
C EN T R E
MER S ENN E

Peer Community Journal is a member of theCentre Mersenne for Open Scientific Publishing
http://www.centre-mersenne.org/

e-ISSN 2804-3871

Peer Community Journal
Section: Neuroscience

RESEARCH ARTICLE
Published2021-12-15

Cite asMichele Nardin, James W.Phillips, William F. Podlaskiand Sander W. Keemink (2021)Nonlinear computations inspiking neural networks throughmultiplicative synapses, PeerCommunity Journal, 1: e68.
Correspondencemichele.nardin@ist.ac.atsander.keemink@donders.ru.nl

Peer-reviewPeer reviewed andrecommended byPCI Neuroscience,
https://doi.org/10.24072/pci.

cneuro.100003

This article is licensedunder the Creative CommonsAttribution 4.0 License.

Nonlinear computations in spikingneural networks throughmultiplicative synapses
Michele Nardin ,1, James W. Phillips ,2,3, WilliamF. Podlaski ,4, and Sander W. Keemink ,5,6
Volume 1 (2021), article e68
https://doi.org/10.24072/pcjournal.69

Abstract
The brain efficiently performs nonlinear computations through its intricate networks ofspiking neurons, but how this is done remains elusive. While nonlinear computationscan be implemented successfully in spiking neural networks, this requires supervisedtraining and the resulting connectivity can be hard to interpret. In contrast, the requiredconnectivity for any computation in the form of a linear dynamical system can be di-rectly derived and understood with the spike coding network (SCN) framework. Thesenetworks also have biologically realistic activity patterns and are highly robust to celldeath. Here we extend the SCN framework to directly implement any polynomial dy-namical system, without the need for training. This results in networks requiring a mix ofsynapse types (fast, slow, and multiplicative), which we term multiplicative spike codingnetworks (mSCNs). Using mSCNs, we demonstrate how to directly derive the requiredconnectivity for several nonlinear dynamical systems. We also show how to carry outhigher-order polynomials with coupled networks that use only pair-wise multiplicativesynapses, and provide expected numbers of connections for each synapse type. Over-all, our work demonstrates a novel method for implementing nonlinear computations inspiking neural networks, while keeping the attractive features of standard SCNs (robust-ness, realistic activity patterns, and interpretable connectivity). Finally, we discuss thebiological plausibility of our approach, and how the high accuracy and robustness of theapproach may be of interest for neuromorphic computing.
1Institute of Science and Technology Austria, Klosterneuburg, Austria, 2Current affiliation: UCL Depart-ment of Science, Technology, Engineering and Public Policy (STEaPP), University College London, London,
UK, 3Independent researcher, 4Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon,
Portugal, 5Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University„6Nijmegen, the Netherlands

http://www.centre-mersenne.org/
mailto:michele.nardin@ist.ac.at
mailto:sander.keemink@donders.ru.nl
https://doi.org/10.24072/pci.cneuro.100003
https://doi.org/10.24072/pci.cneuro.100003
https://orcid.org/0000-0001-8849-6570
https://orcid.org/0000-0003-4917-9964
https://orcid.org/0000-0001-6619-7502
https://orcid.org/0000-0001-5043-6724
https://doi.org/10.24072/pcjournal.69

Contents
1 Introduction . 22 Spike coding networks . 32.1 Linear autoencoder . 32.2 Linear dynamics . 43 Nonlinear dynamics . 43.1 Lorenz attractor . 64 Higher-order polynomials with sequential networks . 74.1 Input transformations . 74.2 Combining networks . 94.3 Example: approximating a double pendulum . 95 On the number of required connections . 106 Discussion. 116.1 Related work . 126.2 Biological implications. 126.3 Computational and neuromorphic applications. 136.4 Conclusion . 14Author Contributions . 14Supplementary material . 147 Methods . 147.1 General derivation of spike coding network . 147.2 The Kronecker product . 157.3 Representation of the multiplication of incoming inputs . 167.4 Implementing dynamical systems in spike coding networks 167.5 Implementing the Lorenz system. 177.6 Learning nonlinear dynamics through basis functions . 177.7 First order approximation of the double pendulum . 187.8 Connectivity density . 197.9 Code details . 20Acknowledgements . 20Conflict of interest disclosure . 20References . 21Supplementary Figures . 24

1. Introduction
A central quest in neuroscience is to understand how the brain’s neural networks are able toperform the computations needed to solve complex tasks. One promising hypothesis is that net-works represent relatively low-dimensional signals (compared to network size) (Cunningham andYu, 2014; Keemink and Machens, 2019), and in this lower-dimensional space implement nonlin-ear dynamical systems through recurrent connectivity (Larry F Abbott et al., 2016; Barak, 2017;Eliasmith, 2005; Mante et al., 2013; Mastrogiuseppe and Ostojic, 2018; Sussillo, 2014). Theresulting networks usually achieve nonlinear computation through a basis-function approach:non-linearities at various levels (neural (Eliasmith, 2005; Jaeger, 2001; Maass et al., 2002; Mas-trogiuseppe and Ostojic, 2018), synaptic (Thalmeier et al., 2016), or dendritic (Larry F Abbottet al., 2016; Alemi et al., 2018; Thalmeier et al., 2016)) are weighted to achieve a given computa-tion through supervised training. The task of achieving nonlinear computation is then off-loadedto the basis-functions and the training method, and as a result the link between network connec-tivity and computation may be unclear. Additionally (unlike real biological systems), the resulting

2 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

models do not always exhibit robustness to perturbations (Li et al., 2016), and suffer from unreal-istic activity levels (e.g. (Eliasmith, TC Stewart, et al., 2012)) compared to expected levels (Barthand Poulet, 2012). In contrast, the recurrent connectivity required for any linear dynamical sys-tem can be directly defined (i.e., without any training) for a spiking neural network through thetheory of spike coding networks (SCNs) (Boerlin et al., 2013). SCNs are consistent with manyfeatures from biology, such as sparse and irregular activity, robustness to perturbations (such ascell death) (Barrett et al., 2016; Calaim et al., 2020), and excitation/inhibition-balance (Boerlin etal., 2013; Denève and Machens, 2016). Could we use a similar analytical approach to introducenonlinear computations?
In SCN theory, fast recurrent connections are used to efficiently and accurately maintain astable internal representation. Any linear dynamical system can then be directly implementedthrough the addition of slower recurrent connections (Boerlin et al., 2013), which will drift theinternal representation according to the desired dynamics. While nonlinear dynamics have previ-ously been implemented in SCNs, this was achieved through the aforementioned basis-functionapproach (Larry F Abbott et al., 2016; Alemi et al., 2018; Thalmeier et al., 2016). Here we ex-tend the original SCN derivation for linear dynamics (Boerlin et al., 2013), by directly deriving theconnectivity required for any polynomial dynamical system. The resulting networks require anadditional set of slow connections with multiplicatively interacting synapses, and we thus termour model multiplicative SCNs, or mSCNs.
We demonstrate the capability of mSCNs through a precise implementation of the Lorenzsystem, as well as an implementation of a double pendulum. While polynomial systems can inprinciple approximate any other system (De Branges, 1959), this can quickly become infeasible,as higher-order polynomial systems require higher-order synapses (pair-wise, triplets, quadru-plets, etc.), resulting in a dense and complicated all-to-all connectivity structure. We address theneed for higher-order synapses by demonstrating how higher-order computations can be ap-proximated by successive network layerswith solely pair-wise synapses. Additionally, we demon-strate that the assumption of all-to-all connectivity can be loosened if each neuron is selectiveonly for a subset of the relevant variables for the computation.
Our theory of mSCNs harnesses all the appealing properties of previous SCN implementa-tions (in particular robustness to cell-death and irregular spiking activity), but now includes adirectly derivable and more interpretable connectivity structure for a large class of nonlineardynamical systems. Finally, the efficiency and accuracy of our networks might be of use for neu-romorphic applications, especially for representing dynamical systems that are well-describedby lower-order polynomials.

2. Spike coding networks
Here and in the following sections we present the main results and refer the reader to theMethods section for details. Consider a network of N spiking neurons, which emit spike trainsof the form si(t) = ∑

k δ(ti
k − t), where δ is the Dirac delta function and {ti

k ≥ 0} is the setof discrete times at which a spike was emitted. The population spike train is described by thevector s(t) = [s1(t), . . . , sN (t)]T. Vectorswill be denoted by lower case bold letters, andwhereverpossible we will omit the time index for the sake of text clarity.
2.1. Linear autoencoder.

Suppose that a given K−dimensional signal x(t) ∈ RK should be represented by the outputactivity of the network (Fig. 1A). How should the neurons then spike to accomplish this task?The theory of spike coding networks approaches this through two core assumptions (Barrettet al., 2016; Boerlin et al., 2013; Denève and Machens, 2016):

Michele Nardin et al. 3

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

(a) Linear decoding: the network representation x̂(t) is read out as
x̂ = Dr

where D ∈ RK×N is the decoding matrix, and r(t) = [r1(t), . . . , rN (t)]T are filtered spike-trains
ṙ = −λr + s,

where λ is the leak time-constant. The variable r can be seen as a neuron’s time-dependent rate,or equivalently the effect of a neuron’s spikes on the post-synaptic potential of other neurons.
(b) Efficient spiking: Di (the i−th column vector of the matrix D) represents the contributionthat a spike from neuron i will have on each dimension of the read-out signal; more specifically,a spike at time t will update the current readout as x̂(t) → x̂(t) + Di. Assumption (b) requiresthat this spike should only occur if it improves the read-out. Formally, we require that a spikereduces the ℓ2-error between the readout and the signal. Thus, neuron i will fire at time t if andonly if

∥x(t) − (x̂(t) + Di)∥2
2 < ∥x(t) − x̂(t)∥2

2 .

After some algebra (see Methods 7.1), and defining the membrane potential of each neuron as
Vi = DT

i (x̂−x), one finds an underlying dynamical description of the systemwhere each neuronspikes whenever Vi > Ti, with Ti = DT
i Di/2, and membrane potential dynamics

(1) v̇ = −λv + DT(ẋ + λx) − DTDs,

where v = (V1, . . . , VN). Thus, starting from the two core assumptions, we have derived a recur-rently connected network of leaky integrate-and-fire neurons. Through recurrent connections(given by DTD) the network accurately tracks its input signal x, (Fig. 1B+C top row).
2.2. Linear dynamics.

In the above derivation, the signal x was provided directly to the network, but this is notstrictly necessary. If x follows some known linear dynamics ẋ = Ax (with A ∈ RK×K) then itstrajectory can be computed by the network (Boerlin et al., 2013). Their derivation uses the factthat x ≈ x̂, so that (1) can be approximated as
v̇ = −λv + DT (Ax̂ + λx̂) − DTDs

= −λv + Ωf s + Ωsr,
(2)
where so-called “fast” connections Ωf = −DTD keep the error constrained on a short time-scale (Fig. 1B+C top row), and “slow” connections Ωs = DT(A + λI)D implement the dynamicalcomputation using the filtered spikes r (Fig. 1B+Cmiddle row). Here “fast” and “slow” refer to therise-time of the synaptic PSPs (Fig. 1B). While technically an approximation, this implementationworks well in practice and can closely reproduce a given linear dynamical system (Fig. 1B+Cmiddle row).

3. Nonlinear dynamics
The approximation in (2) was originally conceived for linear systems, but can in principle beextended to any arbitrary dynamical system ẋ = F (x) (with F : RK → RK). The full networkdynamics then become

(3) v̇ = −λv + DT(F (x̂) + λx̂) − DTDs,

with the problem that the nonlinear function F () has to be somehow computed by the network(or individual neurons). Previouswork approximated this computation through a set of basis func-tions ((Alemi et al., 2018; Thalmeier et al., 2016); see Methods 7.6), which can be interpreted asdendritic nonlinearities. Here we take a different approach. We note that any smooth nonlinearfunction can in principle be approximated by a polynomial transformation (De Branges, 1959).

4 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

Slow

Multiplicative

Input

P
S

P
 (

m
V

)

Types of synapses

Linear readout

Network

Fast

A B C

P
S

P
 (

m
V

)
P
S

P
 (

m
V

)

Structure Type of computation

Representation

Linear dynamics

Nonlinear dynam.

*

Figure 1 – Multiplicative Spike Coding Networks (mSCNs) can implement polynomialdynamics. (A) Schematic representation of the network. (B) The network has three typesof synapses, illustrated for two neurons (red and orange) connecting to another (blue).The postsynaptic potential (PSP) of a cell endowed with multiplicative synapses will beaffected only if the two presynaptic neurons fire very close in time to each other. Higherorder multiplicative interactions can also be necessary, and are illustrated in Supp. Fig. S1.(C) Example computations enabled by the different types of synapses: (top) the networkrepresents the two inputs (x1 and x2). The blue line represents the output of the network,the dashed black lines the real input. (Middle) A network which computes the dynamicalsystem ż = x1 + x2. The black dashed line represents the real sum of the inputs, theblue line represents the output of the network. (Bottom) A network which computes thenonlinear dynamical system ż = x1 ∗ x2, and thus integrates the product of x1 and x2.For both linear and nonlinear dynamics the fast synapses are also required.
Furthermore, any polynomial function F : RK → RK containing terms with maximum degree gcan be written in the form
(4) F (x) =

g∑

d=0
Adx⊗d,

where Ad ∈ RK×Kd is the matrix of coefficients for the polynomials of degree d, and we define
M⊗d = M ⊗ M ⊗ · · · ⊗ M as the Kronecker product applied d times, with the conventionthat M⊗0 = 1 and M⊗1 = M. The Kronecker product is closely related to the outer-productand computes all possible pair-wise multiplications between the elements of two matrices. Forexample, the Kronecker product of two vectors of length l is itself a new vector of length l2 (seeMethods 7.2 for a detailed explanation).Using this notation, the connectivity and dynamics for the multiplicative SCN network imple-menting a polynomial function can be directly derived as

Michele Nardin et al. 5

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

v̇ = −λv − DTDs + DT(
g∑

d=0
AdD⊗dr⊗d + λx̂)

= −λv + Ωf s + Ωm0
s + Ωm1

s r + Ωm2
s r⊗2 + · · · + Ωmg

s r⊗d

= −λv + Ωf s +
g∑

d=0
Ωmd

s r⊗d,

(5)

where Ωf = −DTD, Ωm1
s = DT(A1 + λI)D and Ωmd

s = DTAdD⊗d for d ∈ {0, 2, 3, . . . , g}.
With this factorization we demonstrate how any given multiplicative interaction of state-variables can be accurately implemented throughmultiplicative synapses between neurons (Fig. 1B+C bottom, Methods 7.4). The matrix Ωmd

s then represents d−th degree multiplicative inter-actions between cells. In particular, Ωm2
s represents the connectivity required for each cell tomultiply each pair of their inputs (Fig. 1 B,C bottom row), with the synapse essentially acting asa coincidence detector. Higher order synapses would behave similarly but with three or morecoincident spikes (Supp. Fig. S1). While these higher order interactions are unlikely to be biologi-cally feasible, lower order multiplicative interactions may indeed be possible in biology, and havebeen hypothesized before (Koch and Poggio, 1992), as we will discuss further in the discussion.In principle, increasingly complex nonlinear dynamics may be implemented through the inclusionof higher-order terms in eq. (5) (Ωmd for d > 2), though this flexibility comes with increased coston the number of synapses and neural interactions. In a later section we will show how to avoidinteractions beyond pair-wise synapses, and we will derive the expected number of connectionsfor each type of synapse.

Compared to linear dynamics, multiplicative synapses enable nonlinear computations suchas AND gates (Fig. 1C bottom). Overall, the above derivation demonstrates that the presence ofmultiplicative synapses arises naturally in mSCNs from extending the spike coding frameworkto polynomial dynamical systems.
3.1. Lorenz attractor.

We illustrate the functionality of themSCN formalism through an implementation of a simpledynamical system, the Lorenz attractor. The Lorenz attractor is a system of ordinary differentialequations first studied by Edward Lorenz, which may lead to chaotic solutions (Lorenz, 1963;Strogatz, 2018). It is defined as
ẋ = σ(y − x)
ẏ = x(ρ − z) − y

ż = xy − βz.

Notably, this system contains pairwise multiplicative terms of the state-variables, thereby mak-ing it a polynomial (and nonlinear) dynamical system. In the following, we use the “classical”parameter values σ = 10, β = 8/3 and ρ = 28, for which the system is in a chaotic regime. Thisis a useful case study as the resulting behavior is very sensitive to small representation errors,and has previously been used to test spiking network dynamical system implementations (e.g.(Thalmeier et al., 2016)).
We implemented the Lorenz system in three ways, each using networks of N = 100 neurons.First, we simulated the Lorenz system in a standard numerical simulation (Runge-Kutta method),and fed the dynamic variables x directly as input into an autoencoding network with only fastsynapses. Note that the correct trajectory is thus continuously being fed into this network. Thiscontrol acted as an upper-bound on the accuracy of representation with a spiking network of agiven size and read-out weight magnitudes. As expected the network represented the systemwith high fidelity — only small deviations arose compared to the standard numerical simulation

6 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

due to the discrete spiking representation of the network (Fig. 2Aii). To have a better idea of theaccuracy of the representation, we followed (Thalmeier et al., 2016) and compared the valuesof neighboring peaks in the dynamics of the z variable, which closely tracked a function definedby the pure Lorenz simulation (Fig. 2Aiv).
Next, we implemented the Lorenz system in an mSCN (following Eq. 5, see Methods 7.5).The resulting network is able to compute the Lorenz dynamics with high accuracy (Fig. 2B). Therepresentation tracked the dynamics of the standard numerical simulation (dotted lines) for areasonable amount of time, despite the attractor’s chaotic nature (Fig. 2B i+ii), though this de-pends on the simulation time step (set to 0.1ms here). Additionally, despite the deviations fromthe ‘true’ trajectory, the peak analysis demonstrates that qualitatively the implementation is nearperfect (Fig. 2B iv). Furthermore, the network simulation still displays the extreme robustness tocell death of traditional SCNs (Supp. Fig. S2).
Lastly, for comparison’s sake, we implemented the same dynamical system using basis func-tions with trained weights (Methods 7.6) in order to understand the benefits and drawbacks ofeach approach. We used 500 basis functions per neuron. The Lorenz attractor is again qualita-tively well reproduced (Fig. 2 top). But in contrast to the two previous schemes, the implemen-tation with basis functions led to more inaccuracies (Fig. 2C), quickly resulting in missed shiftsin the dynamics. This was likely due to the approximate nature of the basis function implemen-tation, and we note that more precise simulations might be possible with more and differentbasis functions (see e.g. Fig. 3f-h in (Thalmeier et al., 2016); though even there, outliers are stillpresent).
These results might suggest that the direct implementation of the Lorenz system with themSCN is capable of more accurate dynamics than a basis function implementation. However,we note three caveats here. First, the accuracy of the dynamics depends on the nature of theunderlying system — e.g., small inaccuracies would matter less for a system with stable fixedpoints. Second, the Lorenz attractor is perfectly described by a polynomial, and other dynamicalsystemsmight be better described by a basis-function implementation (of similar complexity as agivenmSCN). Third, the differences in accuracy and scaling of the two implementations suggeststhat each may be more suitable depending upon the specific problem at hand (on the order of

N3 parameters are needed for the mSCN and bN2 for the basis function implementation, where
b is the number of basis functions).

4. Higher-order polynomials with sequential networks
While the Lorenz system is a good case study for demonstrating the power and accuracy ofmSCNs, a core problem remains: higher order polynomials necessitate higher order multiplica-tive interactions. E.g., a polynomial of order 3 would require a r⊗3 term, with on the order of

N4 synapses. Such precise higher-order interactions may not always be feasible, either biologi-cally or on a neuromorphic substrate. However, as we show here, this is not strictly necessary.Across populations, it is possible to combine many sequential pairwise interactions to achievemultiplications of any other order.
4.1. Input transformations.

In principle, an SCN can also represent a nonlinear transformation of a signal G(x), where
G is a smooth function G : RK → RM , M ≥ 1. For this, consider a new SCN with decoder W,spikes σ, and filtered spike trains ρ. In that case v evolves according to
(6) v̇ = −λv + WT (JG(x)ẋ + λG(x)) − WTWσ,

where JG is the Jacobian of G (Methods 7.1). The problem here is that the transformation func-tion has to be either provided or computed by the network. However, if G is a polynomial func-tion, the computation can be implemented using multiplicative synapses — e.g., for quadraticterms, we can use G(x) = x⊗x. Specifically, we need a network that takes as input the output

Michele Nardin et al. 7

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

Figure 2 – Implementation of a Lorenz dynamical system. Across columns: (A) The numer-ical solution was found using an explicit Runge-Kutta method of order 4. The networkcontains only fast synapses and receives as input the output of the Lorenz simulation,which the network read-out tracks closely. (B) A network with multiplicative synapses(mSCN) computing the Lorenz attractor through its network dynamics. (C) A networkwith nonlinear basis functions computing the Lorenz attractor through its network dy-namics. Across rows: (i) 3D view of the network readout for 100 sec (grey). The dottedline shows the ‘true’ simulation in the 2-5sec period, and the blue line shows the corre-sponding network output trajectory. (ii) Each network readout dimension (blue) acrosstime vs the ‘true’ solution (black dotted). The gray region indicates the 2-5sec periodused in panels i and iii. (iii) Raster plot with spikes emitted by the neurons in the timeinterval 2 - 5 sec. (iv) Peak analysis over 100 sec: blue = network output, black = ‘true’Lorenz simulation.
of another network x̂ = Dr (with spikes s) and returns Wρ ≈ x̂⊗2 (Methods 7.3). Using the factthat ṙ = −λr + s, we obtain dynamics

v̇ = −λv + Ωx(r ⊗ s + s ⊗ r + −λr ⊗ r) + ΩW
f σ,

with Ωx = WT(D ⊗ D) and ΩW
f = −WTW. We illustrate the resulting network and its inputsand outputs in Supp. Fig. S3.

8 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

4.2. Combining networks.
Now, the combination of a standardmSCN (eq. 5) with a network which calculates the squareof its inputs (Supp. Fig. S3), results in a system with the ability of computing third-order multi-plications with only pairwise (second-order) synapses (Fig. 3A). Notably, one network computesthe pairwise multiplications, and the other computes the desired third-order dynamic equationusing another pairwise multiplication of the squared network output (x⊗x) and x.
More concretely, we consider a polynomial function F : RK → RK with maximum degree

g = 3. We can write F (x) = Ax + Bx⊗2 + Cx⊗3 using eq. (4). Naively, a network of neuronsthat approximates the solution to ẋ = F (x) can be written using eq. (5) as
v̇ = −λv + Ωf s + Ωm1

s r + Ωm2
s r⊗2 + Ωm3

s r⊗3,

which contains the third-order synapses in the last term. However, we now reintroduce the firstnetwork (from Section 4.1) which takes Dr as input and outputs Wρ ≈ x̂⊗2. This allows theterm Ωm3
s r⊗3 to be replaced by DTC(D ⊗ W)(r ⊗ ρ), yielding

v̇ = −λv + Ωf s + Ωm1
s r + Ωm2

s r⊗2 + Ωext
s (r ⊗ ρ),(7)

whereΩext
s = DTC(D⊗W). The same argument can be extended to higher ordermultiplications,at the cost of having ⌈log2(g) − 1⌉ support networks, where g is the maximum degree of F () 1.

4.3. Example: approximating a double pendulum.
We illustrate the use of the higher-order polynomial implementation using the double pendu-lum as an example (Fig. 3B). Suppose that each pendulum has length l and mass m. We denote

θ1, θ2 the angles of the first and second pendulum with respect to the vertical axis (i.e. θi = 0when the pendulum is pointing downwards), and pθ1 and pθ2 their momenta. The full double pen-dulum dynamics can be derived using the Lagrangian (Methods 7.7; e.g., (Levien and Tan, 1993)).For small angles one can consider the approximation sin θ ≈ θ and cos θ ≈ 1, which leads to thefollowing approximated dynamics:
θ̇1 = 6

7ml2
(2pθ1 − 3pθ2)

θ̇2 = 6
7ml2

(8pθ2 − 3pθ1)

ṗθ1 = −1
2ml2

(
θ̇1θ̇2(θ1 − θ2) + 3g

l
θ1

)

ṗθ2 = −1
2ml2

(
−θ̇1θ̇2(θ1 − θ2) + g

l
θ2

)
.

Wedenote x = (θ1, θ2, pθ1 , pθ2)T, and rewrite the system as ẋ = Ax+Cx⊗3 (A andC definedexplicitly in Methods 7.7).
We implemented the first-order approximated double pendulum system in three distinctways. As before for the Lorenz system,we first simulated a control network thatwas simply askedto autoencode the dynamics directly, which were computed externally. Next, we implementedtwo mSCNs — one network computed the dynamics through explicit third-order multiplicativesynapses (as in eq. (5)). The other implementation utilized a support network (as explained ineq. (7)), allowing themain network to avoid explicit third-order interactions.We found that thesetwo mSCN implementations produced accurate representations of the dynamics, closely follow-ing the autoencoder network which received the “true” solution directly.

1The maximummultiplication order that can be computed with k networks is 2k - in fact, the first support networkcan compute x̂⊗2, the second can take as input the output of the first and compute x̂⊗4, and so on.

Michele Nardin et al. 9

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

A CB

Figure 3 – Third order polynomial dynamics solved by sequential pairwisemultiplications.(A) To avoid third order multiplications, another network can be used whose output willbe the pairwise multiplication of any two input dimensions (which can be done throughonly pair-wise synapses). (B) Example output of a network computing the double pendu-lum and using an external network to avoid the third order multiplications. (C) Solutioncomputed by employing a neural network with third order synapses (dashed line) or em-ploying two neural networks to avoid the third order multiplications (dash-dotted line)compared to the numerical solution of dynamical system (dotted line). All solutions al-most perfectly overlap.
5. On the number of required connections

As shown in the previous sections, mSCNs offer a powerful and intuitive way of implement-ing polynomial dynamical systems in spiking networks. However, though they may be efficientwith respect to the number of neurons and spikes required, they can require dense synaptic con-nections (sometimes with several connections for each pair of neurons). In the standard SCNframework, any two neurons can be connected by fast and slow synapses. In mSCNs, additionalconnections are introduced with the multiplicative synapses. So far we have assumed full all-to-all connectivity of all types of connections (i.e., N2 fast connections, N2 slow connections, N3

pair-wise multiplicative synapses, and so on). However, connectivity in the brain is known to besparse (Lefort et al., 2009; Song et al., 2005). Given this constraint it is important to understandhow mSCNs can be constructed with sparser connectivity, and the relationship between con-nectivity density and performance.
Consider networks of N neurons representing a K-dimensional signal space, with decodingmatrix D ∈ RK×N . The i−th column vector of the matrix D, denoted by Di, represents theweights associated to neuron i. Here and in the following we will say that “neuron i codes fordimension x” meaning that the x−th entry of Di is ̸= 0. We will define the connectivity densityas the proportion of the all-to-all connectivity which is being used. Connectivity density is thendetermined by the decoder matrix D and some fixedmatrices Ad given by the dynamical system,as explained in eq. (5). Thus far, we have considered that each neuron codes for all dimensions,meaning that D is dense and connectivity is all-to-all for each synapse type. If neurons insteadonly coded for a subset of the dimensions, how sparse would the connectivity be?We will makethis explicit by giving each neuron a fixed probability p to code for each signal dimension (i.e. p isthe probability that a given matrix entry in D is non-zero). If p = 1, then all neurons will code forall signal dimensions. As p approaches zero, neurons will code for progressively less dimensions.
Consider the three connectivity matrices required for second-order multiplicative computa-tions: the fast connections Ωf = DTD, the slow connections Ωm1

s = DT(A + λI)D and themultiplicative connections Ωm2
s = DTBD⊗D. In Fig. 4 we investigate the relationship betweendecoder density and final network connectivity density. We calculate theoretical upper-boundson the expected connectivity and report here the asymptotic behavior in terms of density (see

10 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

A B C
Fa

st
 C

o
n
n
e
ct

io
n
s

D
e
n
si

ty

(r
e
la

ti
v
e
 t

o
 m

a
x
.)

S
lo

w
 C

o
n
n
e
ct

io
n
s

D
e
n
si

ty

(r
e
la

ti
v
e
 t

o
 m

a
x
.)

Q
u
a
d
ra

ti
c

C
o
n

n
.
D

e
n
si

ty

(r
e
la

ti
v
e
 t

o
 m

a
x
.)

Decoder Density (p) Decoder Density (p) Decoder Density (p)

Figure 4 – Expected connectivity density relative to all-to-all connectivity for the differ-ent synapse types as a function of the decoder density p. Solid lines illustratemean acrossiterations, whereas shaded areas represent ±1 standard deviation from the average ofthe simulated connectivity (see Methods 7.8). Dashed lines correspond to theoreticalupper bounds (Eq. 8-10). (A) The connectivity density for the fast synapses for differentsignal dimensions (K). (B) The connectivity density for the slow synapses due to linearcomputation (i.e. ∼ NAp2), for different linear dynamical system densities (NA). (C) Theconnectivity density for slow multiplicative (quadratic) synapses, for different quadraticdynamical system densities (NB). NA and NB represent the number of non-zero entriesof matrices A and B respectively.
Methods 7.8 for detailed derivations). Additionally, by generating random decoding matrices fordifferent probabilities p, we measure the empirical expected connectivity density. The fast con-nection density (defined as the proportion of maximum number of connections used) dependson both p and the signal dimension K and behaves as
(8) E(fast conn. dens.) ∼ 1 − (1 − p2)K .

Although the density rises sharply as the signal dimensionality increases (Fig. 4A), we see thatfor low to moderate p and K the connectivity density is far below all-to-all. The slow and mul-tiplicative connection densities additionally depend on the ‘density’ of the dynamical systeminteractions, i.e. the number of non-zero elements in the matrices A and B, denoted with NAand NB respectively. We find theoretical upper bounds on the expected densities
(9) E(slow conn. dens.) ≲ E(fast conn. dens.) + NAp2,

for slow connections (Fig. 4B) and
(10) E(multiplicative conn. dens.) ≲ NBp3,

for multiplicative connections (Fig. 4C, see Methods 7.8 for details). Notably, the multiplicativeconnections have a much slower rise compared to the fast connections, which may push thenetwork closer to a biologically-plausible regime.Such reduced connectivity density does come at some cost to performance, in particularin robustness. We demonstrate this by considering the Lorenz attractor implementation withdifferent values for p, and by considering different numbers of active neurons. We found thatdecreasing the decoder density made the network more prone to errors as the number of lostcells increased (Supp. Fig. S2C+D). Nonetheless, this increase in error was nearly nonexistentand became sizeable only after killing more than 80% of the cells.
6. Discussion

In this report, we investigated a new approach for implementing nonlinear dynamical systemsin spiking neural networks. We extended the spike coding network (SCN) framework (Boerlin etal., 2013; Calaim et al., 2020; Denève and Machens, 2016) to implement arbitrary polynomialdynamics. We obtain the multiplicative SCN (mSCN), which requires fast, slow, and multiplica-tive connections. For second-order systems, the connectivity requires pair-wise multiplicative

Michele Nardin et al. 11

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

synapses, and we demonstrated how higher-order multiplications can be implemented in sev-eral network stages with only pair-wise synapses. We demonstrated the accuracy and flexibilityof this formalism by simulating the Lorenz system and a third order approximation of a dou-ble pendulum. Due to the rich flexibility of polynomials for approximating arbitrary nonlinearfunctions (Stone-Weierstrass Theorem or Taylor Expansion), this approach could in principle beextended to many other systems for which a lower-order polynomial approximation is sufficient.Lastly, we analyzed the relationship between the sparsity of signal coding per neuron and theconnectivity sparsity (for fast, slow, and multiplicative connections), and showed how the needfor all-to-all connectivity can be relaxed.
6.1. Related work.

The study of nonlinear computation has a long history in computational neuroscience, andhas traditionally been studied in firing-rate networks, in which each neuron is represented bya continuous (or sometimes binary) variable (Dayan and Laurence F Abbott, 2001). When suchneurons are endowed with a nonlinear input-output function, nonlinear computations are pos-sible (Jaeger, 2001; Mante et al., 2013; Mastrogiuseppe and Ostojic, 2018; Rubin et al., 2015;Sussillo and Larry F Abbott, 2009).
In spiking neural networks (SNNs) nonlinear computations have previously been achievedby using random connectivity as a basis for complex dynamics (Maass et al., 2002), or using su-pervised training algorithms to optimize the networks (Neftci et al., 2019). Alternatively, moreprincipled approaches to building spiking neural networks include the neural engineering frame-work (NEF) (Eliasmith and Anderson, 2004) and SCNs (Boerlin et al., 2013), the latter of whichwestudied here. Nonlinear dynamical system implementations in previous SNNs usually harnessedvarious nonlinearities (e.g. neural, dendritic, or synaptic) as basis functions, with the connectiv-ity required for a given dynamical system implemented through supervised training (as we alsoimplemented in Fig. 2C). Previous nonlinear computations in SCNs also relied on such basis func-tions (Alemi et al., 2018; Thalmeier et al., 2016). The basis function approach works very well,but does not allow for a direct derivation of the connectivity given a nonlinear dynamical sys-tem and thus lacks a well-defined mapping between computation and connectivity. In contrast,in mSCNs the connectivity is defined directly from the dynamical system, and is therefore moreinterpretable.
Finally, a more recent approach has emerged in which spiking networks are treated as piece-wise linear functions, depending on which neurons in the network are active (Baker et al., 2020;Mancoo et al., 2020) (which may also explain the success of supervised training algorithms with-out explicit basis functions, e.g., (Zenke and Vogels, 2021)). These methods can be seen as com-plementary to our approach, in which case a nonlinear input-output functionwould be combinedwith nonlinear dynamics through additional slow connections.

6.2. Biological implications.
mSCNs represent a novel hypothesis of nonlinear computation in neural circuits, which canbe seen as complementary to previous basis-function approaches. While previous theoreticalstudies have noted the wide range of nonlinear computations that multiplicative synapses couldin principle enable (Koch and Poggio, 1992; Nezis and Rossum, 2011; Salinas and Laurence FAbbott, 1996), our work provides a precise formalization on how to use such synapses to im-plement any polynomial dynamical system efficiently in a spiking neural network. Additionally,the resulting networks inherit the attractive features from standard SCNs which match well tobiological network activity (e.g. irregular and sparse activity, robustness, and E/I balance). Buthow biologically feasible are the the required synapse interactions and network connectivities?
First, the resulting network connectivity is extremely dense: by default, mSCN networks pre-dict all-to-all connectivity. While local circuits in the cortex are indeed densely connected (Finoand Yuste, 2011; Harris and Mrsic-Flogel, 2013), connectivity is not all-to-all (Ko et al., 2011;

12 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

Perin et al., 2011; Song et al., 2005). However, as we showed in Fig. 4, full all-to-all connectivityis not required for mSCNs to function. The connectivity density is a function of the fraction ofvariables each neuron codes for, which is formalized by imposing sparsity of the decoder matrix.Consequently, according to SCN theory, if all neurons would code for all dimensions, this wouldbe reflected in an all-to-all connectivity structure. Conversely, if neurons would code for a sub-set of the dimensions, this would be reflected in a less dense connectivity structure (but also,accordingly, a less robust code). This last property is not easily measured in the brain, where theamount of variables each neuron codes for is not clear. While current hypotheses emphasizethat neurons exhibit mixed selectivity to many task variables (Rigotti et al., 2013), recent evi-dence also suggests that cortical representations are very high-dimensional (Stringer, Pachitariu,Steinmetz, Carandini, et al., 2019; Stringer, Pachitariu, Steinmetz, Reddy, et al., 2019). There-fore, it is plausible that neurons can display mixed selectivity while also only coding for a smallsubset of the overall coding space, leaving room for a more sparse implementation of our model.
Second, mSCNs require each pair of neurons to have three types of synapses connecting toeach other (Fig. 1). The presence of several distinct synaptic connections between pairs of cellshave indeed been observed in experimental circuit reconstruction studies (Kasthuri et al., 2015;Popov andMG Stewart, 2009). However, the feasibility of the precise multiplicative interactionsis less clear. We can at the very least state that a form of multiplication must be performed atsome level in biological networks. Several examples of effectively multiplicative computationshave been characterized from experimental studies (Arandia-Romero et al., 2016; Gabbiani etal., 2002; Peña and Konishi, 2001; Zhou et al., 2007), and multiplicative interactions have beenhypothesized to exist in the dendritic tree (London and Häusser, 2005). Indeed, experimentaland theoretical work has long shown the computational advantages of nonlinear synaptic anddendritic interactions in single neurons (London and Häusser, 2005; Poirazi et al., 2003). Mech-anisms such as dendritic calcium or NMDA spikes (Augustine et al., 2003; Schiller et al., 2000),synaptic clustering (Larkum andNevian, 2008), and shunting inhibition (Mitchell and Silver, 2003;Zhang et al., 2013) are well established and could contribute to a code relying on multiplicativeinteractions (as detailed in (Koch and Poggio, 1992)). Finally, even if not fully feasible, for a givenpolynomial system mSCNs could be seen as defining the ideal set of interactions required for agiven network of neurons, which would then have to be replicated by a given network either bya basis function approach or through non-optimal multiplicative interactions. Future work willhave to show how well a more biological implementation of multiplicative interactions wouldallow for precise nonlinear computations.
Finally, while higher order multiplicative interactions are increasingly difficult to implementbiologically, we demonstrated that by stacking networks with lower-order interactions one canachieve the same computations. This makes the concrete prediction that the connectivity be-tween areas should be of the same dimensionality as the signal being transferred. This doesindeed seem to be the case to some degree, with the communication between some areas be-ing low-dimensional (Semedo et al., 2019). There is also a likely limit to how many networks canbe effectively stacked in this way to perform higher-order interactions, as each stacked networkintroduces a delay.

6.3. Computational and neuromorphic applications.
Even given potential biological limitations, we contend that mSCNs offer two benefits. First,the fact that the implementation of polynomial dynamics is direct and explicit implies that thistechnique offers a useful comparative control when considering the possible computations thatspiking networks can perform, as well as the limits of their accuracy. This model may thereforeserve as a useful reference for future studies. Second, neuromorphic implementations of spik-ing neurons are becoming increasingly feasible (Young et al., 2019). As many of these rely onnetworks of integrate-and-fire type neurons (Davies et al., 2018; Indiveri et al., 2011; Merollaet al., 2014), it is in principle less constrained by biological plausibility. In this context, the needfor dense pair-wise connectivity and precise multiplicative interactions may be an acceptable

Michele Nardin et al. 13

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

cost for a precise connectivity recipe for a given nonlinear computation with fewer neurons. Forexample, a Lorenz attractor can be efficiently and precisely implemented with just 10 neurons(Supp. Fig. S2), in contrast to the 1600 neurons used in (Thalmeier et al., 2016).
6.4. Conclusion.

In sum, we have provided a proof of concept of direct and explicit polynomial dynamics im-plemented in spiking networks. Future directions include the application of this framework toother biologically-plausible and neuromorphic computations, a study of the efficiency of thisframework, and the potential for biologically-plausible learning of the connectivity.
Author Contributions

MN contributed to discussions, initial and follow-up implementations, mathematical deriva-tions and writing of the paper; JWP contributed to discussions and initial implementations;WFPcontributed to discussions, supervision, and writing of the paper; SWK conceived the initial idea,contributed to supervision, discussions and initial implementation, and writing of the paper.
Supplementary material

Script and codes are available online: https://github.com/michnard/mult_synapses

7. Methods
7.1. General derivation of spike coding network.

Wewill show here a generalization of the derivation of spike-coding networks (SCNs) shownin Barrett et al., 2016, ignoring the constraint that neurons need to be either excitatory or in-hibitory. Consider a network ofN leaky integrate-and-fire neurons receiving time-varying inputs
x(t) = (x1(t), . . . , xK(t)), where K is the dimension of the input. For each neuron i we denotewith si(t) = ∑

k δ(ti
k − t) the spike train function, where δ represents the Dirac delta functionand {ti

k ≥ 0} is the set of discrete times at which a spike was emitted. The population spike trainfunction is described by the vector s(t) = (s1(t), . . . , sN (t))T. We define the filtered spike trains(loosely called firing rate) of neuron i as a convolution of the spike train with an exponentiallydecaying kernel
ri(t) =

∫ t

0
exp(−λt′)si(t − t′)dt′ =

∑

ti
k

≤t

exp(−λ(t − ti
k)))(11)

with leak constant λ, or, equivalently, in the differential form
ṙi(t) = −λri(t) + si(t).

We denote the firing rate for all neurons by the vector r(t) = (r1(t), . . . , rN (t))T. Vectors willbe denoted by bold letters, and wherever possible we will exclude the explicit dependence ontime for the sake of text clarity.2 A neuron i fires a spike whenever its membrane potential, Viexceeds a spiking threshold, Ti, and is then reset to the value Vi = Ri.Consider a generic smooth function G : RK → RM , M ≥ 1. Our goal is to derive dynamicsand connectivity of the network so that its output activity provides an accurate representation ofthe modification of the incoming signal y = G(x) ∈ RM . Notice that, using the identity function,one can recover the same form considered in Barrett et al., 2016.Following the assumptions made in the main text, we require the signals to be linearly de-codable, so that the readout can be simply written as ŷ = Dr ≈ G(x). The matrix D ∈ RM×N

is called the decoding matrix, and its i-th column vector Di ∈ RM is the fixed contribution ofneuron i to the signal. The accuracy of the representation is measured using a squared error lossfunction, E = ∥y − ŷ∥2
2 = ∥G(x) − ŷ∥2

2. The second assumption made in the main text requests
2Throughout the text, the input signals, the membrane voltages and the spike trains are all time-dependent quan-tities, whereas the thresholds, the decay constants, and the connection strengths are all constants.

14 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://github.com/michnard/mult_synapses
https://doi.org/10.24072/pcjournal.69

the network to be efficient, and can be formalized by asking that a neuron fires a spike only ifits effect on the readout will reduce the loss function:
E(spike) < E(no spike),

which is, noticing that a spike of neuron i changes the readout by ŷ → ŷ + Di,
∥G(x) − (ŷ + Di)∥2

2 < ∥G(x) − ŷ∥2
2 .(12)

After expanding the squares and canceling equal terms we obtain
∥Di∥2

2 − 2DT
i (G(x) − ŷ) < 0,(13)

which can be rearranged into
DT

i (G(x) − ŷ) >
∥Di∥2

2
2 .(14)

This equation is crucial: it describes a spiking rule under which the loss function is reduced, andit offers an enticing geometric interpretation of the behavior of the network (Calaim et al., 2020).The right hand side of the equation is fixed, and can be interpreted as the spiking threshold ofneuron i:
Ti = ∥Di∥2

2
2 .

The left hand side of the equation, similarly to the derivation showed in (Barrett et al., 2016), isused to define the voltage of neuron i

(15) Vi = DT
i (G(x) − ŷ),

which, taking the derivative, yields,
V̇i = DT

i

(
dG(x)

dt
− dŷ

dt

)

= DT
i (JG(x)ẋ) + DT

i λŷ −
∑

k

DT
i Dksk,

(16)

where we used JG to indicate the Jacobian of the function G. Using (15), we have that DT
i ŷ =

−Vi + DT
i (G(x), and substituting this into (16) we obtain:

(17) V̇i = −λVi + DT
i (JG(x)ẋ + λG(x)) −

∑

k

DT
i Dksk.

This equation describes the dynamic behavior of the voltage of a neuron in a network that rep-resents G(x). We will use the vector form
(18) v̇ = −λv + DT (JG(x)ẋ + λG(x)) + Ωf s,

where Ωf = −DTD represents the fast connections among units, and also includes the resetterms on the diagonal.
7.2. The Kronecker product.

Throughout the text we make heavy use of the Kronecker product. ⊗ represents the Kro-necker product, which is defined for any couple of matrices A, B of any arbitrary size as
A ⊗ B =




a11B · · · a1nB...
am1B · · · amnB


 .

We often use the mixed-product property, which states: If A, B, C and D are matrices of suchsize that one can form the matrix products AC and BD, then
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

Michele Nardin et al. 15

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

7.3. Representation of the multiplication of incoming inputs.
Consider the function G : RK → RK2 defined as G(x) = x ⊗ x, where ⊗ is the Kroneckerproduct. Suppose that the input x = (x1, . . . , xK) is given as a linearly decodable input from anupstream network, such that x = Dr, where r describes the filtered spike-trains of the upstreamneurons and D is their decoding matrix. This generalization requires us to keep track of ẋ: if theupstream neurons follow equation (11), and we denote with s their spike trains, we will havethat ẋ = Dṙ = D(s − λr) , where λ represents their leak constant. In order to use eq. (18), weneed to compute the Jacobian of the function G. That’s given by the K2 × K matrix JG(x), withcolumn i given by dG

dxi
. Denote with Di the i−th row of the matrix D, and with [JG(x)ẋ]iK+j the

(iK + j)−th entry of the matrix-vector product JG(x)ẋ ∈ RK2 , for 0 < i ≤ j ≤ K . We have:
[JG(x)ẋ]iK+j = dG

dxi

dxi

dt
+ dG

dxj

dxj

dt

= xj ẋi + xiẋj

= (Djr)(Di(s − λr)) + (Dir)(Dj(s − λr)
= (Dj ⊗ Di + Di ⊗ Dj)(r ⊗ (s − λr))
= (Di ⊗ Dj)(r ⊗ s + s ⊗ r − 2λr ⊗ r)

and
[G(x)]iK+j = (Dir)(Djr) = (Di ⊗ Dj)(r ⊗ r).

We can now derive the voltage equations of a network of neurons that represents the productof any pair of input dimensions using the equation derived in the previous section. Denote with
σ the spike train of the network, and with ρ their filtered spike train with leak constant α. Usingeq. (18) we have

v̇ = −λv + Ωx(r ⊗ s + s ⊗ r + (α − 2λ)r ⊗ r) + ΩW
f σ,

with Ωx = WT(D ⊗ D), ΩW
f = −WTW and W being their decoding matrix. An example of theoutput of such a network can be seen in Supp. Fig. S3. In that case the input was 3−dimensional,and the 9−dimensional output faithfully represented the product of each input dimension pair.

7.4. Implementing dynamical systems in spike coding networks.
By using the identity function G(x) = x in (18) we obtain the “classical” equation

(19) v̇ = −λv + DT(ẋ + λx) + Ωf s.

This will be the starting point to implement linear and nonlinear dynamical systems. Linear dy-namical systems were already considered in (Boerlin et al., 2013). Here we will focus on a moregeneral class of nonlinearities, namely polynomial nonlinearities, and show that the original for-mulation can be analytically extended to implement any polynomial nonlinearity.Denote with F : RK → RK the dynamic under study, so that ẋ = F (x). Starting from (19)and knowing that x ≈ x̂ we can consider the following approximation:
(20) v̇ = −λv + DT(F (x̂) + λx̂) + Ωf s.

If F is a linear dynamic of the form F (x) = Ax, with the matrix A ∈ RK×K , we recover thesame form considered in (Boerlin et al., 2013):
v̇ = −λv + DT (Ax̂ + λx̂) + Ωf s

= −λv + DT (ADr + λDr) + Ωf s
= −λv + Ωsr + Ωf s,

(21)

where Ωf = −DTD and Ωs = DT(A + λI)D represent the fast and slow connections respec-tively.

16 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

If F is polynomial, we proceed as follows. Using Kronecker notation, any polynomial F :
RK → RK with maximum degree g can be written in the form
(22) F (x) =

g∑

d=0
Adx⊗d,

where Ad ∈ RK×Kd is the matrix of coefficients for the polynomials of degree d, and we define
M⊗d = M⊗M⊗· · ·⊗M as the Kronecker product applied d times, with the convention that
M⊗0 = 1 and M⊗1 = M. Once again replacing x by x̂, as well as using the notation introducedin (22) and the mixed-product property, we get

F (x̂) =
g∑

d=0
Adx̂⊗d

= A0 + A1x̂ + A2x̂⊗2 + A3x̂⊗3 + . . .

= A0 + A1Dr + A2(Dr)⊗2 + A3(Dr)⊗3 + . . .

= A0 + A1Dr + A2(D⊗2)(r⊗2) + A3(D⊗3)(r⊗3) + . . .

=
g∑

d=0
AdD⊗dr⊗d.

Inserting it into (20) one obtains the equations describing a network of integrate-and-fireneurons that approximate the solution of a polynomial dynamical system:
v̇ = −λv − DTDs + DT(

g∑

d=0
AdD⊗dr⊗d + λx̂)

= −λv + Ωf s + Ωm0
s + Ωm1

s r + Ωm2
s r⊗2 + · · · + Ωmg

s r⊗d

= −λv + Ωf s +
g∑

d=0
Ωmd

s r⊗d,

(23)

where Ωf = −DTD, Ωm1
s = DT(A1 + λI)D and Ωmd

s = DTAdD⊗d for d ∈ {0, 2, 3, . . . , g}.
7.5. Implementing the Lorenz system.

Denoting x = (x, y, z)T, the Lorenz attractor can be described in the form of eq. 22 as
ẋ = Ax + Bx⊗2,

where
(24) A =




−σ σ 0
ρ −1 0
0 0 −β


 ,

and B ∈ R3×9 with B23 = −1, B32 = 1, and all other elements of B being zero.Following eq. 23 the corresponding voltage dynamics in an mSCN are described by
v̇ = −λv + Ωf s + Ωm1

s r + Ωm2
s r⊗2,

where Ωf = −DTD, Ωm1
s = DT(A + λI)D and Ωm2

s = DTBD⊗2.
7.6. Learning nonlinear dynamics through basis functions.

In previous work the standard SCN derivation was extended to implement arbitrary nonlin-ear dynamical systems through weighted basis functions, meant to model nonlinear synapses ordendrites (Alemi et al., 2018; Thalmeier et al., 2016). We will use a similar approach to approxi-mate the nonlinear part of a dynamical system of the form
(25) ẋ = Ax + F (x).

Michele Nardin et al. 17

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

The basis-function approach derivation consists replacing the function F (x) by a weightedset of L basis functions g(x) = [g0(x), . . . , gL(x)], such that Cg ≈ F (x) (where C ∈ RK×L arethe required weights). Eq. (20) can then be rewritten as
(26) v̇ = −λv + Ωsr + DTCg(x) − Ωf s.

In previous work the weights C were found through supervised local learning rules. For brevityand comparison’s sake we will instead find the optimal weights through regression (following(Eliasmith and Anderson, 2004)).We can find the weights by solving the following optimization problem
(27) minC||F (X) − CG||22,

where X ∈ RK×M are M sampled inputs, G ∈ RL×M are the resulting basis function outputs,and F () is the target function. The ordinary least squares (OLS) solution is then
(28) COLS = F (X)GT(F (X)F (X)T)−1.

In previouswork online learning ruleswere used tominimize the cost (Alemi et al., 2018; Thalmeieret al., 2016), but as learning rules are not the focus of this paper, we used the above solution.For the basis functions we used a simple rectification function (g(x) = [bx + c]+, with randomlydistributed b ∈ [−1, 1] and c ∈ [−90, 90]), but many types of nonlinearities will work.
7.7. First order approximation of the double pendulum.

The equations describing the time evolution of the double pendulum with each length l andmass m can be derived using the Lagrangian (Levien and Tan, 1993). θ1, θ2 describe the angles ofthe first and second pendulum with respect to the vertical axis (i.e. θi = 0 when the pendulumis pointing downwards). The position of the centers of mass can be written thanks to these twocoordinates: assuming that the origin is at the point of suspension of the first pendulum, itscenter of mass will be at:
x1 = l

2 sin θ1, y1 = − l

2 cos θ1

and the center of mass of the second pendulum is at
x2 = l

(
sin θ1 + 1

2 sin θ2
)

, y2 = −l
(
cos θ1 + 1

2 cos θ2
)

.

The full dynamics can be described by a 4−dimensional dynamical system representing the twoangles and the two moments:
θ̇1 = 6

ml2
2pθ1 − 3 cos(θ1 − θ2)pθ2

16 − 9 cos2(θ1 − θ2)

θ̇2 = 6
ml2

8pθ2 − 3 cos(θ1 − θ2)pθ1

16 − 9 cos2(θ1 − θ2)

ṗθ1 = −1
2ml2

(
θ̇1θ̇2 sin(θ1 − θ2) + 3g

l
sin θ1

)

ṗθ2 = −1
2ml2

(
−θ̇1θ̇2 sin(θ1 − θ2) + g

l
sin θ2

)
.

Wewill use a small angle approximation of the above equations: if θ ≈ 0, the functions sin, cosarewell approximated by θ, 1 respectively. The introduction of this simplifying assumption turned

18 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

the above equations into these:
θ̇1 = 6

7ml2
(2pθ1 − 3pθ2)

θ̇2 = 6
7ml2

(8pθ2 − 3pθ1)

ṗθ1 = −1
2ml2

(
θ̇1θ̇2(θ1 − θ2) + 3g

l
θ1

)

ṗθ2 = −1
2ml2

(
−θ̇1θ̇2(θ1 − θ2) + g

l
θ2

)
.

(29)

These can be implemented using either equation (23) or (7) by consideringx = (θ1, θ2, pθ1 , pθ2)and rewriting the dynamical system as ẋ = Ax + Cx⊗3, where

(30) A =




0 0 2k −3k
0 0 −3k 8k

3cg/l 0 0 0
0 cg/l 0 0


 ,

and C ∈ R4×64 with C3,41 = −6ck2, C3,42 = 6ck2,C3,45 = 25ck2,C3,46 = −25ck2,C3,61 =
−24ck2,C3,62 = 24ck2, C4 = −C3 and all the other entries set to zero, with k = 6/(7ml2) and
c = −1/2ml2.
7.8. Connectivity density.

Here we discuss the expected amount of connections based on the sparsity of the decodingmatrix D of a network implementing a generic dynamical system ẏ = Ay + By⊗y.
7.8.1. Fast connections Ωf . For the fast connections, the connectivity matrix is given by DTD.For any pair of neurons m, n we will have that a (fast) connection exists if DT

mDn ̸= 0, whichmeans that if these two neurons “share a dimension” (i.e.Dm, Dn have nonzero entries in at leastone common spot and they are not orthogonal) they will need a fast connection among them.Let’s denote with 0 ≤ pn
d ≤ 1 the probability that a neuron nwill participate in the representationof the d−th dimension (i.e. pn

d = P (Dd
n ≠ 0)). Let’s assume that they are all independent. Then theprobability that any given pair of neurons n, m will need a connection is given by the probabilitythat they both end up coding for at least one common dimension, given by

p(neurons n, m code for common dimension) = 1 −
K∏

d=1
(1 − pn

dpm
d).

In the case where pn
d = p (such that neurons code for each possible dimension with equal prob-ability) we can compute the expected number of fast connections for different neuron numbersand decoding densities as

(31) E(#fast connections) = N(N − 1)
2

(
1 − (1 − p2)K

)
,

7.8.2. Slow connections Ωs. Slow connections have the form Ωs = DT(A + λI)D = DTAD +
λDTD. The second term, λDTD, has exactly the form of the already considered case of fastconnections. We focus on the first term DTAD, which will add further connections to allowthe network to solve linear dynamical systems. Since A is not symmetric in general, Ωs can benon symmetric too, hence the total possible number of slow connections is N2, and will be sowhen the decoding matrix D is not sparse. If the matrix A has a non-zero entry at a location d, e,all the neurons that code for dimension d will have to connect to all the neurons that code fordimension e. The probability that two neurons n, m will form a slow connection will be pn

dpm
e , orsimply p2 if the probability is uniform across dimensions and neurons. The expected number ofslow connections (due to that single non-zero entry) is ∑N

n=1
∑N

m=1 pn
dpm

e = (Np)2, where thelast equality holds only in case of uniform probability. In that case we also have

Michele Nardin et al. 19

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

(32) E(#slow connections) ≤ E(#fast connections) + NA(Np)2,

where NA is the number of nonzero entries in A.
7.8.3. Quadratic connections Ωnl. The quadratic connections take the form Ωnl = DTB(D⊗D).If the decoding matrix is not sparse, the number of quadratic connections will be ∝ N3. In fact,the maximum possible number is given by N2(N −1)/2, corresponding to each neuron (N) being
connected to each possible pair (N(N−1

2). On the other hand, if D is sufficiently sparse, we canreason as follows. Denote with Gd the group of neurons that code for dimension d, i.e. Gd =
{n | Dd

n ̸= 0}. Let’s assume that our dynamical system depends nonlinearly on dimensions e and
f , i.e. ẋd ∝ xexf , or equivalently Bd,eK+f ̸= 0. Then, each neuron in Gd needs to keep track ofcoincident firing of any neuron in Ge with any other in Gf . The probability that a neuron in Gdwill need to take care of coincident spiking of the pair of neurons m, n is 1−(1−pn

e pm
f)(1−pm

e pn
f),corresponding to the probability that at least one of the two neurons codes for dimension e andthe other for dimension f . In the case of uniform p this reduces to 2p2 − p4, so each neuron in

Gd will need an average of N(N−1)
2 (2p2 − p4) coincidence detectors, leading to an upper boundfor the expected total number of multiplicative synapses

(33) E(#multiplicative connections) ≤ NBnd
N(N − 1)

2 (2p2 − p4) ≈ NB(Np)3,

where nd = #Gd ≈ Np and NB is the number of nonzero entries in B. The equality sign holdsonly in the case NB ≤ 1.
7.8.4. Simulations. In order to simulate the connectivity we fixed a decoder density p and ran-domly filled the decoding matrix using a Bernoulli distribution B(p) in each entry for 1000 times.For the fast connections we varied the size of the output signal - i.e. the size of the decodingmatrix. For slow and multiplicative synapses the dimensionality of the signal K did not affect thedensity of the resulting connections (not shown). What influenced the amount of slow and mul-tiplicative synapses was the number of non-zero entries in the matrices A and B, respectively.
7.9. Code details.

Simulations were run in Ubuntu 20.04LTS on a Intel Core i5-6200U CPU with 32GB of RAM.The source code is available at https://github.com/michnard/mult_synapses.
Acknowledgements

A preprint version of this article has been peer-reviewed and recommended by Peer Commu-nity InNeuroscience (DOI link to the recommendation: https://doi.org/10.24072/pci.cneuro.100003).We thank Christian Machens and Nuno Calaim for useful discussions on the project. This reportcame out of a collaboration started at the CAJAL AdvancedNeuroscience Training Programme inComputational Neuroscience in Lisbon, Portugal, during the 2019 summer. The authors wouldlike to thank the participants, TAs, lecturers, and organizers of the summer school. SWK wassupported by the Simons Collaboration on the Global Brain (543009). WFP was supported byFCT (032077). MN was supported by European Union Horizon 2020 (665385).
Conflict of interest disclosure

The authors of this work declare that they have no financial conflict of interest with thecontent of this article.

20 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://github.com/michnard/mult_synapses
https://doi.org/10.24072/pci.cneuro.100003
https://doi.org/10.24072/pcjournal.69

References
Abbott LF et al. (2016). Building functional networks of spiking model neurons. Nature neuroscience19, 350–355. https://doi.org/10.1038/nn.4241.Alemi A et al. (2018). Learning nonlinear dynamics in efficient, balanced spiking networks using localplasticity rules. In: Thirty-second aaai conference on artificial intelligence. URL: https://ojs.

aaai.org/index.php/AAAI/article/view/11320.Arandia-Romero I et al. (2016).Multiplicative and additive modulation of neuronal tuning with pop-ulation activity affects encoded information. Neuron 89, 1305–1316. https://doi.org/10.
1016/j.neuron.2016.01.044.Augustine GJ et al. (2003). Local calcium signaling in neurons. Neuron 40, 331–346. https://doi.
org/10.1016/s0896-6273(03)00639-1.Baker C et al. (2020).Nonlinear stimulus representations in neural circuitswith approximate excitatory-inhibitory balance. PLoS computational biology 16, e1008192. https://doi.org/10.1371/
journal.pcbi.1008192.Barak O (2017). Recurrent neural networks as versatile tools of neuroscience research. Current opin-ion in neurobiology 46, 1–6. https://doi.org/10.1016/j.conb.2017.06.003.Barrett DG et al. (2016). Optimal compensation for neuron loss. Elife 5, e12454. https://doi.
org/10.7554/eLife.12454.Barth AL, Poulet JFA (2012). Experimental evidence for sparse firing in the neocortex. Trends inNeurosciences 35, 345–355. https://doi.org/10.1016/j.tins.2012.03.008.Boerlin M et al. (2013). Predictive coding of dynamical variables in balanced spiking networks. PLoSComput Biol 9, e1003258. https://doi.org/10.1371/journal.pcbi.1003258.CalaimN et al. (2020). Robust codingwith spiking networks: a geometric perspective. bioRxiv. https:
//doi.org/10.1101/2020.06.15.148338.Cunningham JP, Yu BM (2014). Dimensionality reduction for large-scale neural recordings. Natureneuroscience 17, 1500–1509. https://doi.org/10.1038/nn.3776.Davies M et al. (2018). Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro38, 82–99. https://doi.org/10.1109/MM.2018.112130359.Dayan P, Abbott LF (2001). Theoretical neuroscience: computational and mathematical modelingof neural systems. Computational Neuroscience Series. URL: https://mitpress.mit.edu/
books/theoretical-neuroscience.De Branges L (1959). The stone-weierstrass theorem. Proceedings of the American MathematicalSociety 10, 822–824. https://doi.org/10.1090/S0002-9939-1959-0113131-7.Denève S, Machens CK (2016). Efficient codes and balanced networks. Nature neuroscience 19,375–382. https://doi.org/10.1038/nn.4243.Eliasmith C (June 2005). A Unified Approach to Building and Controlling Spiking Attractor Networks.Neural Computation 17, 1276–1314. ISSN: 0899-7667. https : / / doi . org / 10 . 1162 /
0899766053630332.Eliasmith C, Anderson CH (2004). Neural engineering: Computation, representation, and dynamicsin neurobiological systems. MIT press. URL: https://mitpress.mit.edu/books/neural-
engineering.Eliasmith C, Stewart TC, et al. (2012). A Large-Scale Model of the Functioning Brain. Science 338,1202–1205. https://doi.org/10.1126/science.1225266.Fino E, Yuste R (2011). Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203. https:
//doi.org/10.1016/j.neuron.2011.02.025.Gabbiani F et al. (Nov. 2002). Multiplicative computation in a visual neuron sensitive to looming.Nature 420, 320–324. ISSN: 1476-4687. https://doi.org/10.1038/nature01190.Harris KD, Mrsic-Flogel TD (2013). Cortical connectivity and sensory coding. Nature 503, 51–58.
https://doi.org/10.1038/nature12654.Indiveri G et al. (2011). Neuromorphic silicon neuron circuits. Frontiers in neuroscience 5, 73. https:
//doi.org/10.3389/fnins.2011.00073.

Michele Nardin et al. 21

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.1038/nn.4241
https://ojs.aaai.org/index.php/AAAI/article/view/11320
https://ojs.aaai.org/index.php/AAAI/article/view/11320
https://doi.org/10.1016/j.neuron.2016.01.044
https://doi.org/10.1016/j.neuron.2016.01.044
https://doi.org/10.1016/s0896-6273%2803%2900639-1
https://doi.org/10.1016/s0896-6273%2803%2900639-1
https://doi.org/10.1371/journal.pcbi.1008192
https://doi.org/10.1371/journal.pcbi.1008192
https://doi.org/10.1016/j.conb.2017.06.003
https://doi.org/10.7554/eLife.12454
https://doi.org/10.7554/eLife.12454
https://doi.org/10.1016/j.tins.2012.03.008
https://doi.org/10.1371/journal.pcbi.1003258
https://doi.org/10.1101/2020.06.15.148338
https://doi.org/10.1101/2020.06.15.148338
https://doi.org/10.1038/nn.3776
https://doi.org/10.1109/MM.2018.112130359
https://mitpress.mit.edu/books/theoretical-neuroscience
https://mitpress.mit.edu/books/theoretical-neuroscience
https://doi.org/10.1090/S0002-9939-1959-0113131-7
https://doi.org/10.1038/nn.4243
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1162/0899766053630332
https://mitpress.mit.edu/books/neural-engineering
https://mitpress.mit.edu/books/neural-engineering
https://doi.org/10.1126/science.1225266
https://doi.org/10.1016/j.neuron.2011.02.025
https://doi.org/10.1016/j.neuron.2011.02.025
https://doi.org/10.1038/nature01190
https://doi.org/10.1038/nature12654
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.24072/pcjournal.69

Jaeger H (2001). The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Tech-nology GMD Technical Report 148, 13. URL: https://www.ai.rug.nl/minds/uploads/
EchoStatesTechRep.pdf.Kasthuri N et al. (2015). Saturated reconstruction of a volume of neocortex. Cell 162, 648–661.
https://doi.org/10.1016/j.cell.2015.06.054.Keemink SW,Machens CK (2019).Decoding and encoding (de) mixed population responses. CurrentOpinion in Neurobiology 58, 112–121. https://doi.org/10.1016/j.conb.2019.09.004.KoH et al. (2011). Functional specificity of local synaptic connections in neocortical networks.Nature473, 87–91. https://doi.org/10.1038/nature09880.Koch C, Poggio T (1992). Multiplying with Synapses and Neurons. In: Single Neuron Computation.Elsevier, pp. 315–345. ISBN: 978-0-12-484815-3. https://doi.org/10.1016/B978-0-12-
484815-3.50019-0.Larkum ME, Nevian T (2008). Synaptic clustering by dendritic signalling mechanisms. Current opin-ion in neurobiology 18, 321–331. https://doi.org/10.1016/j.conb.2008.08.013.Lefort S et al. (2009). The excitatory neuronal network of the C2 barrel column in mouse primarysomatosensory cortex. Neuron 61, 301–316. https://doi.org/10.1016/j.neuron.2008.
12.020.Levien R, Tan S (1993). Double pendulum: An experiment in chaos. American Journal of Physics 61,1038–1044. https://doi.org/10.1119/1.17335.Li N et al. (2016). Robust neuronal dynamics in premotor cortex during motor planning. Nature 532,459–464. https://doi.org/10.1038/nature17643. (Visited on 03/11/2021).London M, Häusser M (2005). Dendritic computation. Annu. Rev. Neurosci. 28, 503–532. https:
//doi.org/10.1146/annurev.neuro.28.061604.135703.Lorenz EN (1963).Deterministic nonperiodic flow. Journal of the atmospheric sciences 20, 130–141.
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.Maass W et al. (2002). Real-time computing without stable states: A new framework for neural com-putation based on perturbations. Neural computation 14, 2531–2560. https://doi.org/10.
1162/089976602760407955.Mancoo A et al. (2020). Understanding spiking networks through convex optimization. Advances inNeural Information Processing Systems 33. URL: https://proceedings.neurips.cc/paper/
2020/file/64714a86909d401f8feb83e8c2d94b23-Paper.pdf.Mante V et al. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex.nature 503, 78–84. https://doi.org/10.1038/nature12742.Mastrogiuseppe F, Ostojic S (2018). Linking connectivity, dynamics, and computations in low-rankrecurrent neural networks. Neuron 99, 609–623. https://doi.org/10.1016/j.neuron.
2018.07.003.Merolla PA et al. (2014). A million spiking-neuron integrated circuit with a scalable communica-tion network and interface. Science 345, 668–673. https://doi.org/10.1126/science.
1254642.Mitchell SJ, Silver RA (2003). Shunting inhibitionmodulates neuronal gain during synaptic excitation.Neuron 38, 433–445. https://doi.org/10.1016/s0896-6273(03)00200-9.Neftci EO et al. (2019). Surrogate gradient learning in spiking neural networks: Bringing the powerof gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine 36,51–63. https://doi.org/10.1109/MSP.2019.2931595.Nezis P, Rossum MCWv (May 2011). Accurate multiplication with noisy spiking neurons. Journalof Neural Engineering 8, 034005. ISSN: 1741-2552. https://doi. org/10.1088/1741-
2560/8/3/034005.Peña JL, Konishi M (Apr. 2001). Auditory Spatial Receptive Fields Created by Multiplication. Sci-ence 292, 249–252. ISSN: 0036-8075, 1095-9203. https://doi.org/10.1126/science.
1059201.Perin R et al. (2011). A synaptic organizing principle for cortical neuronal groups. Proceedings ofthe National Academy of Sciences 108, 5419–5424. https : / / doi . org / 10 . 1073 / pnas .
1016051108.

22 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.1016/j.conb.2019.09.004
https://doi.org/10.1038/nature09880
https://doi.org/10.1016/B978-0-12-484815-3.50019-0
https://doi.org/10.1016/B978-0-12-484815-3.50019-0
https://doi.org/10.1016/j.conb.2008.08.013
https://doi.org/10.1016/j.neuron.2008.12.020
https://doi.org/10.1016/j.neuron.2008.12.020
https://doi.org/10.1119/1.17335
https://doi.org/10.1038/nature17643
https://doi.org/10.1146/annurev.neuro.28.061604.135703
https://doi.org/10.1146/annurev.neuro.28.061604.135703
https://doi.org/10.1175/1520-0469%281963%29020<0130:DNF>2.0.CO;2
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://proceedings.neurips.cc/paper/2020/file/64714a86909d401f8feb83e8c2d94b23-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/64714a86909d401f8feb83e8c2d94b23-Paper.pdf
https://doi.org/10.1038/nature12742
https://doi.org/10.1016/j.neuron.2018.07.003
https://doi.org/10.1016/j.neuron.2018.07.003
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1016/s0896-6273%2803%2900200-9
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1088/1741-2560/8/3/034005
https://doi.org/10.1088/1741-2560/8/3/034005
https://doi.org/10.1126/science.1059201
https://doi.org/10.1126/science.1059201
https://doi.org/10.1073/pnas.1016051108
https://doi.org/10.1073/pnas.1016051108
https://doi.org/10.24072/pcjournal.69

Poirazi P et al. (2003). Pyramidal neuron as two-layer neural network. Neuron 37, 989–999. https:
//doi.org/10.1016/s0896-6273(03)00149-1.Popov VI, Stewart MG (2009). Complexity of contacts between synaptic boutons and dendriticspines in adult rat hippocampus: Three-dimensional reconstructions from serial ultrathin sectionsin vivo. Synapse 63, 369–377. https://doi.org/10.1002/syn.20613.Rigotti M et al. (2013). The importance of mixed selectivity in complex cognitive tasks. Nature 497,585–590. https://doi.org/10.1038/nature12160.Rubin DB et al. (2015). The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85, 402–417. https://doi.org/10.1016/j.
neuron.2014.12.026.Salinas E, Abbott LF (1996).Amodel ofmultiplicative neural responses in parietal cortex. Proceedingsof the national academy of sciences 93, 11956–11961. https://doi.org/10.1073/pnas.93.
21.11956.Schiller J et al. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404,285–289. https://doi.org/10.1038/35005094.Semedo JD et al. (2019). Cortical areas interact through a communication subspace. Neuron 102,249–259. https://doi.org/10.1016/j.neuron.2019.01.026.Song S et al. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits.PLoS Biol 3, e68. https://doi.org/10.1371/journal.pbio.0030068.Stringer C, Pachitariu M, Steinmetz N, Carandini M, et al. (2019). High-dimensional geometry ofpopulation responses in visual cortex. Nature 571, 361–365. https://doi.org/10.1038/
s41586-019-1346-5.Stringer C, Pachitariu M, Steinmetz N, Reddy CB, et al. (2019). Spontaneous behaviors drive multi-dimensional, brainwide activity. Science 364. https://doi.org/10.1126/science.aav7893.Strogatz SH (2018).Nonlinear dynamics and chaos with student solutions manual:With applicationsto physics, biology, chemistry, and engineering. CRC press. URL: https://www.routledge.com/
Nonlinear-Dynamics-and-Chaos-with-Student-Solutions-Manual-With-Applications/
Strogatz/p/book/9780813350844.Sussillo D (2014). Neural circuits as computational dynamical systems. Current opinion in neurobiol-ogy 25, 156–163. https://doi.org/10.1016/j.conb.2014.01.008.Sussillo D, Abbott LF (2009). Generating coherent patterns of activity from chaotic neural networks.Neuron 63, 544–557. https://doi.org/10.1016/j.neuron.2009.07.018.Thalmeier D et al. (2016). Learning universal computations with spikes. PLoS computational biology12, e1004895. https://doi.org/10.1371/journal.pcbi.1004895.Young AR et al. (2019). A Review of Spiking Neuromorphic Hardware Communication Systems. IEEEAccess 7, 135606–135620. https://doi.org/10.1109/ACCESS.2019.2941772.Zenke F, Vogels TP (2021). The remarkable robustness of surrogate gradient learning for instillingcomplex function in spiking neural networks. Neural Computation 33, 899–925. https://doi.
org/10.1162/neco_a_01367.Zhang D et al. (2013). Nonlinear multiplicative dendritic integration in neuron and network models.Frontiers in computational neuroscience 7, 56. https://doi.org/10.3389/fncom.2013.
00056.ZhouW et al. (Apr. 2007).Multiplicative Computation in the Vestibulo-Ocular Reflex (VOR). Journalof Neurophysiology 97, 2780–2789. ISSN: 0022-3077. https://doi.org/10.1152/jn.
00812.2006.

Michele Nardin et al. 23

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.1016/s0896-6273%2803%2900149-1
https://doi.org/10.1016/s0896-6273%2803%2900149-1
https://doi.org/10.1002/syn.20613
https://doi.org/10.1038/nature12160
https://doi.org/10.1016/j.neuron.2014.12.026
https://doi.org/10.1016/j.neuron.2014.12.026
https://doi.org/10.1073/pnas.93.21.11956
https://doi.org/10.1073/pnas.93.21.11956
https://doi.org/10.1038/35005094
https://doi.org/10.1016/j.neuron.2019.01.026
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1038/s41586-019-1346-5
https://doi.org/10.1038/s41586-019-1346-5
https://doi.org/10.1126/science.aav7893
https://www.routledge.com/Nonlinear-Dynamics-and-Chaos-with-Student-Solutions-Manual-With-Applications/Strogatz/p/book/9780813350844
https://www.routledge.com/Nonlinear-Dynamics-and-Chaos-with-Student-Solutions-Manual-With-Applications/Strogatz/p/book/9780813350844
https://www.routledge.com/Nonlinear-Dynamics-and-Chaos-with-Student-Solutions-Manual-With-Applications/Strogatz/p/book/9780813350844
https://doi.org/10.1016/j.conb.2014.01.008
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1371/journal.pcbi.1004895
https://doi.org/10.1109/ACCESS.2019.2941772
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.3389/fncom.2013.00056
https://doi.org/10.3389/fncom.2013.00056
https://doi.org/10.1152/jn.00812.2006
https://doi.org/10.1152/jn.00812.2006
https://doi.org/10.24072/pcjournal.69

Supplementary Figures
2nd order

P
S
P
 (

m
V

)

P
S
P
 (

m
V

)

P
S
P
 (

m
V

)

*

3rd order

*

4th order

*

Supp. Fig. S1 – Higher order multiplicative interactions among cells. Second (resp. third,fourth) order interactions require the post-synaptic cell to detect coincident activity intwo (resp. three, four) pre-synaptic cells.

Supp. Fig. S2 – Robustness of mSCNs. (A) Example readout of a network of 100 neuronsimplementing a Lorenz dynamical system. For the first 9 seconds, 10 neurons were arti-ficially killed every second. (B) Spike raster plot of the 100 neurons as a function of time.(C) Average squared error as a function of the proportion of neurons lost (out of 100total) for different choices of decoder density. Shaded areas represent 95th confidenceintervals. The error was computed by measuring the average squared distance of the net-work readout from the real solution of the Lorenz dynamical system (computed using aRunge-Kutta 4th order algorithm). The network was randomly initialized 1000 times andthe solution was approximated for 1 second using N = 100, 90, 80, . . . , 10 neurons, al-ways starting from the same initial starting point. The dotted line represents the averagesquared error of an hypothetical constant readout center at the mean of the real solutionin the [0, 1] time interval. (D) Peak analysis on a 200 seconds network output using 100cells (left), 10 cells and full decoder density (p=1, center), 10 cells and sparse decoder(p=0.25, right). Notice the loss of precision for the p=0.25 implementation.

24 Michele Nardin et al.

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

Input Output

Supp. Fig. S3 – Representation of the Kronecker product of the input. The Input x̂ was givenby a network which computed a Lorenz system. The second network, using eq. (23), out-puts a signal ≈ x̂⊗x̂. Blue lines represent network output, black dotted lines representthe real x̂⊗x̂.

Michele Nardin et al. 25

Peer Community Journal, Vol. 1 (2021), article e68 https://doi.org/10.24072/pcjournal.69

https://doi.org/10.24072/pcjournal.69

