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Abstract
The origin of extant amphibians has been studied using several sources of data and methods,including phylogenetic analyses of morphological data, molecular dating, stratigraphic data,and integration of ossification sequence data, but a consensus about their affinities withother Paleozoic tetrapods has failed to emerge. We have compiled five datasets to assessthe relative support for six competing hypotheses about the origin of extant amphibians: amonophyletic origin among temnospondyls, a monophyletic origin among lepospondyls, adiphyletic origin among both temnospondyls and lepospondyls, a diphyletic origin amongtemnospondyls alone, and two variants of a triphyletic origin, in which anurans and urode-les come from different temnospondyl taxa while caecilians come from lepospondyls andare either closer to anurans and urodeles or to amniotes. Our datasets comprise ossificationsequences of up to 107 terminal taxa and up to eight cranial bones, and up to 65 termi-nal taxa and up to seven appendicular bones, respectively. Among extinct taxa, only two orthree temnospondyl can be analyzed simultaneously for cranial data, but this is not an insu-perable problem because each of the six tested hypotheses implies a different position oftemnospondyls and caecilians relative to other sampled taxa. For appendicular data, moreextinct taxa can be analyzed, including some lepospondyls and the finned tetrapodomorphEusthenopteron, in addition to temnospondyls. The data are analyzed through maximum like-lihood, and the AICc (corrected Akaike Information Criterion) weights of the six hypothesesallow us to assess their relative support. By an unexpectedly large margin, our analyses ofthe cranial data support a monophyletic origin among lepospondyls; a monophyletic originamong temnospondyls, the current near-consensus, is a distant second. All other hypothe-ses are exceedingly unlikely according to our data. Surprisingly, analysis of the appendiculardata supports triphyly of extant amphibians within a clade that unites lepospondyls and tem-nospondyls, contrary to all phylogenies based on molecular data and recent trees based onpaleontological data, but this conclusion is not very robust.
1CR2P (Centre de Recherche sur la Paléodiversité et les Paléoenvironnements; UMR 7207),CNRS/MNHN/Sorbonne Université, Muséum National d’Histoire Naturelle, Département Histoire de la Terre –
Paris, France, 2Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”,Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany

http://www.centre-mersenne.org/
mailto:michel.laurin@mnhn.fr
https://doi.org/10.24072/pci.paleo.100002
https://doi.org/10.24072/pci.paleo.100002
https://orcid.org/0000-0003-2974-9835
https://doi.org/10.24072/pcjournal.89


Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1 Ossification sequence data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Sensitivity analysis for sequence polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Standardization of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.4 Analysis methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.5 Reference phylogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.1 Phylogenetic signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.2 Indirect support for the lepospondyl hypothesis from temnospondyls . . . . . . . . . 20Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Additional information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Appendix references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1. Introduction
Paleontologists have been studying the origin of the extant amphibian clades for more thana century. Early studies generally proposed an origin of at least some extant amphibians fromtemnospondyls. Cope (1888) initially suggested that batrachians (anurans and urodeles) derivedfrom temnospondyls (a large clade of limbed vertebrates known from the Early Carboniferousto the Early Cretaceous) because he believed that the batrachian vertebral centrum was an in-tercentrum, the dominant central element of temnospondyls. Later, Watson (1940) argued thatanurans were derived from temnospondyls because of similarities (mostly in the palate) betweenthe temnospondyl “Miobatrachus” (now considered a junior synonym of Amphibamus) and anu-rans. Monophyly of extant amphibians (Lissamphibia) was proposed by Parsons and Williams(1962, 1963), an idea that was accepted more quickly by herpetologists than by paleontologists.Lissamphibian monophyly was supported by (among a few other character states) the wide-spread occurrence of pedicellate, bicuspid teeth. The subsequent discovery of such teeth in theamphibamid temnospondyl Doleserpeton (Bolt, 1969) reinforced the widespread acceptance ofan origin of Lissamphibia from within temnospondyls (e.g., Schoch and Milner, 2004). Recently,this hypothesis, referred to as the temnospondyl hypothesis or TH for short (Fig. 1c), has beensupported by several phylogenetic analyses based on phenotypic data matrices (e.g., Ruta andCoates, 2007; Sigurdsen and Green, 2011;Maddin et al., 2012; Pardo et al., 2017a, fig. S6; Pardoet al., 2017b; Mann et al., 2019).Other hypotheses about the origin of extant amphibians have been available in the literaturefor nearly as long a time (see Schoch andMilner, 2004 for a historical review). Thesewere initiallyformulated especially for the urodeles and caecilians, which are less similar to temnospondylsand lack a tympanic middle ear (which is present in most anurans and often inferred for at leastsome temnospondyls but absent in lepospondyls). Thus, Steen (1938) highlighted similarities inthe palate (broad cultriform process of the parasphenoid) and cheek (loss of several bones) be-tween lysorophian lepospondyls and urodeles. Carroll and Currie (1975) and Carroll and Holmes(1980) argued that the extant amphibians had three distinct origins among early stegocephalians;while they accepted an origin of anurans among temnospondyls, they suggested that urodelesand caecilians originated from two distinct groups of lepospondyls (Rhynchonkos for caecilians,Hapsidopareiidae for urodeles). Later, based mostly on developmental similarities between thetemnospondyl Apateon and urodeles, Carroll (2001, 2007) and Fröbisch et al. (2007) proposed
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Figure 1 – (Previous page) Hypotheses on the relationships of the extant amphibianclades since the late 20th century. The names of terminal taxa sampled here for cranialcharacters are in boldface, those sampled for appendicular characters are underlined;the names of larger clades are placed toward the right end of a branch if they haveminimum-clade (node-based) definitions, to the left if they havemaximum-clade (branch-based) definitions. Names in parentheses would, given that phylogenetic hypothesis, notbe used, but replaced by synonyms. Among terminal taxa, “Melanerpeton” humbergense,sampled for appendicular characters, is not shown, but is always the sister-group of Ap-ateon; Microbrachis, likewise sampled for appendicular characters, is not shown either,but is always the sister-group of Hyloplesion; Eusthenopteron is not shown in c)–h), whereit forms the outgroup (b)). Micromelerpeton is shown in only two trees because its po-sition is not fully specified by various hypotheses (see below). The first two trees (a, b)show the current consensus; the other trees (c–h) show the various tested paleontolog-ical hypotheses. Abbreviations: D., Dissorophoidea; S., Stereospondylomorpha. a) Con-sensus of the latest phylogenetic analyses of molecular data ; all named clades are there-fore extant. Note the monophyly of the extant amphibians (Lissamphibia, marked witha light gray dot) with respect to Amniota. b) Consensus of all recent analyses of Paleo-zoic limbed vertebrates, omitting the extant amphibian clades. Note the monophyly of“lepospondyls” + amniotes (marked with a dark gray dot). c) TH: “temnospondyl hypoth-esis”. Lissamphibia nested among dissorophoid temnospondyls. Compatible with botha) and b) (gray dots). d) LH: “lepospondyl hypothesis”. Lissamphibia nested among “lep-ospondyls”; consequently, temnospondyls are not crown-group tetrapods. Compatiblewith both a) and b) (gray dots). e) PH1: “polyphyly hypothesis”, first variant. Urodela asdissorophoid temnospondyls close to Apateon, Anura as a separate clade of dissorophoidtemnospondyls, Gymnophiona as “lepospondyls”. Compatible with b) (dark gray dot) butnot with a) (light gray circle). f) PH2: “polyphyly hypothesis”, second variant. Like PH1,but with restored monophyly of extant amphibians with respect to amniotes (light graydot; see a)) at the expense of compatibility with the paleontological consensus concern-ing the position of temnospondyls, lepospondyls, and amniotes (dark gray circle; seeb)). g) DH1: “diphyly hypothesis”, first variant. Batrachia as dissorophoid temnospondyls,Gymnophiona as “lepospondyls”. Compatible with b) (dark gray dot) but not with a) (lightgray circle). h) DH2: “diphyly hypothesis”, second variant. Batrachia as dissorophoid tem-nospondyls, Gymnophiona as stereospondylomorph temnospondyls. Compatible withboth a) and b).

another hypothesis involving a triphyletic origin of lissamphibians, with an origin of anuransand urodeles from two distinct temnospondyl groups, while the caecilians would remain in thelepospondyl clade. This is what we call the polyphyly hypothesis (PH). We have tested two ver-sions. One (here called PH1; Fig. 1e) was cautiously suggested by Fröbisch et al. (2007); it agreeswith the paleontological consensus in placing all or most lepospondyls closer to Amniota thanto Temnospondyli (Fig. 1b; Sigurdsen and Green, 2011; Pardo et al., 2017a, fig. S6; Pardo et al.,2017b; Marjanović and Laurin, 2019; Clack et al., 2019; Mann et al., 2019). The other (PH2;Fig. 1f) is modified to make Lissamphibia monophyletic with respect to Amniota, a fact we con-sider demonstrated beyond reasonable doubt by multiple phylogenetic analyses of moleculardata (Fig. 1a; Irisarri et al., 2017; Feng et al., 2017; and references cited therein); this comesat the expense of contradicting the paleontological consensus, which was not yet establishedwhen Milner (1993, 16–18, fig. 5B) argued for something like the PH2 as one of two alternativehypotheses. Anderson (2007) and Anderson et al. (2008) found lissamphibian diphyly, specifi-cally a monophyletic, exclusive Batrachia among the temnospondyls while keeping the caecil-ians among the lepospondyls (DH1; Fig. 1g). Pardo et al. (2017a, fig. 2, S7) presented a similarhypothesis, with batrachians and caecilians having separate origins within the temnospondyls(DH2; Fig. 1h); we should point out, however, that their dataset contained only temnospondylsand lissamphibians, and while they found the DH2 using Bayesian inference, it was only one offour equally parsimonious results (see Marjanović and Laurin, 2019 for this fact and a discussion
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of Bayesian analysis of paleontological datasets). Further, a monophyletic origin of all extant am-phibians among lepospondyls has also been proposed (Laurin, 1998; Pawley, 2006, appendix16; Marjanović and Laurin, 2009, 2013, 2019). This will be referred to below as the lepospondylhypothesis (LH; Fig. 1d).Phylogenetic analyses of molecular data cannot distinguish the TH, the PH2, the DH2 or theLH from each other by topology (Fig. 1) because all of these imply lissamphibian monophyly withrespect to amniotes, and molecular data are not available from any other tetrapodomorphs. Sev-eral other types of data and methods have, however, been used to try to discriminate betweenthe various hypotheses on the origin of extant amphibians. In addition to classical phylogeneticanalyses of morphological data matrices, these include the use of molecular dating (Zhang et al.,2005; Marjanović and Laurin, 2007; Pardo et al., 2017a) and stratigraphic data (Marjanović andLaurin, 2008) to compare the inferred divergence dates between the three main extant amphib-ian clades on the basis ofmolecular datawith predictions based on the fossil record under the THand the LH on the one hand, and the PH and theDHon the other hand. However, developmentaldata, in the form of ossification sequences, have been the second-most frequently used (afterclassic morphological data) to argue for particular phylogenetic hypotheses. These data includemainly cranial (e.g., Schoch, 2002, 2006; Schoch and Carroll, 2003; Schoch andMilner, 2004; An-derson, 2007; Carroll, 2007; Germain and Laurin, 2009) and autopodial ossification sequences(e.g., Fröbisch et al., 2007, 2015). Ossification sequences of other parts of the skeleton, like thevertebrae, shoulder girdle and scales, are also documented in a few Paleozoic stegocephalians(e.g., Carroll et al., 1999; Witzmann, 2006; Anderson, 2007; Carroll, 2007; Olori, 2013), not tomention finned tetrapodomorphs (Cloutier, 2010), but these have played a minor role in thecontroversy about the origin of extant amphibians. Recently, Danto et al. (2019) concluded thatvertebral ossification sequences varied too quickly and could not be used to assess the originof lissamphibians. This study relies on both cranial and appendicular ossification sequences andcompares their implications for tetrapod phylogeny.
2. Material and methods

2.1. Ossification sequence data.
From all the literature we could access, we compiled the most extensive database on os-sification sequences for osteichthyans that exists to date. The most useful sources for extanttaxa include compilations: Harrington et al. (2013) for amphibians, Weisbecker and Mitgutsch(2010) for anurans, Hugi et al. (2012) for squamates, Maxwell et al. (2010) for birds, and Koyabuet al. (2014) and Weisbecker (2011) for mammals. The cranial and appendicular sequences ofPermian temnospondyls (the stereospondylomorphs Sclerocephalus and Archegosaurus, the non-branchiosaurid “branchiosaur” Micromelerpeton and the branchiosaurids “Melanerpeton” hum-bergense, Apateon caducus and A. pedestris) were assembled from several references cited inthe Appendix; note that the two Apateon species are each represented by two different se-quences scored after populations from two separate paleo-lakes (Erdesbach and Obermoschel)in which both species occur. Appendicular ossification sequences of the lepospondyls Micro-brachis and Hyloplesion are incorporated from Olori (2013), that for the finned tetrapodomorphEusthenopteron was combined from Cote et al. (2002) and Leblanc and Cloutier (2005).All sources of our sequence data can be found in the Appendix. The sequences themselvesand the phylogenetic trees corresponding to the tested hypotheses are included in the Supple-mentary information. The sequences were not used to generate the tree topology or the branchlengths (which represent evolutionary time); the tree is compiled from published sources (pro-vided below) which did not use any ossification sequences in their phylogenetic analyses.The software we used to compute AICc weights, the CoMET module (Lee et al., 2006) forMesquite 3.6 (Maddison and Maddison, 2018), cannot handle missing data. This unfortunatelymeant we had to discard much information. In order to keep as many taxa as possible in theanalysis, we first compiled a matrix (not shown) of 244 taxa and 213 characters. All of thesecharacters are positions of skeletal elements (cranial, appendicular, axial and others) in ossifica-tion sequences, standardized between 0 and 1 followingGermain and Laurin (2009), as explained
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below. Of these, we kept characters that were scored in the Paleozoic taxa in our initial data-base, and extant taxa that were scored for the same sets of characters. This resulted in two initialdatasets, one of cranial and one of appendicular sequences (it was not possible to include bothsets of sequences together because this would have left too few taxa in the matrix).In the end, however, we were left with three overlapping cranial datasets. The largest cranialdataset we could make, dataset 2 of Table 1, has 105 taxa (103 extant, plus the two species ofApateon scored from Erdesbach) and seven characters: the appearance times of the premaxilla,maxilla, nasal, parietal, pterygoid, exoccipital and squamosal bones. It lacks Sclerocephalus, whichcannot be scored for the appearance time of the squamosal. This is unfortunate because Scle-rocephalus is one of only three extinct taxa for which a usable cranial ossification sequence isknown at all, and further because it occupies a special place in the DH2, according to which itlies on the caecilian stem. We attempted to compensate for this deficiency by assembling twomore cranial datasets: dataset 1, which contains 107 taxa (104 extant, Apateon spp. from Erdes-bach, and Sclerocephalus) but only six characters by lacking the squamosal, and dataset 5, whichincludes 84 taxa (81 extant, Apateon spp. from Erdesbach, and Sclerocephalus) and eight cranialcharacters (the vomer and the frontal bone are added to the six of dataset 1).
Table 1 – List of datasets used in this paper. All are subsets of our global compilationthat were selected to meet the requirement of the method used (missing data cannotbe handled). The temnospondyl species Apateon caducus and A. pedestris are included inall datasets, but scored after populations from two different paleo-lakes in which bothspecies occur.

Dataset number 1 2 3 4 5
Type of characters cranial cranial appendicular appendicular cranialNumber of characters 6 7 7 4 8Number of taxa 107 105 62 65 84Sclerocephalus yes no yes yes yesSource of data for Apateon Erdesbach Erdesbach Obermoschel Erdesbach and Obermoschel ErdesbachAdditional Paleozoic taxa None None Archegosaurus,Micromelerpeton, Hyloplesion,Microbrachis, Eusthenopteron

Archegosaurus,Micromelerpeton,"Melanerpeton" humbergense,Hyloplesion,Microbrachis,Eusthenopteron

None

Tables in which it is used 2, 5 3, 6 4, 8 4, 9 7

For the appendicular characters, in addition to dataset 3 which contains seven characters(humerus, radius, ulna, ilium, femur, tibia and fibula) and 62 taxa (54 extant, Apateon spp. fromObermoschel, Sclerocephalus, Archegosaurus, Micromelerpeton, Hyloplesion, Microbrachis and Eu-sthenopteron), another (dataset 4) includes only four characters (radius, ulna, ilium, and femur),but it features 65 sequences, the additional taxa being Apateon spp. from Erdesbach and “Melan-erpeton” humbergense. See Table 1 for a list of these datasets and the Supplementary informationfor the datasets themselves.The data loss in these various datasets is not as severe as it may first seem, because mostof the characters that have been excluded from these analyses had less than 10% scored cells(sometimes less than 1%), and most of them could not be scored for any temnospondyl or lep-ospondyl, so they could not have helped resolve the main question examined in this study.The order in which the sampled cranial bones ossify varies substantially in our sample of taxa,but based on simple (not phylogenetically-weighted) average position, the frontal appears first,followed closely by the premaxilla, parietal, and maxilla (in close succession), and then by thesquamosal, exoccipital, pterygoid, and last by the nasal. However, each of these bones ossifiesfirst (among these bones; not necessarily in the whole skeleton) in at least one of the includedtaxa. Among the appendicular bones, there is more variability; each ossifies first in at least oneof the 62 sampled taxa, and three (radius, ulna and ilium) ossify last in at least one taxon.Due to the homology problems between the skull bones of tetrapods and actinopterygiansand missing data, we had to omit all actinopterygians from our analyses. As cranial ossification
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sequences remain poorly documented for extant finned sarcopterygians, except perhaps lung-fish, whose skull bones seem mostly impossible to homologize (Criswell, 2015), our analyses ofthose data are restricted to limbed vertebrates. However, for appendicular data, we were ableto include the Devonian tristichopterid Eusthenopteron foordi.Unfortunately, the only cranial ossification sequence available for any supposed lepospondyl,that of the aïstopod Phlegethontia longissima, is documented from only three ossification stages(Anderson et al., 2003; Anderson, 2007). This poses a problem for our analysis method, whichassumes that character evolution can be modeled as Brownian motion; this assumption is de-creasingly realistic as the number of character states (sequence positions) decreases, becausethe resulting distribution deviates increasingly from that of a continuous character. Furthermore,some recent anatomical restudies and phylogenetic analyses suggest that aïstopods are not lep-ospondyls, but early-branching stem-tetrapods (Pardo et al., 2017b; Pardo et al., 2018; Clacket al., 2019; Mann et al., 2019).The low taxon sample is more limiting for this analysis than the low character sample. How-ever, as explained below, the absence of lepospondyl sequences in our cranial dataset does notpreclude testing the six hypotheses (TH, PH1, PH2, DH1, DH2, LH; see above or Figure 1 forthe explanation of these abbreviations) because each of these six hypotheses makes differentpredictions about where temnospondyls and caecilians fit relative to other taxa. Thus, in the ab-sence of lepospondyls in our dataset, the tests of these hypotheses are somewhat indirect andinference-based, but they remain possible. Our tests based on appendicular data include twolepospondyls (Hyloplesion longicostatum andMicrobrachis pelikani), but the absence of caeciliansin that dataset proves more limiting than the absence of lepospondyls in the cranial dataset be-cause the TH, DH1 and DH2 become indistinguishable (Fig. 1c, g, h). However, the presence ofthe temnospondylMicromelerpeton allows us to test two variants of the TH/DH distinguished bythe monophyly (e.g., Ruta and Coates, 2007) or polyphyly (e.g., Schoch, 2019) of “branchiosaurs”(the temnospondyls Apateon, “Melanerpeton” humbergense andMicromelerpeton).
2.2. Sensitivity analysis for sequence polymorphism.

Given the potential impact of intraspecific variability in ossification sequence on inferrednodal sequences and heterochrony (Olori, 2013; Sheil et al., 2014), we compiled two consensussequences for Apateon caducus and A. pedestris each, representing two localities where bothspecies occur, the paleo-lakes of Erdesbach (Schoch, 2004) andObermoschel (Werneburg, 2018).Based on dataset 4 (see Table 1), we incorporated these into a global and two separate analyses(one analysis per locality) to determine the impact of the observed variability. As detailed above,incorporating the sequences from Erdesbach reduced the number of characters from seven toonly four because the software used cannot handle missing data (see above and below), but thisinformation loss is compensated by the great increase in number of sequences from extinct taxa(eleven instead of two, when counting the sequences of Apateon from both localities separately)and the fact that this includes some lepospondyls (see above and below). It would have beeneven better to perform a sensitivity analysis incorporating variability for all taxa for which suchinformation was available, but given the scope and nature of our study, this would have beenexceedingly time-consuming and is best left for the future.
2.3. Standardization of the data.

Given that various taxa differ in their numbers of bones and that the resolution of the se-quences is also variable between taxa, these data needed to be standardized to make compar-isons and computations meaningful, as suggested by Germain and Laurin (2009). Note that weperformed this standardization on the complete dataset of characters, before filtering for datacompleteness. This complete dataset (not shown) includes 213 cranial, appendicular and othercharacters, but no taxon is scored for all characters, because that matrix has much missing data.For instance, the most completely scored taxon, Amia calva, still has 57.4% missing data (morethan half), which indicates that 92 characters were scored for this taxon, including several ties(the resolution was 41 positions, so they varied by increments of 0.025 or 2.5% of the recordedontogeny). We did not re-standardize after filtering characters out because we believe that the
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initial standardization better reflects the relative position of events in development than a stan-dardization based on only seven events in ontogeny. Because of this, some characters in thereduced datasets lack states 0 or 1 for some taxa. This is simply because the first or last eventsin the ontogenetic sequence were filtered out. Thus, we used the position in the sequence (fromfirst to last, in the complete dataset) and standardized this relative sequence position between 0and 1 using the formula given byGermain and Laurin (2009). The standardized sequence position(Xs ) is:
Xs = (Xi − Xmin)/(Xmax − Xmin)where:

Xi is the position of a given bone in the sequence
Xmin is the lowest position in the sequence (generally 0 or 1)
Xmax is the highest position in the sequence (for instance, if there are 20 bones, Xmin is 1 andthe sequence is completely resolved, Xmax = 20).

This yields a standardized scale that varies between 0 and 1 for each taxon, in which 0 and1 are the positions of the first and last events in the sequence, respectively. For instance, forAmbystoma maculatum (an extant urodele), in the original dataset, the first events (tied) werethe ossification of premaxilla, vomer, dentary and coronoid (standardized position: 0); the lastevent was the articular (standardized position: 1), and there is a resolution of 12 positions (hence,increments of 0.0909 or 1/11). However, in the final dataset of 7 characters, the articular isabsent; hence, the first bone in the sequence is the premaxilla, at a standardized position of 0,and the last is the nasal, as a standardized position of 0.8181 because all events in position 1(articular) and 0.9091 (stapes) have been filtered out.We also experimented with using size (skull length) or developmental stage as standards, butthis led to lower sequence resolution because body size is not available for all sequence positionsand for all taxa (results not shown), so we worked only with sequences standardized by position.Given that our data filtering procedure retains few data (only six, seven or eight characters forthe cranial dataset, and four or seven characters for the postcranial dataset), it is important touse the method that discards the least amount of data, and this was achieved by using sequenceposition. We do not imply that standardizing by size is not recommended in general. On thecontrary, if good body size data were available for all taxa and all developmental stages, thisshould be a better strategy, and having access to absolute time should be even better. However,practical limitations of data availability prevent us from using these methods now.Our ossification sequence data (reduced dataset of four to eight characters) of extant andextinct taxa, and the phylogenetic trees we used, are available in the Supplementary information.
2.4. Analysis methods.

To discriminate between the six hypotheses about the origin of extant amphibians, twometh-ods are available: direct phylogenetic analysis of the sequence data, and comparisons of thetree length (number of steps in regular parsimony, squared length in squared-change parsimony,likelihood, or similar measures) of various trees selected a priori to represent these hypotheses(in these trees, only the position of caecilians and extinct taxa, here temnospondyls and lep-ospondyls, varies). We used both approaches but expected the second to perform much betterbecause relatively few data are available, and thus, phylogenetic analysis of such data is unlikelyto provide a well-resolved tree.For the first approach, we first transformed the standardized sequence positions back intodiscrete characters using formulae in a spreadsheet and scaled the characters so that the high-est state in all would be 9. This ensures that each character has equal weight in the analysis,regardless of its variability in the ossification sequence. The characters were ordered to reflectthe assumed evolutionary model (ontogenetic timing is a quantitative character that was dis-cretized) and because for such characters, ordering yields better results (Rineau et al., 2015,2018; see discussion inMarjanović and Laurin, 2019). The resulting datamatrices (one for cranialand another for appendicular characters, both with seven characters each) were analysed using
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parsimony in PAUP* 4.0a165 (Swofford, 2019). We used the TBR (tree bisection-reconnection)branch swapping algorithm and performed a search with 50 random addition replicates (or sev-eral such searches, for the cranial data) while holding two trees at each step and with a maximumnumber of trees set at one million. For cranial data, the main search lasted about 100 hours on aMacBook Pro Retina with a 2.5 GHz iCore 7 quadri-core processor and 16 GB RAM. The exactsearch time cannot be reported because PAUP* crashed after saving the trees to a file for oneof the longest runs (several analyses were made, over several days), but before the log couldbe saved. The analysis of the seven appendicular characters was much faster (27 minutes and ahalf), presumably because that matrix has fewer taxa (62 instead of 105).For the second approach (comparison of fit of various trees selected a priori to reflect pre-viously published hypotheses), we used the CoMET module (Lee et al., 2006) for Mesquite 3.6(Maddison and Maddison, 2018) to test the relative fit of the data on trees representing thesix hypotheses. CoMET calculates the likelihood and the AIC (Akaike Information Criterion) ofnine evolutionary models given continuous data and a tree. Note that our data only representan approximation of continuous data; if standardization had been performed on developmentaltime or body size, the data would actually have been continuous. Standardization was carriedout using sequence position because of data limitation problems, so the data actually follow adecimalized meristic scale. However, the difference between these situations decreases as thenumber of sequence positions increases, and our global scale includes up to 41 positions (andan average of 10.9 positions), so our data should approximate a continuous distribution suffi-ciently well for our analyses to be valid. This consideration prevents us from adding the highlyapomorphic aïstopod Phlegethontia, for which only three cranial ossification stages are known(Anderson et al., 2003; Anderson, 2007); moreover, five of the eight bones included in our anal-yses appear in the last two of these stages, one of the relevant bones (vomer) is absent and two(parietal and exoccipital) are not present as separate ossifications, which would create additionalmissing data. In that case, the very low number of stages would create strong departures fromthe assumption of continuous data. This would probably create statistical artifacts, and the un-certainty about the position of Phlegethontia (Pardo et al., 2017b; Pardo et al., 2018; Clack et al.,2019; Marjanović and Laurin, 2019) would complicate interpretation of the results.The nine models evaluated by CoMET are obtained by modifying the branch lengths ofthe reference tree. Thus, branches can be set to 0 (for internal branches only, to yield a non-phylogenetic model), to 1 (equal or speciational model), left unchanged from their original length(gradual evolution in our case, where the original lengths represent geologic time), or set free andevaluated from the data (free model). This can be applied to internal and/or external branches,and various combinations of these yield nine models (Lee et al., 2006, fig. 1). Among these ninemodels two have been frequently discussed in the literature and are especially relevant. Thefirst is gradual evolution, in which branch lengths (here representing evolutionary time) have notbeen changed. The second is the speciational model, in which all branches are set to the samelength because changes are thought to occur at speciation events, which are typically equatedwith cladogeneses in evolutionary models (Bokma et al., 2016). This model has some similari-ties with Eldredge and Gould’s (1972) punctuated equilibria (though a model with one internalbranch stemming from each node set to 0 and the other set to 1 would be even closer to theoriginal formulation of that model). In this study, we assessed the fit of six of the nine modelscovered by CoMET; the other three (the punctuated versions of distance [original branch length],equal and free), in which one of each pair of daughter-lineages has a branch length of zero, couldnot be assessed due to problems in the current version of CoMET and possibly the size of ourdataset.Provided that the same evolutionary model is optimal for all compared phylogenetic hypothe-ses (this condition is met, as shown below), the AICweights of the various trees under that modelcan be used to assess the support for each tree. In such comparisons, the topology and branchlengths are part of the evolutionary model, and the data are the sequences. These comparisonscan show not only which tree is best supported, but how many times more probable the besttree is compared to the alternatives. This quantification is another reason to prefer this approachover a phylogenetic analysis (performed below, but with the poor results that we anticipated),
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which can at best yield a set of trees showing where the extinct taxa most parsimoniously fit (ifwe had dozens of characters, this might yield better results). Comparisons with other hypothesesthrough direct phylogenetic analysis are not possible. Given the small sample size (which here isthe number of characters), we computed the corrected AIC (AICc) and the AICc weights usingthe formulae given by Anderson and Burnham (2002) and Wagenmakers and Farrell (2004).Our tests make sense only in the presence of a phylogenetic signal in the data. In addition tothe test of evolutionarymodel in CoMETmentioned above (which tests non-phylogenetic aswellas phylogenetic models), we performed a test based on squared-change parsimony (Maddison,1991) and random taxon reshuffling (Laurin, 2014). For this test, we compared the length ofthe LH (lepospondyl hypothesis; Fig. 1d) reference tree (with and without Sclerocephalus) to apopulation of 10,000 random trees produced by taxon reshuffling.It could be argued that using other methods (in addition to themethod outlined above) wouldhave facilitated comparisons with previous studies. However, the two main alternative methods,event-pair cracking with Parsimov (Jeffery et al., 2005) and Parsimov-based genetic inference(PGI; Harrison and Larsson, 2008), have drawbacks that prevented us from using them. Our ob-jections against event-pair cracking with Parsimov were detailed by Germain and Laurin (2009).In short, that method requires an unnecessary decomposition of sequences into event pairs,and it cannot incorporate absolute timing information (in the form of time, developmental stageor body size, for instance) or branch length information. More importantly, the simulations per-formed by Germain and Laurin (2009) showed that event-pair cracking with Parsimov yieldsmore artefactual change and has lower power to detect real sequence shifts. That method isalso problematic when trying to infer ancestral sequences and can lead to impossible ancestralreconstructions (e.g. A occurs before B, B occurs before C, and C occurs before A), as had beendocumented previously (Schulmeister and Wheeler, 2004, p. 55). This would create problemswhen trying to compare the fit of the data on various phylogenetic hypotheses. The performanceof Parsimov-based genetic inference (PGI; Harrison and Larsson, 2008) has not been assessed bysimulations, but it rests on an edit cost function that is contrary to our working hypothesis (thatthe timing of developmental events can be modeled with a bounded Brownian motion model,which is assumed by continuous analysis). More specifically, Harrison and Larsson (2008, p. 380)stated that their function attempts to minimize the number of sequence changes, regardless ofthe magnitude of these changes. We believe that disregarding the size of changes is unrealis-tic, as shown by the fact that Poe’s (2006) analyses of thirteen empirical datasets rejected thatmodel (which he called UC, for unconstrained change) in favor of the model we accept (AJ foradjacent states, which favors small changes over large ones). Furthermore, analyses of ossifica-tion sequence data using techniques for continuous data as done here (see above) have beenperformed by an increasingly large number of studies (e.g., Skawiński and Borczyk, 2017; Spiek-man and Werneburg, 2017; Werneburg and Geiger, 2017; just to mention papers published in2017), so the issue of ease of comparisons of our results with other studies is not as serious asit would have been only a few years ago, and it should be decreasingly so in the future.
2.5. Reference phylogenies.

We built a reference timetree that attempts to capture the established consensus (Fig. 2;see the next paragraphs for the sources). The tree was compiled in Mesquite versions up to3.6 (Maddison and Maddison, 2018) and time-calibrated using the Stratigraphic Tools modulefor Mesquite (Josse et al., 2006). For consistency and to avoid the effects of gaps in the fossilrecord, we used molecular divergence dates whenever possible. The tree had to be time-scaledbecause many of the evolutionary models that we fit on the tree in the first series of tests (to de-termine which evolutionary model can be used to compare the fit of the hypotheses) use branchlengths to assess model fit. Note that our procedure requires estimating divergence times be-tween all taxa (geological ages of all nodes). When taxa are pruned, branch lengths are adjustedautomatically. The main sources we used for topology and divergence times (and hence branchlengths) are as follows.The phylogeny of lissamphibians follows thework of Jetz and Pyron (2018). However, severalother sources have been used for the temporal calibration of the tree: Germain and Laurin (2009)
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Figure 2 – Reference phylogeny used for some of the analyses, illustrating the LH (lep-ospondyl hypothesis) of lissamphibian origins. The tree was time-calibrated, but analy-ses showed that branch lengths are irrelevant, given that the best model is speciational(Tables 2–4). Main sources for topology and divergence times: Reeder (2003); Brandleyet al. (2005); Pons et al. (2005); Lecompte et al. (2008); Bossuyt and Roelants (2009);Germain and Laurin (2009); Hugall et al. (2007); Gonzalez et al. (2009); Meredith et al.(2011); Sterli et al. (2013);Wang et al. (2013); Marjanović and Laurin (2014, 2019); Pyron(2014); Rabosky et al. (2014); Schoch (2014b); Prum et al. (2015); Zhuang et al. (2015);Tarver et al. (2016); Feng et al. (2017); Irisarri et al. (2017); Lu et al. (2017); Pardo et al.(2017a); Jetz and Pyron (2018). The colored bands represent geological stages from theinternational geological timescale (Ogg et al., 2016).
was used for the urodeles, whereas Feng et al. (2017), supplemented by Bossuyt and Roelants(2009) and Pyron (2014), was used for the anurans as well as more rootward nodes (Batrachia,Lissamphibia, Tetrapoda; also Amniota). Marjanović and Laurin (2014) was used for the Ranidae,Ceratophryidae and Hylidae.The sediments that have preserved the temnospondyls Apateon and Sclerocephalus are noteasy to correlate with each other or with the global chronostratigraphic scale. Combining strati-graphic information from Schoch (2014b), Schneider et al. (2015) and Werneburg (2018), wehave placed all three sampled species (A. pedestris, A. caducus, S. haeuseri) at the Sakmarian/Artin-skian stage boundary (Permian; 290.1Ma ago); combining stratigraphic information from Schnei-der et al. (2015)with the phylogeny in Schoch (2014b), we have tentatively placed the divergencebetween the two Apateon species (which are not sister-groups: Schoch, 2014b) at the Kasimo-vian/Gzhelian stage boundary (Carboniferous; 303.7Ma ago). The age of the last common ances-tor of Apateon and Sclerocephalus depends strongly on temnospondyl phylogeny, which remainsunresolved (Pardo et al., 2017a; Marjanović and Laurin, 2019; and numerous references in both);as a compromise between the various options, we have provisionally placed it at the boundarybetween the Early and the Late Carboniferous (Serpukhovian/ Bashkirian, 323.2 Ma ago) whereapplicable.We sampled many extant amniotes to achieve broad coverage of Tetrapoda. For the birds,Pons et al. (2005) was used for the Laridae, Wang et al. (2013) for the Phasianidae and Gonzalez

Michel Laurin et al. 11

Peer Community Journal, Vol. 2 (2022), article e12 https://doi.org/10.24072/pcjournal.89

https://doi.org/10.24072/pcjournal.89


et al. (2009) for the Anatidae. The temporal calibration was taken from Prum et al. (2015) asrecommended by Berv and Field (2018); gaps were filled in using the database www.birdtree.org.Several papers, mainly Tarver et al. (2016), were used for the phylogeny and divergence timesof mammals. For the Muridae, three references were used: Lecompte et al. (2008), Zhuang et al.(2015), and Lu et al. (2017) for the position of two taxa: Mesocricetus auratus and Peromyscusmelanophrys. Other species were placed following the work of Meredith et al. (2011), which alsogives divergence times. We caution, however, that all available molecular dates for Paleogeneand earlier mammal nodes are controversial and may be overestimates (Berv and Field, 2018;Phillips and Fruciano, 2018).Three references were also used to integrate squamates in the phylogenetic tree and for thecalibration of divergence times: Brandley et al. (2005), Rabosky et al. (2014), Reeder (2003). Sterliet al. (2013) was used for turtles.For turtles, there is now a near-consensus that they are diapsids, a hypothesis that is notnecessarily incompatible with an origin among “parareptiles” (Laurin and Piñeiro, 2017). Thus,following most recent phylogenetic analyses of molecular data (e.g., Hugall et al., 2007; Irisarriet al., 2017), we have inserted them as the sister-group of Archosauria.We disagree with several of the calibration dates in Irisarri et al. (2017), which often appearunreasonably old. For instance, they place the divergence between caecilians and batrachiansand the divergence between anurans and urodeles in the Early Carboniferous, around 330 and320 Ma, respectively, but our thorough analyses of the fossil record, with due considerationof its incompleteness, suggest significantly more recent dates, in the Permian (Marjanović andLaurin, 2007, 2008, 2014). This is not surprising because some of the dating constraints used byIrisarri et al. (2017, table S8) are wrong. For instance, they enforced a minimal divergence agebetween cryptodiran and pleurodiran turtles of 210Ma (Late Triassic), but all analyses of the lastfifteen years (e.g., Sterli et al., 2013, 2018) strongly suggest that the oldest known turtles thatfit within this dichotomy date from the Late Jurassic, less than 165Ma. The divergence betweenhumans and armadillos (boreotherian and xenarthran placentals) was constrained to the middleof the Cretaceous (95.3–113 Ma), based on outdated literature that assigned a wide variety ofstem-eutherians to highly nested positions in the placental crown; there are currently no clearplacentals known from any Cretaceous sediments even as young as 66 Ma (e.g., Halliday et al.,2016, 2017; Davies et al., 2017; Phillips and Fruciano, 2018), barely half the age of the olderend of the constraint range. Conversely, the divergence between diapsids (hence sauropsids)and synapsids had a minimal age constraint of 288 Ma (Early Permian), which is much too younggiven the presence of sauropsids (and presumed synapsids) in Joggins, in sediments that haverecently been dated (Carpenter et al., 2015) around 317–319 Ma (early Late Carboniferous).Thus, we have not used divergence dates from that source.To discriminate among the hypotheses on lissamphibian origins, we inserted the temnospon-dyl Apateon in the tree where each predicts that it should be (Fig. 1c–h). Thus, according to theTH (temnospondyl hypothesis; Fig. 1c), Apateon lies on the lissamphibian stem. Under the LH(lepospondyl hypothesis; Fig. 1d), Apateon lies on the tetrapod stem. Under both versions of theDH (diphyly hypothesis; Fig. 1g, h), Apateon lies on the batrachian stem. Under both versions ofthe PH (polyphyly hypothesis; Fig. 1e, f), Apateon lies on the caudate stem. Within the DH andthe PH, both versions of each differ in the position of Gymnophiona. Thus, despite the absenceof any lepospondyl in our cranial ossification sequence datasets, our taxonomic sample allowsus to test all these competing hypotheses. The appendicular datasets allow more direct testsof some of these hypotheses because they include two lepospondyl taxa, which were likewiseplaced in trees representing the tested hypotheses (Fig. 1).Sclerocephalus is the sister-group of Apateon under the LH (Fig. 1d), immediately rootward ofit (on the lissamphibian stem) under the TH (Fig. 1c) and likewise (but on the batrachian stem)under the DH1 (Fig. 1g), on the caecilian stem under the DH2 (Fig. 1h) and the sister-group ofBatrachia (including Apateon) under both versions of the PH (Fig. 1e, f).“Melanerpeton” humbergense (appendicular data only) is the sister-group of Apateon in alltrees, except under the hypothesis of branchiosaur paraphyly; Eusthenopteron (appendicular dataonly) forms the outgroup in all trees.
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The lepospondyls Microbrachis and Hyloplesion, from both of which only appendicular dataare available, form an exclusive clade (Clack et al., 2019;Marjanović and Laurin, 2019). This cladeis the sister-group of Lissamphibia (represented only by Batrachia because caecilians are lackingfrom the appendicular datasets) under the LH, of Amniota under the TH and both versions ofthe DH (these three cannot be distinguished due to the absence of caecilians) as well as underthe PH1, and of Temnospondyli (including Batrachia) under the PH2 (see the legend of Figure 1for an explanation of these abbreviations).The temnospondyl Micromelerpeton, from which likewise only appendicular data are avail-able, forms the sister-group of Apateon under the LH. The uncertainty over its phylogeneticposition within Dissorophoidea (as the sister-group to the rest, including anurans and urodeles:e.g. Schoch, 2019; as the sister-group of Apateon + “Melanerpeton” humbergense: e.g. Ruta andCoates, 2007; Marjanović and Laurin, 2019) generates two versions of the TH/DH1/DH2 treefor the appendicular dataset. We tested both of these versions against that dataset, for a totalof five trees.

Figure 3 – Strict consensus of themost parsimonious trees obtained by analyzing cranialdataset 2. Dataset 2 comprises 105 taxa and seven characters (see Table 1). Note thatseveral higher taxa whose monophyly is well-established are para- or polyphyletic here.Abbreviations: C., Coturnix; L., Larus. Asterisks meaningless.
To ensure that our analyses were not biased in favor of a given hypothesis, and in case that acontinuous evolutionary model were favored, we initially adjusted the branch lengths such thatthe sum of branch lengths was equal between the compared topologies and that the root wasapproximately at the same age (in this case in the Tournaisian, the first stage of the Carbonif-erous). This was done for the trees used to compare the hypotheses using the cranial datasetbecause if a model incorporating (variable) branch length information had been selected, and ifthe trees representing the various hypotheses had not all had the same total length (the sum ofall branch lengths), the resulting distortions in branch lengths created around the extinct taxa(whose height compared to extant taxa is specified by their geological age) would have intro-duced another variable influencing the AICc. But given that the selected model ignores branchlengths, this precaution turned out to be superfluous. We have therefore not made these time-consuming adjustments to the additional trees we generated later to analyze the appendiculardata.

3. Results
In the phylogenetic analysis of cranial data, a single tree island of 22,077 trees of 438 stepswas found, only once, so theremight bemore trees of that length and perhaps even shorter trees.Initially, an island of 22,075 trees was found; we swapped on each of these in a subsequent run,
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which only recovered two additional trees. Given that slightly longer trees did not differ muchfrom those that we obtained, the low quality of the results (poor congruence with the estab-lished consensus about the monophyly of major clades such as squamates, birds, mammals andturtles) and the fact that about four full days of computer time had been spent on analysis ofthe cranial data, we did not pursue that search further. As expected, the strict consensus treeis poorly resolved (Fig. 3). The majority-rule consensus (not shown, but available in the Supple-mentary information) is more resolved but not necessarily better because much of the additionalresolution contradicts the established consensus. For the appendicular matrix, 22,757 trees of164 steps were found. Their strict consensus (Fig. 4) deviates even more from the establishedconsensus than the tree obtained from cranial data.

Figure 4 – Strict consensus of the most parsimonious trees obtained by analyzing ap-pendicular dataset 3. Dataset 3 comprises 62 taxa and seven characters (see Table 1).The phylogenetic signal in these data seems to be lower than in the cranial data. SeeFig. 3 for abbreviations.
This visual assessment of phylogenetic signal through an examination of the consensus trees(Figs. 3, 4) is congruent with the test based on squared-change parsimony and random taxonreshuffling (Laurin, 2004). Indeed, the latter indicates that the phylogenetic signal in the cranialdata is fairly strong, with a probability of less than 0.0001 that the observed covariation betweenthe data and the tree reflects a random distribution (none of the 10,000 random trees generatedwere as short as the reference tree). However, it is weaker, with a probability of 0.0017, for theappendicular data.The speciational model of evolution, in which all branch lengths are equal, has overwhelmingsupport among cranial data, whether or not the Permian temnospondyl Sclerocephalus (Table 2)or the squamosal (Table 3) are included (including Sclerocephalus adds a second temnospondylgenus, but given that the timing of ossification of the squamosal is unknown in Sclerocephalus,including it requires excluding the squamosal from the analysis as described in the Methods
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section); the five other examined models have AICc weights < 10−11. For the appendicular data,the speciational model also has the most support, but that support is not as strong and variesdepending onwhich dataset is analyzed (seven characters or four) and under which phylogenetichypothesis. In three of the four tests performed, support for the second-best model, the non-phylogenetic/equal model, varied between 5% and 19% (Table 4).
Table 2 – Support (AICc and AICc weights) for six evolutionary models given our ref-erence tree (LH) and dataset 1 (see Table 1). Dataset 1 comprises six cranial characters(nasal, parietal, squamosal, maxilla, pterygoid, and exoccipital) scored in 107 taxa, includ-ing the temnospondyl Sclerocephalus. This was performed on the tree representing theLH (lepospondyl hypothesis), but doing this on other trees leads to similar results. Num-bers presented with at least four significant digits; best values in boldface. "Distance"refers to keeping the original branch length (which represent evolutionary time), "equal"sets all branch lengths (internal and terminal) to 1, "free" infers them from the data. Ab-breviations: k, number of estimable parameters; L, likelihood; wi, weight; ∆i , differenceof AICc from that of the Pure-Phylogenetic / Equal model.

Evolutionary model AIC L k AICc ∆i AICc wi(AICc)
Pure-Phylogenetic / Distance -584.4 293.2 1 -583.4 641.2 5.85 E−140

Pure-Phylogenetic / Equal (speciational) -1225.6 613.8 1 -1224.6 0 1.000Pure-Phylogenetic / Free 2.000 E10 -1.000 E10 486 2.000 E10 2.000 E10 < E−165

Non-Phylogenetic / Distance -473.6 237.8 1 -472.6 752.0 4.97 E−164

Non-Phylogenetic / Equal -959.9 481.0 1 -958.9 265.7 2.02 E−58

Non-Phylogenetic / Free 2.000 E10 -1.000 E10 244 2.000 E10 2.000 E10 < E−165

Table 3 – Support (AICc and AICc weights) for six evolutionary models given our refer-ence tree (LH) and dataset 2 (see Table 1). Dataset 2 comprises seven cranial characters(nasal, parietal, squamosal, premaxilla, maxilla, pterygoid, and exoccipital) and 105 taxa,excluding Sclerocephalus. Abbreviations and boldface as in Table 2.
Evolutionary model AIC L k AICc ∆i AICc wi(AICc)
Pure-Phylogenetic / Distance -715.9 359.0 1 -714.9 683.5 < E−26

Pure-Phylogenetic / Equal (speciational) -1399.5 700.7 1 -1398.5 0 1.000Pure-Phylogenetic / Free 2.000 E10 -1.000 E10 306 2.000 E10 2.000 E10 0Non-Phylogenetic / Distance -580.6 291.3 1 -579.6 818.8 < E−26

Non-Phylogenetic / Equal -1106.0 554.0 1 -1105.0 293.5 2.278 E−98

Non-Phylogenetic / Free 2.000 E10 -1.000 E10 244 2.000 E10 2.000 E10 < E−26

Table 4 – AICc weights showing relative support for six evolutionary models given ourappendicular datasets (3 and 4; see Table 1) and various hypotheses. Because of thenumber of analyses presented below, only the AICc weights are presented (best valuesin boldface). Abbreviations: DH, diphyly hypothesis (both versions); LH, lepospondyl hy-pothesis; TH, temnospondyl hypothesis.
Evolutionary model 7 characters, LH 7 characters, LH 4 characters, LH 4 characters, TH/DH
Pure-Phylogenetic / Distance 5.1857 E−149 2.340 E−70 1.227 E−52 2.646 E−52

Pure-Phylogenetic / Equal 1 0.9335 0.94459 0.8139Pure-Phylogenetic / Free < E−179 1.598 E−277 4.012 E−158 3.002 E−155

Non-Phylogenetic / Distance 7.515 E−179 4.843 E−52 2.162 E−42 7.262 E−42

Non-Phylogenetic / Equal 2.14914 E−64 6.648 E−2 5.541 E−2 0.1861Non-Phylogenetic / Free < E−179 < E−179 < E−179 < E−179

Twomain conclusions can be drawn from these tests (Tables 2–4). First, given that both of thebest-supported models imply equal branch lengths, actual time represented by branches can be
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Table 5 – Support (AIC and AICc weights) for the six topologies, reflecting the six hy-potheses about the origin of extant amphibians, under the speciational model (calledPure-Phylogenetic / Equal in Tables 2–4), with dataset 1 (see Table 1).Dataset 1 includessix cranial characters (nasal, parietal, squamosal, maxilla, pterygoid, and exoccipital) and107 taxa (including, among Paleozoic taxa, Apateon and Sclerocephalus). Abbreviationsand boldface as in Table 2, except∆i : difference of AICc from that of the LH. Hypothesesfrom top to bottom: TH: monophyletic origin among temnospondyls; LH: monophyleticorigin from lepospondyls; DH1: diphyletic origin, caecilians from lepospondyls and batra-chians from temnospondyls, as in Anderson et al. (2008); DH2: diphyletic origin, (batra-chians and caecilians from different temnospondyls: Pardo et al., 2017a); PH1: triphyletic(polyphyletic) origin with anurans and urodeles from different temnospondyls, caecil-ians from lepospondyls, and lepospondyls closer to Amniota than to Batrachia (Fröbischet al., 2007); PH2: triphyletic (polyphyletic) origin as above, but with lepospondyls andcaecilians closer to temnospondyls than to amniotes (Milner, 1993), reflecting the well-established lissamphibian monophyly among extant taxa (e.g., Feng et al., 2017; Irisarriet al., 2017).
Hypothesis AIC L AICc ∆i AICc wi(AICc)
TH -1217 609.4 -1215 8.919 0.01144LH -1226 613.8 -1224 0 0.9885DH1 -1204 602.9 -1202 21.90 1.738 E−5

DH2 -1195 598.3 -1193 31.01 1.827 E−7

PH1 -1194 597.9 -1192 31.86 1.196 E−7

PH2 -1193 597.4 -1191 32.89 7.143 E−8

ignored, so we compare support of the six competing topologies using only the best-supportedmodel (speciational). This simplifies the discussion, because it means that the original branchlengths are irrelevant (under that model, all branch lengths are equal); unfortunately, the branchlength (evolutionary time) data were needed to reach this conclusion. Thus, the only remainingvariable is the topology. Second, model fitting, along with the test based on squared-changeparsimony and random taxon reshuffling, indicates that the phylogenetic signal in the cranialdata is strong, but that it is noticeably weaker in the appendicular data (this is shown mostlyby the non-negligible support for the non-phylogenetic/equal model). Thus, comparisons of thefit of the various phylogenetic hypotheses for the cranial data should be more reliable than forthe appendicular data. However, given that for several Paleozoic taxa (most importantly both ofthe sampled lepospondyls), comparisons can be performed only for the appendicular data, thesewere performed as well.Using the speciational model, the AICc weights of the six compared topologies indicate thatthere is strong support in the cranial data for the LH (lepospondyl hypothesis), with an AICcweight of 0.9885 when Sclerocephalus is included (Table 5) and 0.8848 when the squamosal isincluded instead (Table 6). Of the other topologies, the TH (temnospondyl hypothesis) was byfar the best supported, with an AICc weight of 0.01144 (with Sclerocephalus) or 0.1056 (with thesquamosal), which is 86.44 or 8.38 times less than for the LH. Both versions of the DH (diphylyhypothesis) and of the PH (polyphyly hypothesis) have negligible support (AICc weights < 0.01when the squamosal is included, < 0.0001 when Sclerocephalus is included). The least supportis found for the PH2 when Sclerocephalus is included, and for the DH1 when the squamosal isincluded. In both cases, the recently proposed DH2 (Pardo et al., 2017a) fares second-worst by asmall margin. Notably, the DH1 contradicts the modern consensus on lissamphibian monophyly(Fig. 1g), while the PH2 and the DH2 fulfill this constraint from the molecular but not the paleon-tological point of view, having lissamphibian monophyly with respect to amniotes but not withrespect to temnospondyls (Fig. 1f, h).A slightly different dataset (only 84 taxa, but eight cranial characters – excluding the squamos-al but including the frontal and the vomer – and Apateon sequences for both species from Erdes-bach rather than Obermoschel) provides even stronger support for the LH, with an AICc weightof 0.9935 (Table 7). The next best-supported topology, which simultaneously represents the TH,
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Table 6 – Support (AIC and AICc weights) for the six topologies, reflecting the six hy-potheses about the origin of extant amphibians, for dataset 2 (see Table 1). Dataset 2includes seven cranial characters (nasal, parietal, squamosal, premaxilla, maxilla, ptery-goid, and exoccipital) and 105 taxa, excluding Sclerocephalus (among Paleozoic taxa, onlyApateon is present). Abbreviations, boldface and hypotheses as in Tables 2 and 5.
Hypothesis AIC L AICc ∆i AICc wi(AICc)
TH -1395 698.6 -1394 4.251 0.1056LH -1399 700.7 -1398 0 0.8848DH1 -1384 693.1 -1383 15.203 4.42 E−4

DH2 -1385 693.6 -1384 14.315 6.89 E−4

PH1 -1387 694.5 -1386 12.404 1.792 E−3

PH2 -1390 695.8 -1388 9.792 6.615 E−3

DH1 and DH2 (due to the absence of caecilians from this dataset), has an AICc weight of only0.0065.The appendicular data are available in far more Paleozoic taxa than the cranial data; these in-clude Sclerocephalus haeuseri, Archegosaurus decheni, and the non-branchiosaurid “branchiosaur”Micromelerpeton credneri among temnospondyls, the lepospondyls Hyloplesion longicaudatumand Microbrachis pelikani, and the tristichopterid finned stem-tetrapodomorph Eusthenopteronfoordi, in addition to the same two species of Apateon as for the cranial datasets, A. caducusand A. pedestris. Analysis of these data (seven characters: humerus, radius, ulna, ilium, femur,tibia and fibula) yields surprising results, with the PH2 having the most support, with an AICcweight of 0.7978 when using the dataset of seven bones (Table 8). The TH, DH1 and DH2 with“branchiosaur” monophyly are collectively (they cannot be distinguished with that taxonomicsample) the second-best hypotheses with that dataset, with an AICc weight of only 0.1874. Theleast-supported hypothesis with these data is the TH/DH with “branchiosaur” polyphyly.Using the other postcranial dataset with only four bones (radius, ulna, ilium, and femur) butwith more taxa (notably the branchiosaurid temnospondyl “Melanerpeton” humbergense) showsthat intraspecific variation in the postcranial ossification sequences of Apateon do not signifi-cantly impact our assessment of the support for various hypotheses. Whether both sequencesof Apateon (from the Erdesbach and Obermoschel localities, which represent separate paleo-lakes) are included (treated as if they were distinct taxa, such as subspecies), or whether eitherone of these is used in isolation, the PH2 retains the highest support, with AICc weights of 0.62to 0.65. The LH is a distant second, at 0.20–0.23, but still well ahead of the TH/DH and the PH1,which all receive AICc weights between 0.03 and 0.06 (Table 9).
Table 7 – Support for the various hypotheses about amphibian origins for dataset 5(see Table 1). Dataset 5 includes eight cranial characters (frontal added) and 84 taxa,with Apateon sequences from Erdesbach (in addition to Sclerocephalus among Paleozoictaxa). Abbreviations, boldface and hypotheses as in Tables 2 and 5. Because of the taxonsample, only three topologies can be tested.

Hypothesis AIC L AICc ∆i AICc wi(AICc)
LH -1296 649.0 -1294 0 0.9935TH, DH1, DH2 -1286 644.0 -1284 10.061 6.493 E−3

PH1, PH2 -1274 638.0 -1272 22.038 1.628 E−5

4. Discussion
4.1. Phylogenetic signal.

In his discussion of previous phylogenetic conclusions from ossification sequences (such asSchoch andCarroll, 2003), Anderson (2007) noted that ossification sequences seemed to abound
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in symplesiomorphies and in autapomorphies of terminal taxa, while potential synapomorphieswere scarce. This pessimismwas seemingly confirmed by Schoch (2006) in a paper that was pub-lished after Anderson’s (2007) book chapter had gone to press: not only were many similaritiesin the cranial ossification sequences across Osteichthyes found to be symplesiomorphies, buta phylogenetic analysis of cranial ossification sequences did not recover Mammalia, Sauropsida,Amniota or Lissamphibia as monophyletic. Along with these results, Schoch (2006) dismissedanother: the position of the temnospondyl Apateon caducus (the only included extinct taxon)outside the tetrapod crown-group, i.e. the lepospondyl hypothesis on lissamphibian origins (LH).
While ossification sequences alone may not provide enough data for a phylogenetic analysis,as shown by our results (Figs. 3, 4), there is clearly a phylogenetic signal because the taxa are notrandomly scattered over the tree. Specifically, our datasets (with much larger taxon samples thanin Schoch, 2006) fit some tree topologies much better than others. Both the tests using CoMETand squared-change parsimony with random taxon reshuffling overwhelmingly support the pres-ence of a strong phylogenetic signal in the cranial data; the null hypothesis of the absence of aphylogenetic signal can be rejected in both cases, given that it has a probability of < 10−97 for thecranial and < 10−4 for the appendicular dataset, according to CoMET. We conclude that the cra-nial dataset contains a strong phylogenetic signal, and are therefore cautiously optimistic aboutfuture contributions of ossification sequences to phylogenetics.We are less optimistic about theappendicular sequence data, which both tests suggest contains less phylogenetic signal.
The sizable effect on nodal estimates and inferred heterochronies of intraspecific variationfound by Sheil et al. (2014) in lissamphibians could raise doubts about the robustness of our find-ings.We have been able to incorporate infraspecific variability in only two terminal taxa (Apateoncaducus and A. pedestris), but Apateon has played a prominent role in discussions about the signif-icance of cranial ossification sequences on the origins of extant amphibians (Schoch and Carroll,2003; Schoch, 2006; Germain and Laurin, 2009). Thus, incorporation of intraspecific variabilityin Apateon is presumably muchmore important than in extant taxa, even though variability in thelatter would obviously add to the analysis and should be tackled in the future. The variability inApateon should be exempt from two sources of artefactual variability in ossification sequencesdiscussed by Sheil et al. (2014), namely the way in which the specimens were collected (therecan be no lab-raised specimens in long-extinct taxa) and the fixing method used (in this case,fossilization under quite consistent taphonomic conditions). The finding that the results are verysimilar whether we used the Apateon sequences from Erdesbach, Obermoschel, or both (Table 9),is reassuring. In this case, intraspecific variation has negligible impact. However, future studiesshould attempt to assess the effect of more generalized incorporation of intraspecific variability(in a greater proportion of the OTUs).

Table 8 – Support (AICc weights) for the various hypotheses about amphibian originsaccording to dataset 3 (see Table 1). Dataset 3 features seven appendicular characters(humerus, radius, ulna, ilium, femur, tibia and fibula) and 62 taxa , including several Pale-ozoic taxa (the temnospondyls Archegosaurus decheni and Micromelerpeton credneri, thelepospondyls Hyloplesion longicaudatum andMicrobrachis pelikani, and the tristichopteridEusthenopteron foordi) in addition to Apateon (two species, A. caducus and A. pedestris)and Sclerocephalus haeuseri. The Apateon sequences come from Obermoschel. Abbrevi-ations, boldface and hypotheses as in Table 5, except that the TH and both variant ofthe DH become indistinguishable, but the phylogenetic position of the "branchiosaur"Micromelerpeton can be tested.
Hypothesis AIC L AICc ∆i AICc wi(AICc)
LH -885.0 443.5 -884.2 11.808 2.177 E−3

TH, DH (branchiosaur monophyly) -881.1 441.6 -880.3 2.897 0.1874TH, DH (branchiosaur polyphyly) -886.4 444.2 -885.6 15.754 3.027 E−4

PH1 -888.5 445.3 -887.7 8.341 0.01232PH2 -896.9 449.4 -896.1 0.000 0.7978
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Table 9 – Effect of the intraspecific variability in ossification sequences of Apateon onthe support (AICc weight; best values in boldface) for the various hypotheses about am-phibian origins. The dataset (number 4; Table 1) includes only four appendicular bones(radius, ulna, ilium, and femur) and 63 to 65 taxa but it allows testing the impact of in-traspecific variability in ossification sequences in Apateon, which are documented in twolocalities (Erdesbach and Obermoschel). Because of the number of tests presented (15:five topologies x three sets of sequences), only the AICc weights are given. In all tests,the following Paleozoic taxa are present: Sclerocephalus haeuseri, Archegosaurus decheni,"Melanerpeton" humbergense,Micromelerpeton credneri, Apateon (two species, A. caducusand A. pedestris) among temnospondyls, Hyloplesion longicaudatum and Microbrachis pe-likani among lepospondyls, and the tristichopterid Eusthenopteron foordi. For abbrevia-tions of the hypotheses, see Table 5.
Hypothesis Erdesbach and Obermoschel Erdesbach Obermoschel
LH 0.21407 0.20169 0.22657TH, DH (branchiosaur monophyly) 0.05492 0.05265 0.05532TH, DH (branchiosaur polyphyly) 0.03713 0.04285 0.03342PH1 0.05653 0.05491 0.05638PH2 0.63735 0.64790 0.62832

Of course, these results do not preclude functional or developmental constraints from ap-plying to the same data. This phenomenon has been documented, among other taxa, in urode-les, whose development has often been compared with that of temnospondyls (e.g., Schochand Carroll, 2003; Schoch, 2006; Fröbisch et al., 2007; Germain and Laurin, 2009; Fröbisch etal., 2015). For instance, Vorobyeva and Hinchliffe (1996) documented the larval functional con-straints linked to early forelimb use that may cause an early development of manual digits 1 and2, compared with other tetrapods, as briefly discussed below. However, in the case of our sevencranial characters, there is no evidence of functional constraints. This is a little-investigated topic,but all these bones apparently form a single developmental module of the urodele skull (Laurin,2004). For the appendicular data, functional constraints might explain the more subdued phylo-genetic signal, but this will have to be determined by additional research.
The finding that the postcranial characters that we analyzed contain relatively little phyloge-netic signal may raise doubts about the claims that have been made about the phylogenetic im-plications of other such data. Specifically, Carroll et al. (1999) stated that the neural arches ossifybefore the centra in frogs and temnospondyls, but not in salamanders, caecilians or lepospondyls.When it was found that the centra do ossify first in a few cryptobranchoid salamanders, Carroll(2007, p. 30) took this as “strong evidence that the most primitive crown-group salamandershad a sequence of vertebral development that is common to frogs and labyrinthodonts [includ-ing temnospondyls] (but distinct from that of lepospondyls)”. In fact, apart from tail regenerationin Hyloplesion and Microbrachis (where the centra ossify before the neural arches: Olori, 2015;Fröbisch et al., 2015; Vos et al., 2018), only one incompletely ossified vertebral column (referredto Utaherpeton) is known of any putative lepospondyl. “In this specimen, [...] five neural arches[...] have ossified behind the most posterior centrum” (Carroll and Chorn, 1995, 40–41). Car-roll’s (2007, p. 85) claim that “the centra always ossified prior to the arches” in lepospondyls istherefore rather puzzling.
Fröbisch et al. (2007) and (2015) pointed out that the first two digital rays (digits, metapo-dials and distal carpals/tarsals) ossify before the others (“preaxial polarity”) in salamanders andthe temnospondyls Apateon, Micromelerpeton and Sclerocephalus, while the fourth ossifies first(“postaxial polarity”) in amniotes, frogs and “probably” (Fröbisch et al., 2015, pp. 233, 234) thelepospondylsMicrobrachis and Hyloplesion. This latter inference, however, is based only on a de-lay in the ossification of the fifth ray that is shared specifically with sauropsid amniotes (Olori,2015). Ossification sequences (however partial) of the other four rays in any lepospondyl are cur-rently limited to the tarsus of Batropetes, which clearly shows preaxial polarity (Glienke, 2015,
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fig. 6O–S; Marjanović and Laurin, 2019), and that of the putative (but see Clack et al., 2019) lep-ospondyl Sauropleura, in which likewise the second distal tarsal ossified before all others (Mar-janović and Laurin, 2019). Outside of temno- and lepospondyls, Marjanović and Laurin (2013,2019) presented evidence that preaxial polarity is plesiomorphic, widespread and dependenton the use of the still developing limbs for locomotion, which would explain why it was inde-pendently lost in amniotes and frogs and reduced (the second ray still forms first, but the delaysbetween the rays are much reduced so that all form nearly at the same time) in direct-developingsalamanders as well as in the limb regeneration of terrestrial postmetamorphic salamanders (Ku-mar et al., 2015). It may be relevant here that the PH2 (Fig. 1f), favored by our appendiculardata, groups exactly those sampled taxa in a clade that are known to have preaxial polarity inlimb development. To sum up, neither our own analyses nor the previous works that we citedabove demonstrated conclusively that ossification sequences of postcranial elements providereliable clues about the origin of extant amphibians.In contrast, we are reasonably confident about our results on the cranial ossification se-quences. Given the phylogenetic signal we have found in our cranial datasets, we think thatossification sequence data should eventually be added to phenotypic datasets for analyses oftetrapod phylogeny. Indeed, an analysis of amniote phylogeny using data from organogenesis se-quences (coded using event-pairing in Parsimov) already exists (Werneburg and Sánchez-Villagra,2009). The usefulness of such data for phylogenetic inference was further tested, with encour-aging results, by Laurin and Germain (2011), and the present analysis adds additional supportfor it.
4.2. Indirect support for the lepospondyl hypothesis from temnospondyls.

The strong support for the lepospondyl hypothesis that we have found in cranial data is sur-prising because cranial ossification sequence data, especially those of the Permo-Carboniferoustemnospondyl Apateon, have often been claimed to contradict the LH (lepospondyl hypothesis,Fig. 1d). Similarities between Apateon and extant urodeles, in particular the supposedly “prim-itive” hynobiid Ranodon, have often been emphasized (Schoch and Carroll, 2003; Schoch andMilner, 2004; Carroll, 2007; Schoch, 2014a). However, other studies have already raised doubtsabout some of these claims (e.g., Schoch, 2006; Anderson, 2007; Germain and Laurin, 2009).Schoch (2006) and Anderson (2007) concluded that most characters shared between Apateonand urodeles were plesiomorphies. Germain and Laurin (2009) also demonstrated that, far frombeing very similar to the ancestral urodele morphotype (contra Schoch and Carroll, 2003 or Car-roll, 2007), the cranial ossification sequence of Apateon was statistically significantly differentfrom that of the hypothetical last common ancestor of all urodeles (as suspected by Anderson,2007). However, these earlier studies did not clearly show which of the various hypotheses onlissamphibian origins the ossification sequences of Apateon spp. – or the newly available par-tial sequence (Werneburg, 2018) of the phylogenetically distant temnospondyl Sclerocephalus –supported most. This is what we have attempted to do here.Unfortunately, the development of lepospondyls is too poorly documented to be incorpo-rated into the cranial analyses, but we included two lepospondyls in analyses of appendiculardata. These analyses weakly favor a polyphyletic origin of extant amphibians, with both temno-and lepospondyls in the amphibian clade, a hypothesis that has not been advocated seriously fordecades (Milner, 1993, fig. 5B) as far as we know. However, given the moderate phylogeneticsignal in these data, we view these results with skepticism. Olori (2011), using event-pairingwith Parsimov (Jeffery et al., 2005) and PGi (Harrison and Larsson, 2008), analyzed lepospondylpostcranial ossification sequences and concluded that support for the three hypotheses that shetested (TH/DH with two different positions for Micromelerpeton, and LH) did not differ signifi-cantly. By contrast, our analyses of the postcranial data indicate a stronger support for polyphyly(PH2) than for the TH/DH, which is only a distant second (Table 8) or third (behind PH2 and LH;Table 9) depending on the analyses. Olori (2011) performed no statistical test of phylogeneticsignal of her data, though a related test (performing phylogenetic analyses on the data) yieldedtrees (Olori, 2011, fig. 5.5–5.7) that are largely incongruent with the established consensus, inwhichmost large taxa (Mammalia, Testudines, Lissamphibia, etc.) are para- or polyphyletic. Olori’s
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(2011) results, like ours, support the conclusion that the phylogenetic signal in postcranial ossi-fication sequence data is low.Given the current limitations in the availability of developmental data in Paleozoic stego-cephalians, we hope to have demonstrated that cranial ossification sequences of amniotes, lis-samphibians and temnospondyls provide support for the LH that is independent of the phylo-genetic analyses of Laurin (1998), Pawley (2006, appendix 6) or Marjanović and Laurin (2009,2019). This independence is important because the cranial ossification sequence data cannotrival the morphological data in terms of data availability, simply because growth sequences ofextinct taxa are rare (Sánchez-Villagra, 2012), but having a fairly independent line of evidenceto investigate a major evolutionary problem is clearly advantageous. We hope that the modestmethodological progress made in this study will stimulate the search for fossilized ontogenies(Cloutier, 2010; Sánchez-Villagra, 2010).
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Appendix
Sources of data for ossification sequences.

Empty cells indicate that these data are unavailable. Three methods were examined, and weused the one for which most data were available (position in the ossification sequence, last col-umn).

Taxa Standardization method (data type used)
Ontogenetic stages Snout-vent length (mm) Ossification sequence posi-tion

ActinopterygiiAmia calva Grande and Bemis (1998) Grande and Bemis (1998)Clarias gariepinus Adriaens and Verraes (1998) Adriaens and Verraes (1998)Danio rerio Cubbage and Mabee (1996) Cubbage and Mabee (1996)Oryzias latipes Langille and Hall (1987)
TristichopteridaeEusthenopteron foordi Cote et al. (2002); Leblanc andCloutier (2005) Cote et al. (2002); Leblanc andCloutier (2005)
TemnospondyliArchegosaurus decheni Witzmann (2006) Witzmann (2006)Apateon caducus (Erdesbach) Schoch (2004) Schoch (2004) Schoch (2004)Apateon caducus (Ober-moschel) Werneburg (2018) Werneburg (2018)
Apateon pedestris (Erdesbach) Schoch (2004) Schoch (2004)Apateon pedestris (Ober-moschel) Werneburg (2018) Werneburg (2018)
"Melanerpeton" humbergense Schoch (2004) Schoch (2004)Micromelerpeton credneri Boy (1995); Witzmann andPfretzschner (2003); Lillichand Schoch (2007); Schoch(2009)

Boy (1995); Witzmann andPfretzschner (2003); Lillichand Schoch (2007); Schoch(2009)Sclerocephalus haeuseri Lohmann and Sachs (2001);Schoch (2003); Schoch andWitzmann (2009); Werneburg(2018)

Lohmann and Sachs (2001);Schoch (2003); Schoch andWitzmann (2009); Werneburg(2018)

Lohmann and Sachs (2001);Schoch (2003); Schoch andWitzmann (2009); Werneburg(2018)
LepospondyliHyloplesion longicaudatum Olori (2013) Olori (2013)Microbrachis pelikani Olori (2013) Olori (2013)
GymnophionaGegeneophis ramaswamii Müller et al. (2005) Harrington et al. (2013)Hypogeophis rostratus Müller (2006) Harrington et al. (2013)
UrodelaAneides lugrubis Wake et al. (1983) Wake et al. (1983)Ambystoma macrodactylum Harrington et al. (2013)Ambystoma maculatum Harrington et al. (2013)Ambystoma mexicanum Laurin and Germain (2011) Harrington et al. (2013)Ambystoma talpoideum Reilly (1987) Reilly (1987) Reilly (1987)Ambystoma texanum Laurin and Germain (2011) Harrington et al. (2013)Ambystoma tigrinum Harrington et al. (2013)Amphiuma means Harrington et al. (2013)Andrias japonicus Harrington et al. (2013)Bolitoglossa subpalmata Ehmcke and Clemen (2000)Dicamptodon tenebrosus Harrington et al. (2013)
Continued on next page.
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Continued from previous page.
Taxa Standardization method (data type used)

Ontogenetic stages Snout-vent length (mm) Ossification sequence posi-tion
Eurycea bislineata Harrington et al. (2013)Gyrinophilus porphyriticus Harrington et al. (2013)Hemidactylium scutatum Harrington et al. (2013)Lissotriton vulgaris Laurin and Germain (2011) Harrington et al. (2013)Necturus maculosus Harrington et al. (2013)Notophthalmus viridescens Reilly (1986) Reilly (1986) Harrington et al. (2013)Onychodactylus japonicus Harrington et al. (2013)Pleurodeles waltl Harrington et al. (2013)Ranodon sibiricus Harrington et al. (2013)Salamandra salamandra Harrington et al. (2013)Salamandrella keyserlingii Harrington et al. (2013)Siren intermedia Reilly and Altig (1996) Reilly and Altig (1996) Reilly and Altig (1996)Triturus karelinii Harrington et al. (2013)
AnuraAlytes obstetricans Yeh (2002)Ascaphus truei Harrington et al. (2013)Anaxyrus boreas Gaudin (1978)Bombina orientalis Harrington et al. (2013)Bufo bufo Harrington et al. (2013)Cornufer guentheri Harrington et al. (2013)Ceratophrys cornuta Harrington et al. (2013)Chacophrys pierotti Harrington et al. (2013)Crinia signifera Harrington et al. (2013)Dendrobates auratus Sá and Hill (1998) Sá and Hill (1998) Harrington et al. (2013)Discoglossus sardus Púgener and Maglia (1997)Eleutherodactylus coqui Harrington et al. (2013)Eleutherodactylus nubicola Harrington et al. (2013)Epidalea calamita Harrington et al. (2013)Epipedobates tricolor Sá and Hill (1998) Sá and Hill (1998) Harrington et al. (2013)Fejervarya cancrivora Harrington et al. (2013)Hamptophryne boliviana Harrington et al. (2013)Hyla versicolor Harrington et al. (2013)Hylorina sylvatica Harrington et al. (2013)Hymenochirus boettgeri Sá and Swart (1999)Hypsiboas lanciformis Sá (1988) Sá (1988) Sá (1988)Kassina senegalensis Harrington et al. (2013)Leptodactylus chaquensis Harrington et al. (2013)Osteopilus septentrionalis Trueb (1966)Palaeobatrachus sp. Harrington et al. (2013)Pelobates cultripes Harrington et al. (2013)Philautus silus Harrington et al. (2013)Phyllomedusa vaillanti Harrington et al. (2013)Pipa myersi Yeh (2002)Pipa pipa Trueb et al. (2000) Harrington et al. (2013)Pseudacris regilla Harrington et al. (2013)Pseudacris triseriata Harrington et al. (2013)Pseudis platensis Harrington et al. (2013)Pseudophryne bibronii Harrington et al. (2013)Pyxicephalus adspersus Harrington et al. (2013)Rana (Amerana) aurora Harrington et al. (2013)Rana (Amerana) cascadae Harrington et al. (2013)Rana (Amerana) pretiosa Harrington et al. (2013)Rana (Amerana) temporaria Harrington et al. (2013)
Continued on next page.
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Continued from previous page.
Taxa Standardization method (data type used)

Ontogenetic stages Snout-vent length (mm) Ossification sequence posi-tion
Rana (Pantherana) pipiens Kemp and Hoyt (1969)Rhinophrynus dorsalis Harrington et al. (2013)Shomronella jordanica Harrington et al. (2013)Smilisca baudini Harrington et al. (2013)Spea bombifrons Wiens (1989) Wiens (1989) Wiens (1989)Spea multiplicata Harrington et al. (2013)Triprion petasatus Harrington et al. (2013)Uperoleia laevigata Harrington et al. (2013)Xenopus laevis Harrington et al. (2013)Triprion petasatus Harrington et al. (2013)Uperoleia laevigata Harrington et al. (2013)Xenopus laevis Harrington et al. (2013)
MammaliaBradypus variegatus Hautier et al. (2011)Cavia porcellus Hautier et al. (2013)Choloepus didactylus Hautier et al. (2011)Cryptotis parva Koyabu et al. (2011)Cyclopes didactylus Hautier et al. (2011)Dasypus novemcinctus Hautier et al. (2011)Dasyurus viverrinus Hautier et al. (2013)Didelphis albuventris Oliveira et al. (1998) Oliveira et al. (1998)Echinops telfairi Werneburg et al. (2013)Elephantulus rozeti Hautier et al. (2013)Eremitalpa granti Hautier et al. (2013)Erinaceus amurensis Koyabu et al. (2011)Felis silvestris Sánchez-Villagra et al. (2008)Homo sapiens Hautier et al. (2013)Heterohyrax brucei Hautier et al. (2013)Loxodonta africana Hautier et al. (2012)Macropus eugenii Hautier et al. (2013)Macroscelides proboscideus Hautier et al. (2013)Manis javanica Hautier et al. (2013)Meriones unguiculatus Yukawa et al. (1999) Yukawa et al. (1999)Mesocricetus auratus Hautier et al. (2013)Mogera wogura Koyabu et al. (2011)Monodelphis domestica Hautier et al. (2013)Mus musculus Hautier et al. (2013)Ornithorhynchus anatinus Weisbecker (2011)Orycteropus afer Hautier et al. (2013)Perameles nasuta Hautier et al. (2013)Peromyscus melanophrys Hautier et al. (2013)Procavia capensis Hautier et al. (2013)Rattus norvegicus Hautier et al. (2013)Rhabdomys pumilio Hautier et al. (2013)Rousettus amplexicaudatus Hautier et al. (2013)Sus scrofa Hautier et al. (2013)Trachyglossus aculeatus Weisbecker (2011)Talpa spp. Sánchez-Villagra et al. (2008)Tenrec ecaudatus Werneburg et al. (2013)Tamandua tetradactyla Hautier et al. (2011)Tarsius spectrum Hautier et al. (2013)Trichosurus vulpecula Weisbecker et al. (2008) Hautier et al. (2013)Tupaia javanica Hautier et al. (2013)
Continued on next page.
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Continued from previous page.
Taxa Standardization method (data type used)

Ontogenetic stages Snout-vent length (mm) Ossification sequence posi-tion
SquamataZootoca vivipara Hautier et al. (2013)Lerista bougainvillii Hugi et al. (2012) Hugi et al. (2012)Liopholis whitii Hugi et al. (2012) Hugi et al. (2012)Hemiergis peronii Hugi et al. (2012) Hugi et al. (2012)Saiphos equalis Hugi et al. (2012) Hugi et al. (2012)
CrocodyliaAlligator mississipiensis Rieppel (1993b) Rieppel (1993b)
AvesAnas platyrhynchos Maxwell et al. (2010)Cairina moschata Maxwell et al. (2010)Coturnix coturnix Maxwell et al. (2010)Coturnix coturnix (N&T) Maxwell et al. (2010)Dromaius novaehollandiae Maxwell et al. (2010)Dromaius novaehollandiae(YPM) Maxwell et al. (2010)
Gallus gallus Maxwell et al. (2010)Gallus gallus (S&W) Maxwell et al. (2010)Larus argentatus Maxwell et al. (2010)Larus canus Maxwell et al. (2010)Larus ridibundus Maxwell et al. (2010)Meleagris gallopavo Maxwell et al. (2010)Phalacrocorax auritus Maxwell et al. (2010)Somateria mollissima Maxwell et al. (2010)Stercorarius skua Maxwell et al. (2010)Sterna hirundo Maxwell et al. (2010)Struthio camelus Maxwell et al. (2010)
TestudinesApalone spinifera Sánchez-Villagra et al. (2008)Chelydra serpentina Rieppel (1993a) Rieppel (1990, 1993a) Rieppel (1993a)Macrochelys temminckii Sánchez-Villagra et al. (2008)Pelodiscus sinensis Sánchez-Villagra et al. (2008)
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