Section: Microbiology

Molybdate delays sulphide formation in the sediment and transfer to the bulk liquid in a model shrimp pond

10.24072/pcjournal.421 - Peer Community Journal, Volume 4 (2024), article no. e50.

Get full text PDF Peer reviewed and recommended by PCI
article image

Shrimp are commonly cultured in earthen aquaculture ponds where organic-rich uneaten feed and faeces accumulate on and in the sediment to form anaerobic zones. Since the pond water is rich in sulphate, these anaerobic conditions eventually lead to the production of sulphide. Sulphides are toxic and even lethal to the shrimp that live on the pond sediment, but physicochemical and microbial reactions that occur during the accumulation of organic waste and the subsequent formation of sulphide in shrimp pond sediments remain unclear. Molybdate treatment is a promising strategy to inhibit sulphate reduction, thus, preventing sulphide accumulation. We used an experimental shrimp pond model to simulate the organic waste accumulation and sulphide formation during the final 61 days of a full shrimp growth cycle. Sodium molybdate (5 and 25 mg/L Na2MoO4.2H2O) was applied as a preventive strategy to control sulphide production before oxygen depletion. Molybdate addition partially mitigated H2S production in the sediment, and delayed its transfer to the bulk liquid by pushing the higher sulphide concentration zone towards deeper sediment layers. Molybdate treatment at 25 mg/L significantly impacted the overall microbial community composition and treated samples (5 and 25 mg/L molybdate) had about 50% higher relative abundance of sulphate reducing bacteria than the control (no molybdate) treatment. In conclusion, molybdate has the potential to work as mitigation strategy against sulphide accumulation in the sediment during shrimp growth by directly steering the microbial community in a shrimp pond system.

Published online:
DOI: 10.24072/pcjournal.421
Type: Research article
Keywords: Aquaculture, Molybdate, Shrimp growth, Sulphate reduction, Sulphide toxicity

Torun, Funda 1; Hostins, Barbara 2; De Schryver, Peter 2; Boon, Nico 1, 3; De Vrieze, Jo 1, 3

1 Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
2 INVE Technologies NV, Hoogveld 93, Dendermonde, Belgium
3 Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), P.O. Frieda Saeysstraat 1, B-9000 Gent, Belgium
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_421,
     author = {Torun, Funda and Hostins, Barbara and De Schryver, Peter and Boon, Nico and De Vrieze, Jo},
     title = {Molybdate delays sulphide formation in the sediment and transfer to the bulk liquid in a model shrimp pond},
     journal = {Peer Community Journal},
     eid = {e50},
     publisher = {Peer Community In},
     volume = {4},
     year = {2024},
     doi = {10.24072/pcjournal.421},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.421/}
}
TY  - JOUR
AU  - Torun, Funda
AU  - Hostins, Barbara
AU  - De Schryver, Peter
AU  - Boon, Nico
AU  - De Vrieze, Jo
TI  - Molybdate delays sulphide formation in the sediment and transfer to the bulk liquid in a model shrimp pond
JO  - Peer Community Journal
PY  - 2024
VL  - 4
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.421/
DO  - 10.24072/pcjournal.421
LA  - en
ID  - 10_24072_pcjournal_421
ER  - 
%0 Journal Article
%A Torun, Funda
%A Hostins, Barbara
%A De Schryver, Peter
%A Boon, Nico
%A De Vrieze, Jo
%T Molybdate delays sulphide formation in the sediment and transfer to the bulk liquid in a model shrimp pond
%J Peer Community Journal
%D 2024
%V 4
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.421/
%R 10.24072/pcjournal.421
%G en
%F 10_24072_pcjournal_421
Torun, Funda; Hostins, Barbara; De Schryver, Peter; Boon, Nico; De Vrieze, Jo. Molybdate delays sulphide formation in the sediment and transfer to the bulk liquid in a model shrimp pond. Peer Community Journal, Volume 4 (2024), article  no. e50. doi : 10.24072/pcjournal.421. https://peercommunityjournal.org/articles/10.24072/pcjournal.421/

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.microbiol.100049

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Angel, R. Addition of molybdate to shrimp ponds is a promising new technique to delay the accumulation of toxic H2S, Peer Community in Microbiology (2024) | DOI

[2] Avnimelech, Y. Shrimp and fish pond soils: processes and management, Aquaculture, Volume 220 (2003) no. 1-4, pp. 549-567 | DOI

[3] Barr, D. A.; Omollo, C.; Mason, M.; Koch, A.; Wilkinson, R. J.; Lalloo, D. G.; Meintjes, G.; Mizrahi, V.; Warner, D. F.; Davies, G. Flow Cytometry Method for Absolute Counting and Single-Cell Phenotyping of Mycobacteria, Scientific Reports, Volume 11 (2021) no. 1, p. 18661 | DOI

[4] Baxa, M.; Musil, M.; Kummel, M.; Hanzlík, P.; Tesařová, B.; Pechar, L. Dissolved Oxygen Deficits in a Shallow Eutrophic Aquatic Ecosystem (Fishpond) – Sediment Oxygen Demand and Water Column Respiration Alternately Drive the Oxygen Regime, Science of The Total Environment, Volume 766 (2021), p. 142647 | DOI

[5] Biswas, K. C.; Woodards, N. A.; Xu, H.; Barton, L. L. Reduction of molybdate by sulfate-reducing bacteria, BioMetals, Volume 22 (2009) no. 1, pp. 131-139 | DOI

[6] Boon, N.; De Windt, W.; Verstraete, W.; Top, E. M. Evaluation of Nested PCR-DGGE (Denaturing Gradient Gel Electrophoresis) with Group-Specific 16S rRNA Primers for the Analysis of Bacterial Communities from Different Wastewater Treatment Plants, Fems Microbiology Ecology, Volume 39 (2002) no. 2, pp. 101-112 | DOI

[7] Boyd, C. E. Pond Water Aeration Systems, Aquacultural Engineering, Volume 18 (1998) no. 1, pp. 9-40 | DOI

[8] Bryant, M. P.; Campbell, L. L.; Reddy, C. A.; Crabill, M. R. Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H2-utilizing Methanogenic Bacteria, Applied and environmental microbiology, Volume 33 (1977) no. 5, p. 1162-9 | DOI

[9] Burford, M. A.; Peterson, E. L.; Baiano, J. C. F.; Preston, N. P. Bacteria in Shrimp Pond Sediments: Their Role in Mineralizing Nutrients and Some Suggested Sampling Strategies, Aquaculture Research, Volume 29 (1998) no. 11, pp. 843-849 | DOI

[10] Chen, G.; Ford, T. E.; Clayton, C. R. Interaction of Sulfate-Reducing Bacteria with Molybdenum Dissolved from Sputter-Deposited Molybdenum Thin Films and Pure Molybdenum Powder, Journal of Colloid and Interface Science, Volume 204 (1998) no. 2, pp. 237-246 | DOI

[11] Chen, H.-C. Water Quality Criteria for Farming the Grass Shrimp, Penaeus Monodon, First International Conference on the Culture of Penaeid Prawns/Shrimps, p. 165

[12] Dien, L. D.; Hiep, L. H.; Faggotter, S. J.; Chen, C.; Sammut, J.; Burford, M. A. Factors driving low oxygen conditions in integrated rice-shrimp ponds, Aquaculture, Volume 512 (2019) | DOI

[13] Greenberg, A.; Clesceri, L.; Eaton, A. Standard Methods for the Examination of Water and Wastewater, American Public Health Association Publications, Washington, 1992, p. 1100

[14] Huang, C.; Luo, Y.; Zeng, G.; Zhang, P.; Peng, R.; Jiang, X.; Jiang, M. Effect of Adding Microalgae to Whiteleg Shrimp Culture on Water Quality, Shrimp Development and Yield, Aquaculture Reports, Volume 22 (2022), p. 100916 | DOI

[15] Isa, M. H.; Anderson, G. K. Molybdate Inhibition of Sulphate Reduction in Two-Phase Anaerobic Digestion, Process Biochemistry, Volume 40 (2005) no. 6, pp. 2079-2089 | DOI

[16] Jeroschewski, P.; Steuckart, C.; Kühl, M. An Amperometric Microsensor for the Determination of H2S in Aquatic Environments, ANALYTICAL CHEMISTRY, Volume 68 (1996), pp. 4351-4357 | DOI

[17] Jesus, E.; Lima, L.; Bernardez, L. A.; Almeida, P. Inhibition of Microbial Sulfate Reduction by Molybdate, Brazilian Journal of Petroleum & Gas, Volume 9 (2015), p. 95 | DOI

[18] Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F. O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies, Nucleic Acids Research, Volume 41 (2013) no. 1, p. 11 | DOI

[19] Kögler, F.; Hartmann, F. S. F.; Schulze-Makuch, D.; Herold, A.; Alkan, H.; Dopffel, N. Inhibition of Microbial Souring with Molybdate and Its Application under Reservoir Conditions, International Biodeterioration & Biodegradation, Volume 157 (2021), p. 105158 | DOI

[20] Lippens, C.; De Vrieze, J. Exploiting the Unwanted: Sulphate Reduction Enables Phosphate Recovery from Energy-Rich Sludge during Anaerobic Digestion, Water Research, Volume 163 (2019), p. 114859 | DOI

[21] Malkin, S. Y.; Rao, A. M. F.; Seitaj, D.; Vasquez-Cardenas, D.; Zetsche, E.-M.; Hidalgo-Martinez, S.; Boschker, H. T. S.; Meysman, F. J. R. Natural Occurrence of Microbial Sulphur Oxidation by Long-Range Electron Transport in the Seafloor, The ISME Journal, Volume 8 (2014) no. 9, pp. 1843-1854 | DOI

[22] McMurdie, P. J.; Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible, Plos Computational Biology, Volume 10 (2014) no. 4, p. 12 | DOI

[23] Nair, R. R.; Silveira, C. M.; Diniz, M. S.; Almeida, M. G.; Moura, J. J. G.; Rivas, M. G. Changes in Metabolic Pathways of Desulfovibrio Alaskensis G20 Cells Induced by Molybdate Excess, JBIC Journal of Biological Inorganic Chemistry, Volume 20 (2015) no. 2, pp. 311-322 | DOI

[24] Ou, F.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. Absolute Bacterial Cell Enumeration Using Flow Cytometry, Journal of applied microbiology, Volume 123 (2017) no. 2, pp. 464-477 | DOI

[25] Panakorn, S. Hydrogen Sulfide- The Silent Killer, Aquaculture Asia Pacific Magazine (2016) no. March-April, pp. 14-17

[26] Peck, H. D. The Atp-Dependent Reduction of Sulfate with Hydrogen in Extracts of Desulfovibrio Desulfuricans, Proceedings of the National Academy of Sciences, Volume 45 (1959) no. 5, pp. 701-708 | DOI

[27] Plugge, C. M.; Zhang, W.; Scholten, J. C.; Stams, A. J. Metabolic Flexibility of Sulfate-Reducing Bacteria, Frontiers in microbiology, Volume 2 (2011), p. 81 | DOI

[28] Props, R.; Kerckhof, F. M.; Rubbens, P.; De Vrieze, J.; Hernandez Sanabria, E.; Waegeman, W.; Monsieurs, P.; Hammes, F.; Boon, N. Absolute Quantification of Microbial Taxon Abundances, The ISME journal, Volume 11 (2017) no. 2, pp. 584-587 | DOI

[29] Ranade, D. R.; Dighe, A. S.; Bhirangi, S. S.; Panhalkar, V. S.; Yeole, T. Y. Evaluation of the Use of Sodium Molybdate to Inhibit Sulphate Reduction during Anaerobic Digestion of Distillery Waste, Bioresource Technology, Volume 68 (1999) no. 3, pp. 287-291 | DOI

[30] Schwermer, C. U.; Ferdelman, T. G.; Stief, P.; Gieseke, A.; Rezakhani, N.; Van Rijn, J.; De Beer, D.; Schramm, A. Effect of Nitrate on Sulfur Transformations in Sulfidogenic Sludge of a Marine Aquaculture Biofilter, FEMS Microbiology Ecology, Volume 72 (2010) no. 3, pp. 476-484 | DOI

[31] Smith, R. L.; Klug, M. J. Electron Donors Utilized by Sulfate-Reducing Bacteria in Eutrophic Lake Sediments, Applied and Environmental Microbiology, Volume 42 (1981) no. 1, pp. 116-121 | DOI

[32] Stoeva, M. K.; Coates, J. D. Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding, Microbiology, Volume 165 (2019) no. 3, pp. 254-269 | DOI

[33] Suo, Y.; Li, E.; Li, T.; Jia, Y.; Qin, J. G.; Gu, Z.; Chen, L. Response of Gut Health and Microbiota to Sulfide Exposure in Pacific White Shrimp Litopenaeus Vannamei, Fish & shellfish immunology, Volume 63 (2017), pp. 87-96 | DOI

[34] Tenti, P.; Roman, S.; Storelli, N. Molybdate to Prevent the Formation of Sulfide during the Process of Biogas Production, bioRxiv : the preprint server for biology (2019), p. 2019 | DOI

[35] Thulasi, D.; Muralidhar, M.; Saraswathy, R. Effect of Sulphide in Pacific White Shrimp Penaeus Vannamei under Varying Oxygen and pH Levels, Aquaculture Research, Volume 51 (2020) no. 6, pp. 2389-2399 | DOI

[36] Torun, F.; Hostins, B.; De Schryver, P.; Boon, N.; De Vrieze, J. Long-term sulphide mitigation through molybdate at shrimp pond bottoms [Data set], Zenodo (2023) | DOI

[37] Torun, F.; Hostins, B.; De Schryver, P.; Boon, N.; De Vrieze, J. Molybdate Effectively Controls Sulphide Production in a Shrimp Pond Model, Environmental Research, Volume 203 (2022), p. 111797 | DOI

[38] Torun, F.; Hostins, B.; Teske, J.; De Schryver, P.; Boon, N.; De Vrieze, J. Nitrate amendment to control sulphide accumulation in shrimp ponds, Aquaculture, Volume 521 (2020) | DOI

[39] US-EPA Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting (2011) (https://www.federalregister.gov/documents/2011/10/17/2011-23534/hydrogen-sulfide-community-right-to-know-toxic-chemical-release-reporting)

[40] Vismann, B. Sulfide Species and Total Sulfide Toxicity in the Shrimp Crangon Crangon, Journal of Experimental Marine Biology and Ecology, Volume 204 (1996) no. 1, pp. 141-154 | DOI

[41] Will, F.; Yoe, J. H. Colorimetric Determination of Molybdenum with Mercaptoacetic Acid, Analytical Chemistry, Volume 25 (1953), pp. 1363-1366

[42] Zhang, Z.; Zhang, C.; Yang, Y.; Zhang, Z.; Tang, Y.; Su, P.; Lin, Z. A Review of Sulfate-Reducing Bacteria: Metabolism, Influencing Factors and Application in Wastewater Treatment, Journal of Cleaner Production, Volume 376 (2022), p. 134109 | DOI

Cited by Sources: