize units, for example by looking at the spike width to
classify units as putative narrow-spiking interneurons.
Manual and automatic curation of spike sorting output
Tomake a final decision onwhich units constitute single neurons, most electrophysiologists man-
ually curate their data. This entails visual inspection of the waveforms, interspike interval distri-
bution, spike amplitudes, etc. Power Pixels computes many of these quality metrics to provide
the user with as much information as possible upon which to make this decision. The curation
GUI of SpikeInterface is used to this purpose. Besides manual curation, however, there are now
more and more algorithms which aim to automate this process. The pipeline runs three of these
algorithms. The predictions of these algorithms are compiled, together with the indication from
Kilosort, and added to the SpikeInterface manual curation GUI (Figure 3). In the manual curation
GUI the user can use all the metrics computed by the pipeline together with the predictions of
the three automated curation algorithms to make their decision regarding which units constitute
well isolated single neurons. In the GUI this can be indicated with a drop-downmenu per neuron,
allowing the user to specify each unit as single neuron, MUA, or noise. These choices are saved
to disk and the load_neural_data helper function has an option to only load in neurons that are
deemed single neurons by the user. Alternatively, one can use the predictions of one of these
automatic curation algorithms and skip the manual curation step altogether.
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Figure 3 – The manual curation GUI of SpikeInterface (developed by Samuel Garcia) withadded predictions of which units are well isolated single units from several algorithms(outlined in red).

Bombcell. A toolbox which classifies units as good, multi-unit activity, noise, or non-somatic
based on a variety of spiking features (Fabre et al., 2023). In short, Bombcell goes through a series
of decision steps sequentially to determine unit identity (Figure 4). First, some basic waveform
features are checked to ensure the waveform of the unit matches what is to be expected of a
real neuron, if it fails one of these checks the unit is classified as noise. Secondly, a check is done
to see if the neuron has a large postitive peak which is indicative of an axonal or dendritic spike
instead of a spike originating from a soma. Lastly, the remaining units are classified as single
neurons or MUA depending on, for example, refractory period violations. All the metrics listed
in Figure 4 are exposed to the user in the bombcell_params.json file which is generated by the
pipeline, and can be set according to the needs of the user. The output of the classification needs
to be in integers to be ingested by the manual curation GUI, the following mapping is used: 0 =
noise, 1 = good single neuron, 2 = multi-unit activity, 3 = non-somatic (i.e. axonal).
UnitRefine. This is a Random Forest classifier trained on recording sessions which were manually
annotated by two expert humans (Jain et al., 2025). The training data consisted of 11 recordings
from visual cortex, suprior colliculus, and motor cortex of the mouse performed with Neuropixel
1.0 probes. The classifier has been pretrained to identify which combination of features are
the best predictors of whether a unit is a single neuron. Because this is a pretrained machine
learning classifier, it does not have any tunable parameters. The upside of this is that the user
does not have to manually tune the parameters to fit their needs, the UnitRefine publication
claims that it achieves human-level performance without the need for manual parameter tuning.
The downside is that there is no control over the output of the classification which might be an
issue for users which value this.
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Figure 4 – Flowchart depicting when neurons are classified as noise, non-somatic, MUA,or good by Bombcell. From Fabre et al., 2023

Classification can be performed in two ways: (1) a specialized classifier first classifies noise
from neural units, subsequently only the neural units are divided into single units and multi-unit
activity by a different classifier, and (2) only the single unit classifier is used on all the units. The
default behavior of the pipeline is to apply the latter case in which only single units are classified
from the rest, this is because two-stage (or cascaded) classification suffers from compounding
errors; the misses and false alarms of the first classification step are propagated to the second
classification step resulting in a higher error rate at the end. However, if the user is specifically
interested in multi-unit activity, the noise classification can be turned on in the settings. In both
cases the output of the classifier is as follows: 0 = noise (if applicable), 1 = single unit, 2 = multi-
unit activity / noise.

As mentioned above, the single unit classifier is trained on data from mice. There are, how-
ever, pretrained classifiers available which are trained on neural data from rats, naked mole rats,
monkeys, and humans. The user can decide to switch from the default classifier (trained on mice
data) to any of the other classifiers by changing the used model in the UnitRefine parameters to
any of the other available ones (see here).
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Parameter Description Default
acceptable_contamination Acceptable level of refractory period contamination 10%
RPmax_confidence Confidence in contamination level 90%
noise_cutoff
quantile_length Ratio of highest bins defined as the peak 0.25
n_bins Number of bins in the amplitude distribution 100
ns_threshold Max. number of stds the lowest bin vs the peak 5
percent_threshold Max. height of the lowest bin vs the peak 10%
med_amp_thresh_uv Minimum median spike amplitude 50µV

Table 1 – Parameters of the IBL neuron-level QC metrics

IBLmetrics. Neuron-level QCmetrics developed by the IBLwhich evaluate units on three criteria:
refractory period violations, amplitude distribution cut-off, and spike amplitude (International
Brain Laboratory et al., 2022).

Refractory period violations are typically defined as spikes which occur within a fixed time
period, often 2 ms, after another spike. However, refractory period lenghts are known to vary
with neuron type and brain region. To overcome this, a range of possible refractory period lenghts
(0.5-10 ms, 0.25 ms bins) is used for which the maximum number of acceptable violations is
calculated given a chosen contamination level (default is 10%). The confidence that a neuron is
less than 10% contaminated must be over 90%, given Poisson spiking, to pass this criterion.

The amplitude distribution cut-off criterion looks for cases in which the distribution of spike
amplitudes is "cut off" at the tail, indicating the neuron has spikes that are missed because their
amplitudes did not reach the threshold for detection. To this end, the amplitudes in the lowest
bin of the amplitude distribution are compared to the amplitudes of the highest bins. To pass this
criterion, the lowest amplitudesmust be 5 standard deviations lower than the highest amplitudes.
Furthermore, the lowest bin must be less than 10% of the highest bin of the distribution.

The median spike amplitudes must be larger than 50 µV to pass this criterion. All the param-
eters are tunable by the user in the ibl_qc_params.json file and are summarized in Table 1. If a
unit passes all three criteria it gets a score of 1, if it passes two out of three criteria a score of
2/3, one of the three 1/3 and if it passes none of these it gets a score of 0.
Parameter tuning. The two rule-based automatic curation approaches (Bombcell and IBL) have a
large number of tunable parameters, as described above. The default parameters are chosen by
the respective developers to fit the majority of use cases. However, the default parameters most
likely reflect the predominant use case of Neuropixel recordings: recordings in the forebrains of
mice. If the user performs recordings in a different species, or a brain region with atypical neural
activity, these default parameters might fail. In this case the best course of action is to manually
annotate several recordings and run the curation algorithms with different parameters until a
good fit between the automatic classification and the manual classifcation is observed. This is
also a good approach to determine which of the three automatic curation methods works best
on your data. To facilitate reproducibility, the user is encouraged to publish the parameters of
the automatic curation method they use in their manuscript.
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Raw electrophysiology metrics
Besides spiking activity, other information can be extracted from the raw electrophysiological
traces of each channel. From the low-frequency component of the raw voltage trace, the local
field potential (LFP), the power in different frequency bands is computed using spectral decom-
position. Furthermore, the root-mean square (RMS) of the high-frequency component is com-
puted.
Histology
Another important part of the Power Pixels pipeline is to determine which brain region each
recording channel is sampled from. To this end, the experimenter should label their probes with a
fluorescent dye (typically Di-I [V22888, ThermoFisher Scientific]) before insertion into the brain.
After multiple recording penetrations are carried out, the experimenter will typically perfuse
the animal, extract the brain, slice the brain, mount the brain slices on slides, and image these
slides with a fluorescence microscope. This results in a collection of coronal slices in which the
fluorescence tract of the probe is visible. The next step is to map the brain slices to the Allen
Brain atlas and trace the fluorescence tract in these registered slices. The pipeline supports two
MATLAB packages specifically designed to manually align histological slices to the Allen Brain
Atlas and trace probe tracts there: AP_Histology andUniversal Probe Finder (Montijn andHeimel,
2022). After the experimenter has done this, the pipeline includes a conversion functions to
convert the coordinates of the probe trajectories to a format that can be read by the Ephys-
Histology Alignment GUI developed by the IBL.
MATLAB requirement. To our knowledge, there is no Python package available that can align coro-
nal brain slices to the Allen Atlas and trace fluorescent probe track through them. The Python-
based option used by the IBL called lasagna, only works by registering the full 3D brain stack
to the Allen Atlas. This requires whole-brain imaging using a serial-sectioning two-photon scan-
ner or a light sheet fluorescence microscope. Both devices are highly expensive and will not be
available to the typical experimenter. This means that, for this step of the pipeline only, the user
needs a MATLAB licence.
Ephys-Histology alignment
Probe tracts in the brain can be well defined in terms of their insertion vector using the method
described above. However, their precise depth cannot be reliably determined solely on the basis
of the fluorescence tract. This is for several reasons: (1) the fluorescent dye diffuses at the tip
making it hard to determine where the tip exactly was, (2) the experimenter might pull back the
probe slightly before recording to increase recording stability, and (3) the force exerted on the
brain by the probe can result in non-homogeneous compression of the brain tissue. Therefore,
to establish which recording channel was in which brain region, the brain regions along the inser-
tion vector need to be aligned with the electrophysiological markers recorded by the probe. For
example, LFP power is high in the dentate gyrus but low in fiber bundles. Also, cross-correlations
between neurons are expected to be higher within brain regions compared to across. To do this
alignment, the ephys-histology alignment GUI developed by the IBL will be used (documentation
can be found here). The GUI allows the experimenter to move, stretch and squeeze the brain
region until they fit with the recorded electrophysiological markers.
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Figure 5– (A) Example JSONfile describing thewiring of the BNCbreakout box. In this ex-ample the 1s square wave pulse from the PXI chassis is relayed to the first digital channel(P0.0). The next two digital channels are used to record timestamps of licks and cameraframes. The first analog channel is used to record a continuous signal from a breathingsensor. (B) A picture of the BNC breakout box (BNC-2110, National Instruments) whichreceives the synchronization pulse from the PXI chassis as an input in the first digitalchannel (P0.0). Picture credits Open Ephys.
Synchronization
When using multiple Neuropixel probes and / or when using a BNC breakout board (to record
timestamps frombehavioral events), the spike times need to be synchronized between the probes
and with the event times. This is because each probe, and the BNC breakout board, has its own
internal clock. These clocks can show small shifts over time which need to be corrected. To this
end, the Neuropixels PXI basestation generates a 1s square wave. This synchronization signal
is automatically routed to the headstages of all the probes, the (optional) BNC breakout board
should receive the square wave by connecting the SMA connector of the PXI to one of the digital
inputs of the breakout board (Figure 5). Alternatively, one can generate a custom synchroniza-
tion pulse using an Arduino and use that for synchronization. For more details and instructions
see the documentation here and here. The spike times of multiple probes are synchronized to
each other by aligning each probe to the master clock of the PXI basestation. This is done by
linearly interpolating the spike times relative to each toggle of the 1s square wave generated by
the basestation. Since the square wave signal is recorded by all probes, and the BNC breakout
board, it can be used to align all signals. Clock drifts are effectively canceld out by using each
toggle of the square wave as an anchor point from which to perform linear interpolation. All this
is done under the hood and propagated to the spike times in the final data files.
Data output
The output of the pipeline is in (1) ALF data standard files, (2) NWB format (optional), and (3)
native Kilosort files. The ALF data standard is a file naming convention which dictates how files
should be called and organized. The files themselves are regular .npy files which can be easily
loaded in python. For example, the spikes.times.npy file contains an array of all the spike times of
all units and the spikes.clusters.npy is an array of equal length containing all the neuron identities.
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The advantage of this naming convention is that the data can be easily shared using the Open
Neurophysiology Environment (ONE). Furthermore, having the data in this format allows one to
use all the functions from the Brainbox library, which is part of ibllib. These functions include
everything from plotting of peri-stimulus time histograms to decoding. For a detailed explanation
of all the dataset types found in the output folder refer to this table.

Conclusion
The Power Pixels pipeline provides researchers the same integrated experience, while processing
Neuropixel recordings, as thoseworking in large collaborations. It uses SpikeInterface and the IBL
codebase to mimic the tried-and-tested pipeline used by the International Brain Laboratory. This
pipeline is especially useful for researchers who are new to Neuropixel recordings and might not
have extensive insight into which choices to make during the processing of these recordings. Af-
ter initial setup has been done the pipeline runs almost completely automatically through all the
preprocessing steps and the spike sorting. The only preprocessing step which requires manual in-
tervention is determining whether high frequency noise is present in the recording which needs
to be filtered out with targeted notch filters. The biggest manual effort is tracing the probe tracts
through the histological brain slices and subsequently aligning electrophysiological features to
the brain regions determined by histology. To conclude, the Power Pixels pipeline requires min-
imal human intervention to go from raw data to spike sorted single neurons in specified brain
regions.

Code availability
The Power Pixels pipeline code is available here: https://doi.org/10.5281/zenodo.18413069
(Meijer and Battaglia, 2025).
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