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Abstract

Dating the tree of life is a task far more complicated than only determining the evolu-
tionary relationships between species. It is therefore of interest to develop approaches
apt to deal with undated phylogenetic trees. The main result of this work is a method
to compute probabilities of undated phylogenetic trees under Markovian diversification
models by constraining some of the divergence times to belong to given time intervals
and by allowing diversification shifts on certain clades. If the diversification models con-
sidered are lineage-homogeneous, the time complexity of this computation is quadratic
with the number of species of the phylogenetic tree and linear with the number of tem-
poral constraints. The interest of this computation method is illustrated with three appli-
cations, namely, to compute the distribution of the divergence times of a tree topology
with temporal constraints, to directly sample the divergence times of a tree topology,
and to test for a diversification shift at a given clade.
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Introduction

Estimating divergence times (i.e., the times of the speciation events corresponding to the in-
ternal nodes of a phylogenetic tree) is an essential and difficult stage of phylogenetic inference
(Donoghue and Yang, 2016; Kishino et al., 2001; O'Reilly et al., 2015; Rannala and Yang, 1996,
2007). In order to perform this estimation, current approaches use stochastic models for com-
bining different types of information: molecular and/or morphological data, fossil calibrations,
evolutionary assumptions etc (Gavryushkina et al., 2017; Heath, 2012; Ronquist et al., 2012;
Thorne and Kishino, 2005). An important point here is that dating speciation events is far more
complicated and requires stronger assumptions on the evolutionary process than just determin-
ing the evolutionary relationships between species, not to mention the uncertainty with which
divergence times can be estimated. It is therefore preferable to use, as much as possible, meth-
ods that do not require the exact knowledge of the divergence times. This is in particular true
for studying questions related to the diversification process since the diversification process and
divergence times are intricately linked. Diversification models are used in order to provide “prior”
probability distributions of divergence times (i.e., which does not take into account information
about genotype or phenotype of species, dos Reis, 2016; Heath, 2012; Heled and Drummond,
2015; Ho and Phillips, 2009; Yang, 2008). Conversely, estimating parameters of diversification
models requires temporal information about phylogenies.

We consider here Markovian diversification models (i.e., with independence and memory-
less properties) among which the birth-death-sampling model is arguably the simplest realistic
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model since it includes three important features shaping phylogenetic trees (Yang and Rannala,
1997, 2006). Namely, it models cladogenesis and extinction of species by a birth-death pro-
cess and takes account of the incompleteness of data by assuming a uniform sampling of extant
taxa. The birth-death-sampling model has been further studied and is currently used for phy-
logenetic inference (dos Reis, 2016; Heled and Drummond, 2015; Stadler, 2009; Stadler and
Yang, 2013). Since assuming constant diversification rates along time is sometimes unrealistic,
the birth-death-sampling model has been extended in various ways. The generalized birth-death
process proposed in Kendall (1948) enables us to consider time-varying rates. In the model pre-
sented in Stadler (2011), the diversification rates are piecewise-constant and the model sup-
ports the sampling of lineages not only at the present time but also at given past times in order
to model mass extinction events. We combined the features of these two models to devise the
sampled-generalized-birth-death model which allows both times-varying rates and past and extant
samplings (Appendix B). The main goal of this work is to present methods to compute probabil-
ities of undated phylogenies under certain assumptions about divergence times and about the
diversification process under general models. Though this study focuses on methodological and
computational aspects, three applications illustrating its practical interest are provided.

The first result is a method to compute the probability, under a Markovian diversification
model, of a tree topology in which the divergence times are not exactly known but can be “con-
strained” to belong to given time intervals. This computation is performed by splitting the tree
topology into small parts involving the times of the temporal constraints, referred to as patterns,
and by combining their probabilities in order to get the probability of the whole tree topology. If
the diversification model is lineage-homogeneous, the total time complexity of this computation
is quadratic with the size of the phylogeny (i.e., its total number of nodes) and linear with the
total number of constraints. Its memory space complexity is quadratic with the size of the phy-
logeny. In practice, it can deal with phylogenetic trees with hundreds of tips on standard desktop
computers.

This computation can be used to obtain the divergence time distributions of a given undated
phylogeny with temporal constraints, which can be applied to various questions. First, it can be
used for dating phylogenetic trees from their topology only, like the method implemented in the
function compute.brlen of the R-package APE (Grafen, 1989; Paradis et al., 2004). It also enables
us to visualize the effects of the model parameters on the prior divergence times distributions,
to investigate consequences of evolutionary assumptions etc. Last, it can provide prior distribu-
tions in phylogenetic inference frameworks. Note that the ability to take into account temporal
constraints on the divergence times is particularly interesting in this context since in the calibra-
tion process, fossil ages are generally used for bracketing some of the divergence times (Marshall,
2008). The computation of the divergence time distribution is illustrated with a contrived exam-
ple in order to show the influence of the temporal constraints and on a real phylogenetic tree
in order to show the influence of the parameters of a simple birth-death-sampling model on the
divergence time distributions. A previous method for computing divergence time distributions
under the birth-death model (Gernhard, 2008) is briefly recalled in Section 6.1. By reviewing this
work, Amaury Lambert proposed an alternative method to compute the divergence time distri-
bution with temporal constraints, which has the same computational complexity as the approach
presented here. This alternative method is presented in Section 6.2. The methods presented in
Sections 6.1 and 6.2 both require that the divergence times are independent and identically dis-
tributed under the diversification model considered, an assumption which is not necessary with
the approach presented here.

The computation of the probability of a tree topology under a given model allows us to sam-
ple all its divergence times under this model. In particular, this sampling procedure can easily be
integrated into phylogenetic inference software (Drummond et al., 2012; Fredrik Ronquist et al.,
2012), e.g., for proposing accurate MCMC moves.

A second result shows how to calculate the probability of a tree topology in which a given
clade is assumed to diversify following a diversification model different from that of the rest of
the phylogeny. A natural application of this computation is to test diversification shift in undated
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phylogenies. It is used to define a likelihood ratio test for diversification shift which is compared
with three previous approaches studied in Wertheim and Sanderson (2010).

Last, the approach presented here can be extended in order to take into account fossils. In
Didier and Laurin (2020), we started to work in this direction by determining divergence time
distributions from tree topologies and fossil ages under the fossilized-birth-death model in order
to obtain better node-calibrations for phylogenetic inference.

C-source code of the software performing the computation of divergence time distributions
and their sampling under (piecewise-constant-)birth-death-sampling model and the shift detec-
tion test is available at https://github.com/gilles-didier/DateBDS.

The rest of the paper is organized as follows. Diversification models and birth-death-sampling
models are formally introduced in Section 1.1. Section 2 presents definitions and some results
about tree topologies. The standard and special patterns, i.e., the subparts of the diversifica-
tion process from which are computed our probabilities, are introduced in Section 3. Sections 4
and 5 describe the computation of the probabilities of tree topologies with temporal constraints
and diversification shifts, and show that this computation is quadratic with the size of the tree
topology. Divergence time distributions obtained on two examples are displayed and discussed
in Section 6. The method for directly sampling the divergence times is described in Section 7.
Last, Section 8 presents a likelihood ratio test derived from the computation devised here, for
determining if a diversification shift occurred in a tree topology. Its accuracy is assessed and
compared with three previous tests of diversification shift. Appendices start with a table of no-
tations, followed with the presentation of the sampled-generalized-birth-death model then with
the proofs of theorems.

1. Diversification models

The methods presented below apply to general diversification models. Namely, a diversifica-
tion model © provides the parameters of a stochastic process which starts with a single lineage
at time s and ends at time e, where e is usually the present time (both s and e are parameters
of ©). At any time t between s and e, two types of event may occur on a lineage alive at t: a
speciation event, which gives rise to a new lineage and an extinction event which basically kills
the lineage. We also assume that the lineages alive at the end time e are sampled in a certain
way (Fig. 1). A lineage alive at the end time which is not sampled has to be interpreted as a taxa
which is not included in the study, for instance because it is unknown.

An important point is to distinguish between the part of the process that actually happened,
which will be referred to as the complete process (Fig. 1-Left) and the part that can be observed
from the available information at the present time (i.e., from the sampled extant taxa), which will
be referred to as the reconstructed process (Fig. 1-Right). More formally, for all times t € [s, €], a
lineage alive at time t is observable if itself or at least one of its descendants are both alive and
sampled at the end time e. We assume that the reconstructed process, which encompasses all
the observable parts of the diversification, is the only information available.

Let © be a diversification model starting at s and ending at ¢, 7 be a tree topology and t and
t' be two times such that s < t < t/ < e. We assume that we are able to compute under ©:

e To(7), the probability that the reconstructed tree topology is 7 conditionally on the
number of tips of T,

e Qo(t, t’, N), the probability that a lineage alive at time t has N descendants at time t’ if
t’ < e and N descendants sampled at time e otherwise,

e Og(t), the probability that a lineage alive at time t has at least a sampled descendant at
the end time e.

For a diversification model starting at s and ending at e and a time t € [s, e], we put O for
the model © restricted to the time interval [t, e]. Namely, ©[;; models the evolution of a lineage
alive at t until e under ©.

A diversification model © is Markovian if conditionally of being alive at a time t between s
and e, the evolution of a lineage from t is independent of its evolution before t and of that of the
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Figure 1 - Left: the whole diversification process; Center: the part of the process that
can be reconstructed is represented in plain - the dotted parts are lost (sampled extant
species are those with ‘v’); Right: the resulting phylogenetic tree.

other lineages. A diversification model © is lineage-homogeneous if conditionally at occurring at
a time t, any event of the process occurs on all the lineages alive at t with equal probabilities.

1.1. Birth-death-sampling models.

Under a birth-death-sampling model, the dynamics of speciation and extinction of species
follows a birth-death process with constant rates A and 1. both through time and lineage, starting
at origin time s and ending at time e which is generally the present time (Nee et al., 1994). Fol-
lowing Yang and Rannala (1997), each extant species is assumed to be independently sampled at
the end time e with probability p. The whole model will be referred to as the birth-death-sampling
model and has thus five parameters:

s: the origin time of the diversification process,

e: the end/present time,

A: the speciation rate,

u: the extinction rate and

p: the probability for an ending/extant taxa to be sampled.

Let us start by recalling some already derived probabilities of interest. By assuming that the
diversification follows a simple birth-death process (i.e., with p = 1) with speciation rate X and
extinction rate , the probability py(t) that a single lineage at time 0 has exactly N descendants
at time t was given in Nee et al. (1994). We have that

0 (1 _ e*(A*u)t)
A\ — Iue*()\*ﬂ)f
, (/\(1 - e’(/\’“)t))

(>\ o ,Lbei()‘iu’)t) N+1 -

po(t) = and for all N > 0,
N-1

pn(t) = (A —p)Pe Ot

If one assumes that the diversification follows a birth-death-sampling process with speciation
rate A and extinction rate y, the probability p} (t) that a single lineage at time 0 has exactly N
descendants sampled with probability p at time t was given in Yang and Rannala (1997). We have
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that

) and for all N > 0,

— e~ (A—p)t e~
wi) = O ) gA

pA+ (A ( ) p)e=(A=mt
( (1—e (-1 ))Nfl
(P + (A1 = p) — p)e=Amr)VFL

Let © = (s, e, A, i, p) be a birth-death-sampling model. For all pair of times t and ¢’ with
s < t < t/ and all number N, we define Qo(t, t’, N) as the probability under the model © that a
lineage alive at time t has N descendants alive at time ¢’ if ' < e and N descendants alive and
sampled if t’ = e. We have that

pr(t) = pM(A — p)2e it

u(l_e—u—m(r’—r)

Qo(t, t',0) = A—pe DI -
+(AA—p)—p)e=A=ple=t) .
ZLEAE%Z;—Zieﬁwxeft) if ' = e and for all N > 0,

ift' <e,

N—1

(A(l_e—(/\—u)(t’—t))>
T if t/ <e,

A — 1)2e—(A—p)(t'—1) .
Qo(t, t' N) = ( 2 (A—pe=(=m(t'=1) .
PN — p)2e-(m)(emt)___(Ma=e 070E9)

if t/ = e.
(PA+HA(1—p)—p)e—A—me=0)) T

The probability Og(t) for a lineage living at time ¢ in the complete diversification process (as
in Figure 1-Left) to be observable (i.e., to be part of the reconstructed process) is the comple-
mentary probability of having no descendant sampled at time e. We have that

p(A — 1)
pA+ (A1 = p) — p)e~A=mle=t)’

By construction, birth-death-sampling models are both Markovian and lineage-homogeneous.

Oo(t) =1-Qe(0,t,e) =

2. Tree topologies

Tree topologies arising from diversification processes are binary (since a speciation event
gives rise to a single new lineage under the models considered here) and rooted thus so are all
the tree topologies considered here. Moreover, all the tree topologies considered below will be
labeled, which means their tips, and consequently all their nodes, are unambiguously identified.
From now on, “tree topology” has to be understood as “labeled-rooted-binary tree topology”.

Since the context will avoid any confusion, we still write 7 for the set of nodes of any tree
topology 7. For all tree topologies T, we put Ly for the set of tips of 7. For all nodes n of T, we
note 7, the subtree of T rooted at n.

For all sets S, |S| denotes the cardinality of S. In particular, |7| denotes the size of the tree
topology 7 (i.e., its total number of nodes, internal or tips) and |L7| its number of tips.

2.1. Probability.

Let us define To(7) as the probability of a reconstructed tree topology 7 given its number
of tips under a lineage-homogeneous diversification process.

Theorem 1 (Harding, 1971). Given its number of tips, the reconstructed tree topology T of a real-
ization of a lineage-homogeneous diversification process has probability T(T) = 1if |T| =1,ie, T
is a single lineage. Otherwise, by putting a and b for the two direct descendants of the root of T, the
probability of the tree topology T is

2|L7, 'L, |!

T = (D

T(T2)T(Ts).
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5 ; Q7 = {0, {a}, {a,b}, {a,c}, {a, c,d}, {a,b,c}, {a, b, c,d}}
a h Q'.ﬁc = {{a7c}./{a,c,d},{a,b,c},{a,b,c,d}}
{ i Q5. = {0,{a},{a,b}}

- ¢ QF = {{a}, {a,b}}

b b ;
{ a

d d
C C
e e
Ff{a,c} F7,“{a.,b,<:}

Figure 2 - A tree T (top-left), examples of sets of start-sets of 7 of various types (top-
right) and the start-trees of 7 associated to the start-sets {a, ¢} and {a, b, c} (bottom).

Assumptions of Harding (1971) are slightly different from those of Theorem 1 but its argu-
ments still hold. The probability provided in Didier, Fau, et al. (2017, Supp. Mat., Appendix 2) is
actually the same as that just above though it was derived in a different way from Harding (1971)
and expressed in a slightly different form (see Didier and Laurin, 2020, Appendix 1).

Theorem 1 implies in particular that T(7) can be computed in linear time through a post-
order traversal of the tree topology 7.

2.2. Start-sets.

A start-set of a tree topology 7T is a possibly empty subset A of internal nodes of 7 which is
such that if an internal node of 7 belongs to A then so do all its ancestors. Remark that, basically,
the empty set () is start-set of any tree topology and that if Aand A’ are two start-sets of 7 then
both AU A" and AN A’ are start-sets of 7.

Being given a tree topology 7 and a non-empty start-set A, we define the start-tree I'1- 4 as
the subtree topology of 7 made of all nodes in A and their direct descendants. By convention,
I, the start-tree associated to the empty start-set, is the subtree topology made only of the
root of 7.

For all tree topologies T, we define

Q7 as the set of all start-sets of T, and for all internal nodes n,
T n as the set of all start-sets A of 7 such that n € A,
Tnas the set of all start-sets A of 7 such that n ¢ A, and

Qfxr’n as the set of all start-sets A of 7 such that nis a tip of ' 4.

Figure 2 displays examples of start-trees and of sets of start-sets of the types above.

3. Patterns

In this section, we shall consider diversification processes starting at origin time s and ending
at time e following a birth-death-sampling model © = (s, e, A, 1, p). A pattern is a part of the
observed diversification process starting from a single lineage at a given time and ending with
a certain number of lineages at another given time, these ending lineages being either observ-
able or special, where “special” means “only known to be alive at the end time (and selected for
some reason in the dataset)”. It consists of a 3-tuple (t, t’, 7) where t and t’ are the start and
end times of the pattern and 7T is the resulting tree topology. We shall consider two types of
patterns: standard and special patterns. Standard patterns ends with only observable lineages.
All the ending lineages of a special pattern are observable except one which is special (Fig. 3).
Standard and special patterns are very similar to patterns defined in Didier, Fau, et al. (2017) for
the fossilized-birth-death process.
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N lineages

N lineages observable at ¢’

observable at t’

e @ “special” lineage

e .
alive at ¢/

; ; ; ;
Standard pattern (¢,t¢',7T) Special pattern (¢,t',7T)

Figure 3 - The two types of patterns used to compute probability distributions.

3.1. Standard patterns.

Definition 1. A standard pattern (t, t', T) starts with a single lineage at time t and ends with a tree
topology T and |L| observable lineages at time t’ (Fig. 3-left).

Let us compute the probability Xg(t, t’, N) that a single lineage at time t € [s,e) has N
descendants observable at time t’ € (¢, €] under the diversification model ©. This probability is
the sum over all numbers j > 0, of the probability that the lineage at t has j + N descendants
at t’ in the whole process, which is equal to Qe(t, t', j + N), among which exactly N ones are
observable (i.e., (fJ,rVN)O@(t’)N (1 — 0g(t'))). Under the diversification model ©, we thus have

(1) Xo(t, t', N) = i Qo(t, t',j+ N) (j JIFVN> 0o (t)" (1 - 0p(t)) .
j=0

If © is the birth-death-sampling model (s, e, A, p, p), Equation (1) becomes
(AA,Mye—u—uxﬂ—ﬂ(AU_,e—@—MUt%U)N‘lo@(yyv
(A0 (') + (M1 — Op (1)) — p)e=(mmir—) N+t

The probability of the standard pattern (t,t’, T) is the probability of the tree topology 7
conditioned on its number of tips, which is To(7) multiplied by the probability of observing this
number of tips in a standard pattern, which is that of getting |L| observable lineages at t’ from
a single lineage at t, i.e., Xo(t, t', [L7]).

X@(t, t/, N) =

Claim 1. Under the diversification model ©, the probability of the standard pattern (t, t', T) with
s<t<t <eis

To(T)Xe(t, t', LT]),
where Tg = T if © is lineage-homogeneous.

3.2. Special patterns.

Definition 2. A special pattern (t, t', T) starts with a single lineage at time t € [s, e) and ends with
the tree topology T att’ € (t, €], thus with |L| descendants at t’ among which |L+|—1 are observable
and one is a distinguished “special” lineage of fate a priori unknown after t' (Fig. 3-right).

Let us now compute the probability Ygo(t, t/, N + 1) that a single lineage at time t € [s, e) has
one special descendant and N descendants observable from e at time t’ € (¢, €]. This probability
is the sum over all numbers j, of the probability that the lineage at t has j+ N +1 descendants at ¢/
in the whole process, which is equal to Qg (¢, t/, j+ N+1), among which the special one is picked,

exactly n ones are observable and j ones are not observable, which leads to (j + N + 1)(fJIFV’V) =

(N+ 1)(1'%’5’;1) possibilities. Under the diversification model ©, we have that

2 Yo(t,t',N+1)= i Qo(t, t',j+ N-+1)(N+1)

C+N+1
j=0

N )odﬂwwl—o@amﬁ
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If © is the birth-death-sampling model (s, e, A, 1, p), Equation (2) gives us that
/ ’ N
(N + (A — e o0 (31 — e O D) 00 (1))

(AOo(t') + (A1 — 0o (t')) — p)e—O-m(r—0)N+2

The probability of the special pattern (t, t’, T) is the probability of the tree topology 7 con-
ditioned on its number of tips, which is Tg(7) multiplied by the probability of observing this
ending configuration in a special pattern, i.e., Yo(t, t/, |L7]).

Yo(t, t',N+1)=

Claim 2. Under the diversification model ©, the probability of the special pattern (t,t',T) with
s<t<t <eis

To(T)Ye(t, t', LT]),
where Tg = T if © is lineage-homogeneous.

4. Probability densities of topologies with temporal constraints and shifts

The probability Pg(7) of observing a tree topology 7 under a diversification model © with
origin and end times s and e is that of the corresponding standard pattern, i.e., we have that

Po(T) = Te(T)Xe(s e |L7]).

We shall see in this section how to compute the probability of a tree topology under the con-
straint that some of its divergence times are known to be anterior or posterior to given times.

4.1. Temporal constraints.

Let us put 7, for the (random variable associated to the) divergence time corresponding to
the node n of 7. Being given internal nodes ny, ...,ny, nf, ...,n}, of T and times vy, ..., uy, ug, ...,
uy between s and e (both not included), we aim to compute the joint probability of 7" and of
observing 7,, < uy, ..., Tn, < uy, o, > T/ o, > uj, under the model ©, i.e.,

Pe(T,u,[,) = P@(T, Tny <Uut, ---ang<UZani>Ullv ,Tn2/>uzl).

The temporal constraints induced by the tree topology, i.e., that we have necessarily 7, < 7,
if nis an ancestor of m are implicitly assumed granted in the probability above. The constraints
Ty < U1, ..., Tn, < up Will be referred to as upper temporal constraints and summarized as the
set of pairs “node-time” & = {(n, u1), ..., (e, ue)}, and the constraints 7, > uj, ..., T, 2
uy, will be referred to as lower temporal constraints and summarized as the set of pairs £L =
{(n}, u), ..., (n}y, up)}. We assume that the temporal constraints are consistent with another
(otherwise they would basically lead to a null probability). For all subsets of internal nodes S of
T, we write Us) (resp. Ls)) for the set of upper (resp. lower) temporal constraints of ¢/ (resp.
of £) involving nodes in S, namely Uis; = {(n;, ;) | (nj,u;) € Uand n; € S} (resp. Lig) =
{(n}, ) | (n},u}) € Land n} € S}). For all times ¢, we define =" (resp. L=) as the set of
temporal constraints of ¢/ (resp. £) involving t, namely, =" = {(nj, y;) | (nj, u;) € U and u; = t}
(resp. L= = {(n}, u}) | (n}, u}) € £ and u} = t}). In the same way, we define /=" and L~* as the
subsets of temporal constraints of &/ and L respectively, which involved times strictly posterior
tot,ie, U=t = {(n;, u;) | (nj,uj) €U and u; > t} and L7 = {(n}, u}) | (n}, u}) € Land u} > t}.
Theorem 2. Let T be a tree topology, © be a Markovian diversification model from origin time s to
end time eand U = {(n1, u1), ..., (ng, ug)} and £ = {(n}, uy), ..., (n}y, up )} be two sets of upper and
lower temporal constraints respectively. Let o be the oldest time involved in a temporal constraint or
the end time if there are none, namely,

o = min{e, min{t | 3n € T such that (n, t) € U}, min{t | 3n € T such that (n, t) € L}}.

Let us define the set S of internal node subsets of T as the intersection of

N(noyerr= yn IFUT F# 0, and Nnoyer=e Ur, IfLT # 0,
27 otherwise, Qr otherwise.
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Figure 4 - Schematic of the computation of the probability Po (7, {(b, t)}, #), i.e., that
the divergence time associated with node b is strictly anterior to t. Under the notations
of Theorem 2, we have that S = Q.. Nothing is known about divergence times in the
gray part of the tree at the left. The only information about divergence times in black

parts of all trees is their relative position with regard to t.

b e

The joint probability Po (7 ,U, L) of observing the tree topology T with the temporal constraints

U and L under © veriﬁes
Poy, (To U3 £57%)ILr !
L To(l74)X L ifo < e,
Po(T,U, L) = |L i 2 Il Te(Tra)Xe(s.o. ”“'361;[” 06 (0) fo<e
To(T)Xe(s, e |L7|) ' otherwise,
where ©y, is the model © restricted to the time interval [o, e].
Proof. Appendix C.1. O

The general idea of the computation presented in Theorem 2 is first to consider the oldest
time involved in a temporal constraint (referred to as o in Theorem 2 and which is t in Figure 4),
then to consider the part of the diversification process which occurred before the oldest time
and the part(s) which occurred after the oldest time.

An issue here is that these parts are a priori unknown since, by construction, they are deter-
mined by the relative positions of the divergence times with regard to the oldest time. If some
of the divergence times are directly or indirectly (from their ancestors or their descendants) con-
strained, thus known, to be posterior or anterior to the oldest time, some of them may be not
and we have to consider all the possibilities consistent with the temporal constraints as displayed
in the left-hand side of the second column of Figure 4. Remark that since all these possibilities
are mutually exclusive, their respective probabilities can be summed in order to obtained the
probability of the initial tree topology with the given temporal constraints.

In order to compute the probability of each possibility (i.e., in which all the relative posi-
tions of the divergence with regard to the oldest time are fixed), we use the Markov property
to write the probability of the tree topology with the temporal constraints as the product of the
probability of the part of the diversification which happened before the oldest time (which by
construction contains no temporal constraint and therefore is a standard pattern) to the prob-
abilities of the parts which happened after the oldest time which is a set of independent tree
topologies starting from the oldest time with possibly some time constraints, which all involved
times posterior to the oldest time. This part of the computation is illustrated by the five lines of
Column 2 in Figure 4, in which the right-hand sides start with standard patterns corresponding
to the diversification anterior to the oldest time which are followed by a certain number of tree
topologies starting from the oldest time (in this case without time constraints since the example
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Figure 5 - A tree topology with a shift at time t for the clade {e, j, k}.

contains only one constraint) corresponding to the diversification posterior to the oldest time.
For all the possibilities, Claim 1 allows us to directly compute the part of diversification anterior
to the oldest time.

Theorem 2 states that Po(7, U, £) can be either calculated directly (if o = €) or expressed as
a sum-product of probabilities of tree topologies with temporal constraints under birth-death-
sampling models whose starting time is strictly posterior to the starting time of ©, on which
Theorem 2 can be applied and so on. Since each time that Theorem 2 is applied, we get tree
topologies under models and temporal constraints in which the starting time has been discarded,
we eventually end up in the case where the oldest time is the end time of the diversification for
which the probability can be calculated directly. To summarize, the probability Po(7,U, £) can
be computed by recursively applying Theorem 2.

4.2. Shifts.

We shall see how to compute the probability of a tree topology 7 under a diversification
model © starting at s and ending at e by assuming that one of its clades follows another diversi-
fication model © from a given time t € [s, €] to the end time e. Note that this implicitly assumes
that the lineage originating this particular clade was alive at t (Fig. 5).

Theorem 3. Let T be a tree topology, s < t < e be three times, © and O be two Markovian diversi-
fication models from origin times s and t respectively and both to end time e, and m be a node of T.
By putting ©y for the model © restricted to [t, €], the probability S (7', m, t) of observing the tree

topology T assuming that evolution follows © on T except on 7T,, on which it follows © from time t

verifies
1 Py, (Tn)IL7!
Sea(T.mt)=—= > (Lrpl-D)!Te(T7.a)Ye(s t, |Lr, )Ps(Tm) L7 ' [T — R
' ILr|! Oo(t)
AEQ;m nGLrTA\{m}
Proof. Appendix C.2. O

The idea of the proof is essentially the same as that of Theorem 2.
Let us remark that the trees starting from t are standard patterns. It follows that S (7, m, t)
can be equivalently written as

1
Sea(T.mt)=r— > (Lrr,l = D'Te(l7a)Ye(s t. [Lr, ) Te(Tm)X5(t & L7, ) IL7, !
' Ll AeQX
T.m
To(Tn)Xe,(t. & [L7.[)ILT,|!
Oo (1) '

neLr ,\{m}

5. A quadratic computation

Since the number of start-sets may be exponential with the size of the tree, notably for
balanced trees, Equations of Theorems 2 and 3 do not directly provide a polynomial algorithm for
computing the probabilities considered in these theorems. In the case where the diversification
is lineage-homogeneous, the form of the probability of the tree topology conditioned on its
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number of tips provided by Theorem 1 allows us to factorize the computation of Theorem 2
(and of Theorem 3) in order to obtain a polynomial algorithm. Let us sketch the general idea of
this computation.

In the case where the diversification model © is lineage-homogeneous, Theorem 1 implies
that Tg = T. Let us assume that the temporal constraints are such that &/ U £ # () and let a and
b be the two direct descendants of the root of 7. For all start-sets A of T, we define A3 and A4
as the subtrees of I'1-4 rooted at a and b respectively, namely A3 = I'7. an7, and /\Q\ =T7 AT,
From Theorems 2 and 1, we have that

1 Poy, (T Uz L) ILT !
Po(T .U, L) = = ST LA T(Tra)Xe (s 0, Lr )V [T —2 0 ( )
AGS neLrTA @
|LrTA’|X@ 5,0, ’LrTA‘) b
Laa HLAs P T(AZ)T(A
(G (e Rl ogoimal MM TORT(N

HP@[ol (Tn, U[T] [T])“'T"|

n€lrr,

Since by construction a tip of ['14 is either a tip of A3 or a tip of AB, we have basically that

HP@H 77"U[T] [>Tcn)])||‘7"|! -

HGLrTA

[1Pey (To Ui LEDILTIY | % | TTPey (Ta Ui L)L !

nGL/\a neL,p A
It follows that
Po(T,U,£) = G —31Li 3 Ml x £(83)  £(1%).
where
f(k) = k)(()@(()k) for all positive integers k, and,
g(A\) = |LAI'T(A H Po, (77,,U[>T [T])|L7—n|| for all start-trees A of a subtree of T.

nelp

In plain English, computing Po(7,U, £) requires to sum over all start-sets A in S, f(|L]) x
g(A3) x g(AL), a product of three factors where the first one depends only on the number of
tips of ' 4 and the two following ones depend on the subtrees A3 and /\’j‘ respectively (i.e., on
the start-set A and on the subtrees 7, and 7j).

Let us start by regrouping the terms of the sum with respect to the number of tips of the
corresponding start-trees:

> F(ILryal) x g(A) x g(A5) = Zf x> g(A3) x g(A3).

AeS AES, “-FTA| k

Next, we put AZ (resp. Ag) for the set of subtrees rooted at a (resp. at b) of the start-trees
Fraforall Ac S, namely AZ = {A3 | Ac S} and A2 = {A5 | A € S}. Moreover, forall A € S
and since AZ and A} are the two subtrees pending from the root of '7-4, we have that |Lr, | = k
if and only if ]L/\;|+\L,\g\ = k. Forall k, aset Abelongs to S andis such that |Lr,| = k if and only

if there exist a tree 7/ € AZ and a tree 7" € A% such that A is the union of the root of 7" and of
nodes of 7/ and 7" and |Ly|+|Ly~| = k. It follows that the terms of 2 AES ILry =k g(N3) xg(AR)
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can be regrouped and factorized in order to get that

k—1
> g(Aa) x g(h3) = ( > g(T’)) X > g(T")

AES |Lr,|=k i=1 \T"eA%,|Lp|=i TUENb Ly =k—i

To summarize, if the quantities >-7cas 1,1~ 8(T") and qucas 1, =k—; &(T") are assumed
known, we have written Po(7,U, L) as a sum of a quadratic number of terms, namely

2 = ! 1
Pe(Truyﬁ):(‘LT|_1)(|LT!)2;f(k)Z( > gm)x > e

i=1 \T"€AZ,[Ly/|=i TVENL Ly |=k—i

Appendix C.3 shows how the quantities >=7icas 1, 1= 8(T") and Xrvent 1, =i 8(T"),
which are referred to as W, ; and W,, ,_; respectively in the appendix, can be recursively com-
puted in order to obtain a computation with total complexity quadratic with the size of 7. We
eventually obtain the following theorem.

Theorem 4. Let T be a tree topology, © be a lineage-homogeneous Markovian diversification model
and U and L be two sets of upper and lower temporal constraints respectively. If the probability of the
ending configuration of any standard pattern can be computed in constant time then the probability
Po(T.U, L) can be computed with complexity O(1) both in time and memory space if [/UL| = 0 (i.e.,
if there are no constraints) and with time complexity O(|U{ U L| x | T |*) and memory space complexity
O(|T?) otherwise.

Proof. Appendix C.3 O

Theorem 4 holds in particular for birth-death-sampling models and sampled-generalized-
birth-death models presented in Appendix B.
It can be proved in the same way that the shift probability Se é(T' m, t) of Theorem 3 can

be computed with time and memory space complexity O(|7?) if the probability of the ending
configuration of any standard or special pattern can be computed in constant time and if the
diversification process is lineage-homogeneous.

6. Divergence time distributions

We shall apply Theorem 2 to compute divergence time distributions of tree topologies with
temporal constraints.

Claim 3. Let T be a tree topology, © be a diversification model from origin time s to end time e,
U={(m,u),...,(ne,u))}yand £ = {(n}, u}), ... (n}, uj,)} be two sets of upper and lower temporal
constraints respectively and m be an internal node of T. The probability that the divergence time r,
associated with m is anterior to a time t € [s, €] conditioned on observing the tree topology T with
the temporal constraints U and L under © is

Po(T, UU{(m, t)}, L
P@(T,Tm<t,7'n1<u1,...,Tn{>u/1,...|T,T,,1<u1,...,7',,i>ui,...): ( P@(T,{?E{,E))} )

The computation of the divergence time distributions was performed on a contrived tree
topology and on the Hominoidea subtree. Results are displayed in Figures 6 and 7 where the
probability densities are computed from the corresponding distributions by finite difference ap-
proximations.

Figure 6 shows how considering models which are not time-homogeneous such as the piece-
wise-constant-birth-death models and adding temporal constraints on some of the divergence
times influences the shapes of the divergence times distributions of all the nodes of the tree
topology. In particular, divergence time distributions may become multimodal, thus hard to sam-
ple. Let us remark that a temporal constraint on the divergence time of a node influences the
divergence time distributions of the other nodes of the tree topology, even if they are not among
its ascendants or descendants.
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Figure 6 - Divergence time probability densities of the tree displayed at the top, in the
first row of plots by assuming a diversification process running from time 0 to 10 under
a birth-death-sampling model with parameters A = 0.2, x = 0.02 and p = 0.5 between
times 0 and 10 and in the second row of plots by assuming a piecewise constant birth-
death-sampling model with parameters \g = 0.1, 1o = 0.02 and pg = 0.1 between times
0 and 4 (only 10% of the lineages survives to time 4) and parameters \; = 0.2, 1 = 0.02
and p; = 0.5 between times 4 and 10. Plots of the first column are computed with no
constraint on the divergence times and those of the second column by constraining the
divergence time associated to node e to be anterior to 7. Densities of nodes d and e are
confounded in the plots of the first column. Densities was obtained from the correspond-

ing distributions by finite difference approximations.
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In order to illustrate the computation of the divergence time distributions on a real topology,
let us consider the Hominoidea subtree from the Primates tree of dos Reis et al. (2018). The
approach can actually compute the divergence time distributions of the whole Primates tree of
dos Reis et al. (2018) but they cannot be displayed legibly because of its size.

The divergence time distributions were computed under several (simple) birth-death-sampling
models, namely all parameter combinations with A = 0.1or 1, u = A—0.090r A—0.01and p = 0.1
or 0.9. Since the difference \ — i appears in the probability formulas, several sets of parameters
are chosen in such a way that they have the same difference between their birth and death rates.

Divergence time distributions obtained in this way are displayed in Figure 7 around their
internal nodes (literally, since nodes are positioned at the median of their divergence times).
Each distribution is plotted at its own scale in order to be optimally displayed. This representation
allows us to visualize the effects of each parameter on the shape and the position of distributions,
to investigate which parameter values are consistent with a given evolutionary assumption etc.

Birth-death-sampling models are not identifiable, since several sets of parameters leads to
the same probability distributions. Namely, p and p’ being two sampling probabilities, if one sets
N =r¥p and i/ = p— A1 — »/p’), the probability densities of any phylogenetic tree (by consid-
ering or not considering its divergence times) is the same under the model (s, e, A, 11, p) as under
the model (s, e, X', 1/, p’) (Stadler, 2009). An identifiable parametrization of birth-death-sampling
models is provided in Stadler (2009).

We observe on Figure 7 that, all other parameters being fixed, the greater the speciation/birth
rate \ (resp. the sampling probability p), the closer are the divergence time distributions to the
end time.

Influence of the extinction/death rate on the divergence time distributions is more subtle and
ambiguous, at least for this set of parameters. All other parameters being fixed, it seems that an
increase of the extinction rate tends to push distributions of nodes close to the root towards the
starting time and, conversely, those of nodes close to the tips towards the end time.

The divergence time distributions obtained for A = 0.1, © = 0.01 and p = 0.9 (Fig. 7, column
2, top) and for N = 1, i/ = 0.91 and p’ = 0.1 (Fig. 7, column 1, bottom) are very close one
to another. The same remark holds for A = 0.1, x = 0.09 and p = 0.9 (Fig. 7, column 4, top)
and for N’ = 1, ¢/ = 0.99 and p’ = 0.1 (Fig. 7, column 3, bottom). This certainly comes from
identifiability issue of the birth-death sampling model since in both cases we have that \' ~ )/,
and p/ ~ p— N1 —r/p).

The variety of shapes of divergence times probability densities observed in Figures 6 and 7
exceeds that of standard prior distributions used in phylogenetic inference, e.g., uniform, lognor-
mal, gamma, exponential (Heath, 2012; Ho and Phillips, 2009).

6.1. A previous approach.

A previous approach for computing the probability density of a given divergence time is pro-
vided in Gernhard (2008). It is based on the explicit computation of the probability density fAkt

of the kt" divergence time of a tree topology with n tips starting at t from the present, provided
in Gernhard (2008), and the computation of the probability P(r(v)=k) for the rank r(v) of the di-
vergence time associated to the vertex v to be the k" which was given in Gernhard et al. (2006).
The probability density f, of the divergence time associated to a vertex v of a tree topology with
n tips is then given for all times s by

n—1
f,(s) = Z P(r(v):k)fAﬁ,t(s)'
k=1
The probability density fAﬁ ) is computed in constant time and the probabilities P(r(v)=k) for all
nodes v are computed in a time quadratic with the size of the tree.
The computation of the probability density of the k" divergence time of tree relies on the
fact that, under some homogeneity assumption, the divergence times are independent and iden-
tically distributed (iid) random variables. Approach provided in Gernhard (2008) was described
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Figure 7 - Divergence time probability densities of the Hominoidea tree from dos Reis
et al. (2018) under birth-death-sampling models with parameters A = 0.1 or 1, x = 0.01
or 0.09 and p = 0.1 or 0.9. Internal nodes are positioned at their median divergence
time. Densities was obtained from the corresponding distributions by finite difference
approximations.

in the case of birth-death models. It can be easily adapted to deal with piecewise-constant-
birth-death-sampling models but extending this approach in order to compute divergence times
distribution with temporal constraints requires to consider all the orders consistent with the set
of constraints, which is certainly feasible but seems not straightforward.

6.2. An alternative method.

By reviewing the present work, Amaury Lambert proposed an alternative method, which
requires the property that the divergence times are iid random variables, to compute the prob-
ability that the divergence times of a tree topology satisfy a given set of temporal constraints.
Although a presentation of this method is provided in his first review, let us sketch its idea.

We assume here that the diversification model starts from s, ends at e and is such that
the divergence times are iid random variables which follow a distribution F which is known
explicitly. This property is in particular granted for generalized-birth-death models (Lambert
and Stadler, 2013) and for the model proposed in Appendix B. Let 7 be a tree, (7,)se7\L,
be the random variables associated to its divergence times and ¢/ = {(n1, u1), ..., (n¢, ug)} and
L ={(n, u}),....(n}, up)} be aset of upper and lower time constraints respectively.

Amaury Lambert first remarks that the probability that 7,, < vy, ..., 7, < uy, Top 2 uy,
e T, 2 uy is equal to the probability that F~1(7,) < F~Y(w), ..., F(ms,) < F~Hw),
F—l(r,,ll) > F1(d)), ..., F—l(T,,;,) > F~Y(uy), where the random variables (F~*(7,)) pe7\ - are

independent and uniformly distributed over [0, 1].
Let us set H, = F~1(r,) for all internal nodes n of T, and
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L(y;) forall 1 < i </ (i.e., for all nodes n; with upper time constraints in /) and

=F
= F~!(e) = 1 forall internal nodes m & {ny, ..., ng},
=F 1(u’) forall1 <i </ (i.e. for all nodes n; with lower time constraints in £) and

]

~1(s) = 0 for all internal nodes m & {nj, ..., n}.

Let us recaII that the random variables (7,),c\L,» thus the uniform random variables
(Hn)nem\L,» have to satisfy not only the constraints induced by ¢/ and £ but also (implicitly)
those deriving from the diversification process. In order to compute the probability that the in-
dependent and uniform random variables (H,) e\, Satisfy both the constraints induced by U/
and £ and those deriving from the tree topology, Amaury Lambert defines Q,,(x) as the probabil-
ity that the random variables (Hp)ne7,,\L, (i.€., those associated to the subtree T;,) satisfy both
these constraints and that H,, > x, for all nodes m of 7 and all x € [0, 1]. By setting Q,(x) = 1 for
all tips nof 7 and all x € [0, 1], the probability Q,,(x) can be recursively computed for all internal
nodes m from its two direct descendants m; and m;, since from the independence property, we
have that

/ im Qmy (¥) Qmy(y)dy  if x < ap,

m

Qm(x) = /am Qmy (¥) Qmy(y)dy if af, < x < ap,

0 if x > an.

The probability that the random variables (H,),c7\ L, satisfy both the constraints induced
by U and £ and those deriving from the tree topology, which is equal to the probability that the
divergence times of 7 satisfy the temporal constraints ¢/ and L, is finally given by Q,(a}), where
r is the root of 7.

By construction, the function Qn,(x) is piecewise polynomial of degree smaller than |L7, | — 1
and its definition requires to consider a number of intervals bounded by the cardinality of the
set of times involved in the temporal constraints of 7,,. It follows that the symbolic computation
of Q,(x) can be performed in O(|U/ U L| x |T|?), thus with exact same complexity as that of the
algorithm presented in Section 5, though it certainly involves a smaller constant factor.

7. Direct sampling of divergence times

Theorems 2 and 4 and Claim 3 show how to compute the marginal (with regard to the other
divergence times) of the divergence time distribution of any internal node of a phylogenetic tree
from a given birth-death-sampling model. It allows in particular to sample any divergence time
of the phylogenetic tree disregarding the other divergence times. We shall see in this section
how to draw a sample of all the divergence times of any tree topology from a given birth-death-
sampling model.

Lemma 1. Let T be a tree topology of root r, © be a Markovian diversification model from origin
time s to end time e. The probability that the root divergence time 7, is anterior to a time t € s, €]
conditioned on observing the tree topology T under © is

Q@(S, t, 1)P@[t] (T)

Po(T) '
Proof. The probability that the divergence time 7, associated with r is anterior to a time ¢ € [s, €]
is the complementary probability that 7, > t. Observing 7. > t means that the starting lineage

at s has a single descendant observable at t from which descends the tree topology 7 sampled
at e. It follows that

Po(T, 7w <t|T)=1-

Qo(s, t, 1)Pe[t] (7)

Po(T, 7, —1-Po(T. 7 —1-
o(T, 7 <t|T) o(T,7>t|T) Po(T)

d
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The probability Po (7, 7,<t|T) can be directly written as Pe(7.{(r.t)}.0)/Po (7). Lemma 1 shows
that considering a temporal constraint is not necessary, which is particularly interesting in the
birth-death-sampling case.

Remark 1. Under the birth-death-sampling model © = (s, e, A, p, p), we have that
[ e e 0y on 4 (A1 = p) = e Cae)
Po(T,.7r<t|T)=1 (1 — e=(A=m(e=))(p\ + (A(1 — p) — p)e~(A-n)(e=1)) '

which can be computed in constant time.

[Lr|-1

Let us first show how to sample the divergence time of the root of a tree topology. The
marginal, with regard to the other divergence times, of the distribution of the root-divergence
time conditioned on the tree topology 7 is the cumulative distribution function (CDF) F, : t —
Po(7,7.<t|T). In order to sample 7, under this distribution, we shall use inverse transform sam-
pling which is based on the fact that if a random variable U is uniform over [0, 1] then F1(U)
has distribution function F, (e.g., Devroye, 1986, chapter 2). Since finding an explicit formula for
F~1is not straightforward, we have to rely on numerical inversion at a given precision level in
order to get a sample of the distribution F, from an uniform sample on [0, 1]. The current imple-
mentation uses the bisection method, which computes an approximate inverse with a number of
F.-computations smaller than minus the logarithm of the required precision (Devroye, 1986, p
32).

In order to sample the other divergence times, let us remark that by putting a and b for the
two direct descendants of the root of 7 and t for the time sampled for the root-divergence, we
have two independent diversification processes both starting at t and giving the two subtree
topologies 7, and 7, at e. By applying Lemma 1 to 7, and 7, between t and e, the divergence
times of the roots of these subtrees, i.e., a and b, can thus be sampled in the same way as above.
The very same steps can then be performed recursively in order to sample all the divergence
times of 7. The time complexity of each sampling of a divergence time of 7 is obtained by
multiplying the complexity of computing the probability of Lemma 1 with minus the logarithm
of the precision required for the samples. From Remark 1, under the birth-death-sampling model
© = (s, e, \, 1, p), the computation of Po (7, 7.<t|T) requires only the number of tips of 7 (in
particular, the shape of 7 does not matter). In this case, the CDF F, can be computed at any
time t with complexity O(1) and, with a pre-order traversal of T, all its divergence times can be
sampled in a time linear in |7 | with a multiplicative factor proportional to minus the logarithm
of the precision required for the samples.

The same approach can be applied in order to sample divergence times with temporal con-
straints and/or shifts.

8. Testing diversification shifts

Theorem 3 yields the computation of the probability density of a tree topology in which a
given clade diversifies from a given “shift time” according a (simple) birth-death-sampling model
different from that of the rest of the topology. This allows us to estimate the likelihood-ratio test
for comparing the null model assuming a unique diversification model for the whole topology
with the alternative model including a shift as displayed in Figure 5. Since the alternative model
requires the implicit assumption that the lineage originating the “shifted” clade was alive at the
shift time, we make the same assumption for the null model, i.e., the divergence time associated
to the crown-node of the clade (resp. to the direct ancestor of the crown node) is assumed to be
posterior (resp. anterior) to the shift-time. Basically, being given a tree topology, one of its clade
and the shift time, we compute the ratio Ay of the maximum likelihoods of this topology with to
without shift at the clade and shift time from Theorems 3 and 2 by using numerical optimization
whenever a direct determination is not possible. Namely, in order to test a diversification shift
at time t on the clade originating at node m of the tree topology 7, we consider the ratio

S@Lél (T, m, t)

Ay =
N P@O(T, Tf(m) <t,Tm> t)y
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Figure 8 - ROC plots of different measures for shift detection at left (resp. at right) are
obtained by simulated 10000 Yule topologies with birth rate 0.4 (resp. 0.6) from times 0
to 10 and birth rate 1.0 from the shift time 5 to 10 for one of the clades present at time 5.

where f(m) is the direct ancestor of m, ©, ©1, O, are diversification models with

©o= argénax Po(T, 7¢(m) < t,7Tm > t) and (O, 01)= ar(irge))x Se’é(T. m, t).

In order to assess the accuracy of Ay, we compare it to three sister-group diversity tests
considered in Wertheim and Sanderson (2010). Namely, for two sister groups originating at shift
time t with Ny > N, terminal taxa and total sums of branch lengths B; and B, respectively, we

have that
e the probability of observing this or greater difference between sister group diversities
. . 2N,
f S| ki and G 1989)isP = ——————,
rom Slowinski and Guyer ( )is N+ No— 1

o the likelihood ratio alternative provided in Sims and McConway (2003) is
Aa = 1.629 x [A(Ny — 1) — h(Ny) + h(Ny — 1) — h(No) — h(2) — h(Ny + N — 2) + h(Ny + Nb)],

xlog(x) if x>0,

where h(x) =
0 otherwise,
e the likelihood ratio from perfect-information given in Wertheim and Sanderson (2010) is

N Ni—1 N No—1
Ap =2 X £ 1 ﬁ 2
) )

N1—|-N2—2/>\\+_N1—]_ Ny —1

where AT = A=
B + B> ! B B>

and \j =

| simulated topologies with and without shift according to pure-birth models, a.k.a. Yule mod-
els which are special cases of birth-death-sampling models with null death rate and full sampling,
in the following way. Being given a general birth rate, a shift birth rate and the shift time, | first
simulated topologies without shift from the general birth rate. Next, | filtered the simulated
topologies by discarding those with less than 10 or more than 50000 nodes and those with a
single lineage alive at the shift time. For each remaining simulation, | randomly picked a lineage
alive at the shift time and replaced the clade originating from this lineage with a clade simulated
with the shift rate from the shift to the end times in order to eventually obtain a topology with

shift.
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Figure 9 - Time calibrated phylogeny of Cetacea (Slater et al., 2010).

The quantities Ay, the likelihood ratio obtained from Theorem 3, P, A4y and Ap are then
evaluated with regard to their ability to discriminate between tree topologies with or without
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shift. Figure 8 displays the Receiver Operating Characteristic (ROC) plots obtained for all these
guantities. We first observe that Ay significantly outperforms measures P and A4. In particular,
in the case where the difference between the general and the shift birth rates is small (e.g., 0.6
and 1.0 in Fig. 8-right), performances of P and A4 are close to that of a random guess while Ay
is still accurate. This was expected to at least some extent since Ay takes into account both the
shift time and the whole tree topology while P and A4 are computed from the clade with the
shift and its sister group. More surprisingly, Ay is only partially outperformed by Ap, which is
obtained from all the divergence times and the shift time. In the case where the general birth
rate is 0.4 and the the shifted one is 1, the ability to distinguishes between phylogenies with or
without diversification shift is almost as good with our likelihood ratio as with that of the perfect
information. In the case where the general birth rate is 0.6, the likelihood ratio test Ay obtained
from Theorem 3 outperforms the other tests for all positive discovery rates lower than 40%.

In order to illustrate the diversification tests on a biological dataset, let us consider the cal-
ibrated phylogeny of Cetacea from Slater et al. (2010), which is displayed in Figure 9. Slater et
al. (2010) detected a diversification rate increase in Delphinidae using MEDUSA, a detection
method developed in Alfaro et al. (2009). The general idea of MEDUSA is to fit birth and death
models with increasing numbers of diversification shifts by stopping when the improvement in
the Akaike Information Criterion (AIC) is smaller than a fixed threshold. Note that the MEDUSA
method requires all the divergence times in order to fit the models (Alfaro et al., 2009).

We computed the quantities Ay, P, A4 and Ap for all clades of the phylogeny of Cetacea, each
time by setting the shift time to the time corresponding to the middle of the branch supporting
the clade. Figure 9 displays the phylogenetic positions of the maxima observed for all these
quantities. The maximal/most significant with regard to the likelihood ratio Ay was achieved
at the position where the diversification rate increase was detected by MEDUSA (Slater et al.,
2010, Fig. 1). None of the other quantities P, A4 and Ap were maximal for this branch (Fig. 9).
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Appendix A. Table of the notations

origin time of the diversification process

end time of the diversification process/present time

A speciation rate
I extinction rate
p sampling probability of extant taxa
o (parameters of) a diversification model; in the case of a birth-death-
sampling model, © = (s, e, A\, i, p)
Oy diversification model © restricted to the time interval [, €]
Po(.) probability of an event, a tree topology etc. under ©
Oo(t) probability for a lineage alive at t to be observable under ©
Qo(t, ', ) probability that a single lineage alive at time t has exactly N descendants
SANAS at time t’ under ©
Xol(t, ¢/, N) probability of the ending configuration of a standard pattern (¢, t', T)
O\ S with [L7| = N under ©
, probability of the ending configuration of a special pattern (¢, t’, 7) with
Yo(t, t', N)
|L7| = N under ©
S (T, m 1) probability of the tree topology 7 by assuming a shift from model © to
eer’ model © at time t on the branch ending at node m
W quantity associated to a time o, a node m and a number of tips k used to
m.k compute the probability of a tree topology with temporal constraints
probability of the tree topology 7 conditioned on its number of tips un-
To(T)
der©
probability of the tree topology 7 conditioned on its number of tips un-
T(T) der any lineage-homogeneous model (i.e., in the Yule-Harding distribu-
tion)
|| cardinality of a set or size of a tree topology
Th subtree of 7 rooted at node n
L+ set of tips of T
r subtree topology of 7 made of all nodes in A and their direct descendants
TA ifA£Qand TifA=0
Qr set of all start-sets of T
Tn set of start-sets of 7 containing node n
QF, set of start-sets of 7 not containing node n
Qr, set of start-sets A of 7 such that nis a tip of ['1;4
Tgk) set of start-sets A € S which are such that I'1-4 has exactly k tips
Tsm set of start-sets of S restricted to 7y, (i.e., Uacs{A N Tm})
Tfskzn set of start-sets A € Ts ,, which are such that I'-4 has exactly k tips
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Figure 10 - Left: the whole diversification process under the model

(s, e, A\, . (x1, p1), (x2, p2)) (sampled extant species are those with ‘v'); Center: the
part of the process that can be reconstructed is represented in plain - the dotted parts
are lost; Right: the resulting phylogenetic tree.

Appendix B. The generalized birth-death model with mass extinction events and
extant sampling

The generalized birth-death process was introduced and studied in Kendall (1948). In this
model, the speciation and extinction rates are allowed to change through time and are therefore
given as two functions of the time, A : t — A\(t) and i : t — w(t) (in this section, A and i denotes
two functions of the time and are not real numbers like in Section 1.1). The probability pj (¢, t')
that a single lineage at time t has exactly N descendants at time t’ by following the generalized
birth-death (A, ) was given in Kendall (1948). We have that
6t t/

and for all N > 0,

po(t,t')=1—
o(t. t) oy

(e, t) = (1= pi(et) (1 )N_l
Wt,t/ Wt t/

eat,t’ (Wt,t’ — 1)N_1

N+-1
t,t!

w

t/

-t/
where 6,y = / (u(z) = Mz2))dz  and  wpy =e % [ 1+ / e %7 p(z)dz ).
t t

Following the idea of Stadler (2011), we shall consider a more general model by allowing to
uniformly sample lineages at a given set of times xi, ..., x,x with respective probabilities p1, ..., px.
Namely, under the sampled-generalized-birth-death model © = (s, e, A, 11, (x;, pi)1<i<k), lineages
evolve following the generalized-birth-death model (), 1) between s and e, the origin and end
times of the diversification process, and are uniformly sampled with probability p; at each time x;
for1 < i < k(Fig 10). In practice, sampling lineages at a time x; anterior to the present time has to
be interpreted as a mass extinction event (a lineage not sampled at x; is assumed to have become
extinct exactly at x;) while sampling at the present time accounts for our incomplete knowledge
of extant species (a species not sampled at the present time is assumed unknown). From now
on, we assume without loss of generality that the last sampling time is the end/present time, i.e.,
X, = e, and we set xp = s, the origin time of the diversification process. Like in Section 1.1, we
are interested in the reconstructed process, i.e., the part of the process which is observable from
the present/end time (Fig 10).

By construction, sampled-generalized-birth-death models are both Markovian and lineage-
homogeneous. Extending the approaches which are presented in the main text in order to deal
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with the sampled-generalized-birth-death model © = (s, e, A, i, (x;, pi)1<i<k) only requires to
compute the probabilities of the ending probabilities of standard and special patterns, which
can be obtained from the probabilities Og(t) and Qo(t, t’, N) for all positive numbers N and all
times s < t < t/ < e. Let us see how to compute these last two probabilities.

In order to avoid ambiguity, we put tT (resp. t~) for “an infinitesimal time after (resp. before)
the time t”. In particular, time x:" (resp. x;”) is immediately after (resp. before) the i*" sampling. By
convention, we set Qo(t, t', N) = Qo(t, (t')T, N), i.e., Qo(t, t’, N) is the probability that a single
lineage at time t has N descendants immediately after t'.

In order to compute Qg(t, e, 0), the probability that a lineage alive at t has no sampled de-
scendant at the end/present time e = x, under the sampled-generalized-birth-death model
© = (s, e, A\ i, (xi, pi)1<i<k), let us remark that for all 1 < i < k, a lineage alive at x;” has no
sampled extant descendant with probability Qe(x; ", e,0) = (1 — pi) + piQo(x, e, 0) if i < k
(since it is either not sampled at x; or sampled with no sampled extant descendant) and with
probability Qe(x, , e,0) = 1 — p, otherwise (Stadler, 2011). It follows that for all t € [x;_1, x],
we have that

- (1~ Qo(x; . €,0)
wex (1= Qo(x " e,0)) + Qo(x . ,0)’

Q@(t, e, 0) = pa(i‘, X,') + Z pf(l', X,')Q@(Xi_, e, 0)j =1
j=1

If t = x;_1, the formula above gives Qg (x;' ;, e, 0), from which we get Qo(x;_;, e, 0) and
iteratively any Qg (t, e, 0) from Qo(x, , e,0) = 1 — p,. The probability Og(t) that a lineage alive
at time t has at least a sampled extant descendant is basically 1 — Qg(t, e, 0) and can therefore
be computed under the sampled-generalized-birth-death model © = (s, e, A, 11, (xi, pi)i<i<k) -

Let us compute Qg(t, e, 1), the probability that a lineage alive at t has exactly one sampled
descendant at the end/present time e. Forall 1 < i < kand all t € [x;_1, x|, the probability that
a lineage alive at t has a single lineage sampled at e is the sum over all j > 1 of the probabilities
that this lineage has j descendants at time x;” among which

e one is both sampled at x; and with a single descendant sampled at e and,
e j — 1 ones have no sampled descendants at e.

Namely, we have that

Qo(t e 1) = i <J1> p;(t. x)Qe(x; . e, 0y 1p;Qo(x", e 1)

j=1
&5 ,Qo(x7 €,1)

<wt,x,'(]- —Qo(xie,0)) +Qolx . e 0))2,

Since Qo(x; ., e,1) = 1, Qo(t, e, 1) can be computed for all t € [s, e] by iterating the formula
above.

In order to show how to compute Qg (s, e, N), we shall first show that the probability density
of observing the set of divergence times (7,) 7\, Of any tree topology 7 with N tips (i.e., with
|7\ L7| = N — 1 inner nodes and divergence times) under a sampled-generalized-birth-death
model and disregarding the tree topology 7T is

Po((Tn)nerLy) = Qo(s e, 1) [[ A(7a)Qo(7n, e, 1).

nET\LT

This result was actually already proved in Thompson (1975, pp. 57-58). But, since it was under
the simple birth-death process and without including the first divergence time, let us sketch its
proof.

Thompson (1975) first remarks that for all times t < t/, we have that

Qo(t,e 1) = i <j>pj*(t, t)Qo(t', e, 00 1Qoe(t’, e, 1).

=t
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The equation above implies that the probability of observing no speciation event which gives
rise to a lineage sampled at e between times t and t' on a lineage of the reconstructed tree is
Qo(t,e,1)/Qq(t' e,1).

For all internal nodes n, the branch ending by n ends at time 7,, and starts at time 7,, where
Tn = Ti(n) if nis not the root and f(n) is its direct ancestor, and where 7,, = s if n is the root.
Considering the diversification process only on this branch, we observe a single lineage alive at
7, which goes to time 7, without (observable) speciation, which has probability Qe(7n.e.1)/Qg(rs.e,1).
If nis atip (i.e., n € Ly) then we set 7, = e and we have Qg(7,, e,1) = 1. If nis an inner node
(i.e., n € T\ Ly) then we observe a speciation event at 7,,, which occurs at rate A(7,,). From the
Markov property, all the branchs evolve independently and we get that the probability density
of observing the divergence times (7,) e\, S

Po((rerir) = | IT Mo} o (] Qe(me )]
neT\Lt Qo(7n e.1) nels
In the product above, each divergence time 7, occurs twice in numerators as 7,(,) and 7, ),
where a(n) and b(n) are the direct descendants of n, and once in denominators. The time origin
occurs only once in the numerator associated to the root. By simplifying the product above, we
eventually get that

P@((Tn)neT\LT) = Qo(s, e 1) H M7n)Qe(7n, &, 1),

neT\L1

which does not depend on the tree topology 7 (except on its size) and which is the probability
density of observing the divergence times (7,),c7\L, ON any tree topology with N tips.

The probability of observing N lineages at e by starting with a single lineage at s (in any
tree topology) is then obtained by integrating the probability density of N — 1 divergence times
(15)1<j<n—1 between s and e:

Qo(s, e, N) = / / Qo(s. e, 1) [[ \(7))Qo (7. e 1)dm ... dy_1
s s 1<<N-1
N—-1

— Qofs,e 1) (/ AP)Qo(r e, 1)dT)

For all times t and t' with s < t < t’ < e, the probability Qg(t, t’, N) can be computed in
the same way by considering the restriction of the model © to the time interval [¢, t'] (with full
sampling at t' if t’ # x; forall 1 < i < k).

The probabilities of ending configurations of standard and special patterns under the sampled-
generalized-birth-death model © = (s, e, A, 1, (xi, pi)1<i<k) can then be computed from the prob-
abilities Qo (t, t’, N) and Og(t) (Egs. (1) and (2)). By putting Of¢,¢) for the model © restricted to
the time interval [t, t'], we have that

Qoy (£ £, 1)06() (f£ M7)Qe, (. . 1)d7)"
Xo(t, t', N) = — 1] : (& v and,
(1- (1= 06(t) J{ A(1)Qe, , (7. ', 1)d7)
/ / ! / N-1
Yottty — 90t 1) (00(t) | A7)0, (. . 1))

(1- (1 06(t) J¥ N7)Qey (. £, 1)dr) "

Appendix C. Proofs of Theorems
C.1. Proof of Theorem 2.

Let us start with the case where the oldest time is the end time of the diversification process,
i.e., the case where o = e. By construction, we then have that i/ and £ are both empty. It follows
that (s, e, T) is a standard pattern of probability To(7)Xe(s, e, |L7|) from Claim 1.
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Let us now assume that o < e. Under the notations of the theorem and by assuming that the
divergence times of T are consistent with the temporal constraints, let us define A, as the set
of nodes of 7 whose divergence times are anterior to o (i.e. A, = {m € T | 7, < o}). Since
divergence times corresponding to ancestors of a given node are always posterior to its own
divergence time, all sets A, are start-sets. By construction, the set S contains all the possible
configurations of nodes of 7 with divergence times anterior to o which are consistent with the
temporal constraints &/ and L. Since all these configurations are mutually exclusive, by putting
Po(7,U, L, A,=A) for the probability of observing the topology 7 with A, = A and the tempo-
ral constraints ¢/ and £, the law of total probabilities gives us that

(3) Po(T .U, L) = > Po(T.U, L A=A).
AeS
For instance, the entries of the second column of Figure 4 (just after the sum sign) represent all
the start-sets of Q.
In order to compute the probability Po(7,U, £, A,=A) for a start-set A € S, we remark that

e the part of the diversification process anterior to o is the standard pattern (s, o, ' 4) and
that

e the part of the diversification process posterior to o consists of all the tree topologies 7,
with temporal constraints Uty L7l with n € Lr.., under the model Ol (i.e., the model
© restricted to the interval of times [o, €]), which have probability Pe, (7a.477.£75))/06 (o)
conditioned on the observability of their starting lineages.

Since the diversification model © is Markovian, evolution of all the tree topologies 7, is inde-
pendent of each other and with regard to the part of the process anterior to o, conditional upon
starting with an observable lineage at time o.

From Claim 1, the probability of the standard pattern (s, 0,['7;4) is Te('7.4)Xe(s, 0, |Lr,)
under the assumption that ['1- 4 is labeled. This part is a little tricky since we don’t have a direct
labeling of I'1-4 here (the tips of I'1-4 are identified through the labels of their tip descendants
in 7, i.e., the tips of the subtrees pending from the tips of I'-4). Since it assumes that '} 4 is
(exactly) labeled, we have to multiply the probability obtained from Claim 1 with the number of
ways of connecting the tips/labels of ' 4 to the subtrees starting from o, which is |Lr..,|!, and
with the probability of observing the groups of labels corresponding to the subtrees starting from
o. Since all labelings of 7 are equiprobable, the probability of the groups of labels corresponding
to the subtrees starting from o is the inverse of the number of ways of choosing a subset of |L|
labels from |L| ones for all tips n of ['1- 4 without replacement, i.e., the inverse of corresponding
multinomial coefficient, which is

H”GLFT,A “—771 ‘ !

L7]!
Putting all together, we eventually get that
HHELFT’A |L771 ’I H P@[O] (7711 Z/{[?:J], ‘C[>'Ti])
L7]! Oo(0)

nELrTA

_ ’LrTA“T@(rfA)X@(S, o, |LrTA‘) H P@[O](%'u[?':]lﬁ[%i:])“-ﬂ“
IL7! Oo(0) '

which, with Equation (3), ends the proof. The whole computation of a toy example is schematized
in Figure 4.

C.2. Proof of Theorem 3.

Assuming that a diversification shift of the clade originating at m occurs at time t implies
that the divergence times of 7 are such that both the direct ancestor of m has a divergence
time strictly anterior to t and the divergence time of m is strictly posterior to t. Reciprocally,
if the divergence times of m and of its direct ancestor are respectively posterior and anterior
to t, then a diversification shift at time ¢ may occur for the clade originating at m. The set of

Poa(T.U. L) = ’LFT,A“T@(FTA)X@(Sv o, ’LFT,AD

HGLrTA
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subsets of internal nodes with divergence time anterior to t consistent with the assumptions of
the Theorem is thus exactly Q7 .

We next follow the same outline as that of the proof of Theorem 2. For all subsets A of
internal nodes of T, let us put Se 5. A(T, m, t) for the probability of observing the topology 7
with a shift at time t for the clade or|g|nat|ng at m and whose set of nodes with divergence time
anterior to t is exactly A. We have that

(4) os(Tmt)= > Sggz (T, mt).

AeQr

From the Markov property, we have that Se 3 A(T, m, t) can be written as the product of
the part of the diversification anterior to t, which is the special pattern (s, t,['74) where the
special lineage is the one on which the shift occurs, and the part of the diversification posterior
to t which is a set of trees starting from time ¢ and ending at time e by following model O

except the special one which follows ©. By construction, the non-special trees starting from t are
conditioned on the observability of their starting lineage at t, thus have probability Pe;,(72)/0¢(t)
while the special one is not conditioned and has probability Pg(7m).

From Claim 2, the probability of the special pattern (s, t,['74) is Te(I'7,4)Ye(s, t, [Lr,]) un-
der the assumption that ' 4 is labeled. The situation slightly differs from the case of a standard
pattern treated in the proof of Theorem 2 since the special tip of the special pattern is well identi-
fied and so is the subtree pending from it. In order to taking into account the fact that ' 4 is not
directly labeled, we have here to multiply the probability provided by Claim 2 with the number
of ways of connecting the tips/labels of I';-4 except m, the special one, to the subtrees starting
fromt,ie., (|Lr,|—1)!,and with the probability of observing the groups of labels corresponding
to the subtrees starting from t, which is

HHGLFTA “_771 ‘I
L7t

Eventually, we get that

e, IL7!
oalT.mt)=To(Fra)Yo(s t.|lrr,)(|Lrpa| = ) ——F"5—Pg

@m
Tm 11 (0)

|
L n€|—r AmP
_ (Lrpa = D!Te(Fra)Ye(s, t[Lry, )P 5 (Tm)IL7T, ! Pem(ﬂ)“-ﬂ!-
B I
|LT| ”GLFTA\{m} Oe(o)

which with Equation (4) ends the proof.

C.3. Proof of Theorem 4.

If the model © is lineage homogeneous then, under the assumptions and notations of Theo-
rem 2, we have that

P@[o] (77% u[?'o] L[>79])|L7'n I!

ILra ' T(Mra)Xe (s, 0, [Lral) if o < e,
Po(T.U,£) = E e " ILT Os(0)
T(T)Xe(s, e [LT]) otherwise.

Since in the case where o = e, the computation of Po(7,U, L) is performed in constant
time under the assumptions of the theorem, we focus on the case where o < e. Let us first
introduce an additional notation. For all sets S of start-sets of a tree topology 7 and all numbers
k between 1 and the number of tips of 7, we put Tfsk) for the set of start-sets A € S such that
the corresponding start-tree ' 4 has exactly k tips. By construction, a start-tree of 7 has at
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least one tip and at most |L| tips. We have:

: Po (Tn Uz L) ILT: !
Po(T.U: £) = - 3 [Lrpal T(7aXo(s. 0. [Lrp, N T g2 5
AeS nELrT,A o
ILr| P T UZ° 29[l |1
: I | eo( m =T, T )’ Tn‘
— ’L ‘I Z Z ‘LFT,A“T(FT,A)X@(S, O’|Lr7‘,A|) [o] O[ ](O)[ ]
" k=1 ae T(k) nelr ., ©

L7 X@ 5 o, k

||—T|' Z

Let us set for all nodes m of T,

Do >_T(C7.a) [T Pey (Tn Uz, L)ILT !

Ac 'T‘Esk) nELrr,

TS,m — U {A N Tm}v

AeS
where T, stands here for the set of nodes of the subtree topology rooted at m. In plain English,
elements of Ts ,, are elements of S restricted to 7,,. Since, by construction, the elements of
Ts.m are start-sets of the tree topology 7,,, the start-tree 1. 4 is well-defined for all A € Ts .
For all numbers 1 < k < |Ly,|, we put Tgkzn for the set of start-sets A € Ts , such that the
corresponding start-tree 1. 4 has exactly k tips.
Let us now define for all nodes m of 7 and all 1 < k < |Lt,,|, the quantity

Wk = KUY T(T7.a) [[ Poy, (To UGS L2 LTl
AeTfSk)m nelr -,

Basically, by putting r for the root of 7, we have that

[L7]
1 X@SOk
(5) Po(T.U, L) = = !‘E: O (o)F W,

k-

We shall see how to compute (W, k)x=1,...|L. | for all nodes m of T.
Let us first consider the case where k = 1 We have that

Let us now assume that k > 1 and let aand b be the two direct descendants of m. Since we
assume k > 1, all start-sets of ngn contain m. It follows that we have A ¢ ngn if and only if
there exist two start-sets / € Ts,and J € Tsp with {m} U /U J = A. The tree topology 1, a
has root m with two child-subtrees I'7; ; and I'7; ;. In particular, we have:

|LF7—3',| + |LrTb,J‘ = “‘rTm,A‘ = k.
From Theorem 1, we have that

2“-r7*/|!||-r7*bj|! 2|LrT,| ||_rT J‘I
A V)T )=y e T (7, 0).
(L al = DLy, A G "

T, ) =

Moreover, since by construction L. , =Lr,. , ULr, ,, we getthat

T(M'7,.4 HP@[G] Tan[T] [7'])“-7'”\

nELrT A

2lLr,. |lLr, ! 0
(Zl_ 1);![,,1 T(C7 N T(T7, ) (LT P (Tn Uiz, L)L NI T Py (Ta Uiz, £ L7 11)-

nELrT | nELrT J

More generally, the start-sets of T( ) ., are in one-to-one correspondence with the set of pairs
(1,J) of Ts o x T p such that ILr. | + “—rT ,| = k. This set of pairs is exactly the union over all
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pairs of positive numbers (i, j) such that i 4 j = k, of the product sets of Tg?a X Tg?b. It follows
that

2IJ
Wi =kl ) Z T(r )T (M7 )(I] Poy (T U5, £52)IL 711
iJj

nELrT |
i+j= T( ) % T(J) -
S.a S,b

(H P@[o] (771.7/{[?— [T])|L’Fn| )-

nc LrTb,J

After factorizing the left hand side of the equation just above, we eventually get that for all
k>1,

2
(7) Wm,k = ki Z Wa IWb_]

I+j k
The following remark is straightforward to prove by induction.

Remark 2. Let 7 be a binary tree topology and for all internal nodes n of T, let a(n) and b(n) denote
the two direct descendants of n. We have that

Lr|(L7| - 1)
Z ’Lﬁ(n)’ X |L7I)(n)| = 2 .
neT\L1

From Equation (7) and for all internal nodes m of 7 with children a and b, computing the
quantities W, , for all 1 < k < |L7, | involves exactly |L;| x |L7,| terms of the form W, ;W, ;.
It follows that Remark 2 implies that if the quantities W,, ; are given for all nodes m of T, the
quantities W, , forall m € 7T and all 1 < k < |Lt,| can be recursively computed in a time
proportional to IL7I(IL7|-1)/2, thus with time complexity O(|T?).

In order to finish to prove Theorem 4, we remark that if |/ U £| = 0 then Po(7,U, L) is
the probability of the standard pattern (s, e, 7) which can be computed with time and memory
complexity O(1) from Claim 1.

In the case where |U/ U £| > 0, we shall proceed by induction on the total number tempo-
ral constraints by showing that the total time complexity required to compute the probabilities
Po(Tm. Uit Li7,7) for all internal nodes mis O(|/ U L] x [T]? + |T]).

This property is basically true in the base case where [/ U L| = 0, the probability Po(7m, 0, 0)
is the probability of a standard pattern which can be computed in constant time for all internal
nodes m from Claim 1.

Let us assume that the induction assumption holds for all numbers of temporal constraints
smaller than ¢ and let us consider two sets of temporal constraints ¢/ and £ such that |/ U £| =
¢ + 1. If o is the oldest time involved in U/ and £, this implies that |[t/~° U £L>°| < ¢. From the
induction hypothesis, computing the probabilities P@[o](Tm, Z/{[>T] £[>°]) for all internal nodes m

can be performed in O(¢ x |T|?). From Equation (6), the quantities W, ; for all internal nodes m
are calculated directly from the probabilities Po,, (7m, [>T°] £[>T°]) thusin O(|7]). From Remark
2, all the quantities W, , for all internal nodes m of 7 and all 1 < k < |Ly;,| can be calculated
with time complexity O(|7|?). Equation (5) can then be applied to all subtrees of T in order to
compute the probabilities Po(7m, U E[Tm]) from the quantities W, , for all internal nodes m
of 7. Since computing each Po(7m, U;7,, L17,,]) requires to sum |L7, | terms, computing all the
Po(Tm Ui, Li7,)) has total time complexity O(|7 ).

To sum up, being given the probabilities P@[o](’rm,u[%, L £[>T°]) which can be computed with

complexity O(¢ x [T|?) from the induction hypothesis, computing the probabilities
Po(Tm. Ui}, Li7,) for all internal nodes m of 7 has time complexity O(|7?). The total time
complexity required to compute all the Po(7m, U;7,1, £i7,)) is well O((£ + 1) x | T|? +|T]). Since
we assume that [/ U £| > 0, we have that O(|/ U £| x |T|2 +|T|) = O(|4 U L] x |T|?), which
ends to prove the statement of the theorem about the time complexity in this case.
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Last, since at each stage of the induction, we have to store only the quantities

.....

internal nodes m of T, the total memory space complexity of the computation is O(|T|?).
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