Latest Articles


  • Lanthanides (LNs) are a group of 15 elements with steadily increasing economical importance due to their multiple uses in technologies essential for sustainable ecological, digital and energetic transitions. Although knowledge on LN ecotoxicology has greatly improved over the last decade, uncertainty persists with regard to their actual hazard and risk in freshwater environments. In particular, only limited information is available on i) the actual relationships between LN speciation vs. ecotoxicological responses in standardized laboratory tests and ii) the existence of regular and predictable patterns in LN ecotoxicity (expressed as e.g., EC50) along the LN series. The present paper provides the first report on the ecotoxicity of all lanthanides (except Pm) for the freshwater crustacean Daphnia magna along with an unprecedented level of detail on LN speciation in the exposure medium. Experimental data show that exposure concentrations can decrease by up to 95 % over the test duration, with the percentage decrease being inversely related with LN atomic mass. Thermodynamic speciation calculations confirm the possible formation of insoluble species, mainly LN carbonates. However, the corresponding theoretical solubility limits do not fully agree with measured concentrations at the end of the tests. Experimental verification of exposure concentrations (as a minimum at the beginning and end of laboratory tests) remains therefore mandatory to reach proper conclusions as to the ecotoxicity of each LN. A decreasing trend in ecotoxicity can actually be observed along the LN series when temporal changes in the exposure concentrations are properly accounted for. However, this trend remains dependent on exposure time and selected exposure metrics. This and other caveats must be considered in future research to reach a community-based consensus for the proper hazard and risk assessment of LN towards daphnids and other aquatic organisms.

  • Implementing integrated pest management programs to limit agricultural pest damage requires an understanding of the interactions between the environmental variability and population demographic processes. However, identifying key environmental drivers of spatio-temporal pest population dynamics remains challenging as numerous candidate factors can operate at a range of scales, from the field (e.g. agricultural practices) to the regional scale (e.g. weather variability). In such a context, data-driven approaches applied to pre-existing data may allow identifying patterns, correlations, and trends that may not be apparent through more restricted hypothesis-driven studies. The resulting insights can lead to the generation of novel hypotheses and inform future experimental work focusing on a limited and relevant set of environmental predictors. In this study, we developed an ecoinformatics approach to unravel the multi-scale environmental conditions that lead to the early re-infestation of mango orchards by a major pest in Senegal, the oriental fruit fly Bactrocera dorsalis (BD). We gathered abundance data from a three-year monitoring conducted in 69 mango orchards as well as environmental data (i.e. orchard management, landscape structure and weather variability) across a range of spatial scales. We then developed a flexible analysis pipeline centred on a recent machine learning algorithm, which allows the combination of gradient boosting and grouped random effects models or Gaussian processes, to hierarchize the effects of multi-scale environmental variables on the onset of annual BD population growth in orchards. We found that physical factors (humidity, temperature), and to some extent landscape variables, were the main drivers of the spatio-temporal variability of the onset of population growth in orchards. These results suggest that favourable microclimate conditions could provide refuges for small BD  populations that could survive, with little or no reproduction, during the mango off-season and, then, recolonize neighbouring orchards at the beginning of the next mango season. Confirmation of such a hypothesis could help to prioritize surveillance and preventive control actions in refuge areas.

  • Accumulation of heavy metals by plants can serve as a defence against herbivory. Herbivores, in turn, may avoid feeding on contaminated tissues. Such avoidance, however, may hinge upon the specific conditions faced by herbivores. Here, we tested whether the spider mite Tetranychus urticae avoids tomato plants contaminated with cadmium in presence of conspecifics or heterospecifics and depending on the frequency of contaminated plants. We show that individual spider mite females do not preferentially move to leaf tissues with or without cadmium, despite clear costs on their performance. However, in a set-up where 200 mites were simultaneously given the choice between four plants with or without cadmium, they collectively avoided plants with cadmium, irrespective of the proportion of plants with cadmium. In addition, T. urticae did not discriminate between plants infested with its competitor T. evansi and other uncontaminated plants but they preferred plants with competitors when the other plants contained cadmium. Our results show that aggregation may facilitate avoidance of contaminated plants. They also indicate that cadmium accumulation in plants is a stronger selective pressure than interspecific competition with T. evansi. Therefore, collective avoidance of metal-accumulating plants by herbivores is robust to environmental conditions and may have important consequences for species distribution and interactions in metal contaminated sites.

  • Bulk microbiome, as well as virome-enriched shotgun sequencing only reveals the double-stranded DNA (dsDNA) content of a given sample, unless specific treatments are applied. However, genomes of viruses often consist of a circular single-stranded DNA (ssDNA) molecule. Pre-treatment and amplification of DNA using the multiple displacement amplification (MDA) method enables conversion of ssDNA to dsDNA, but this process can lead to over-representation of these circular ssDNA genomes. A more recent alternative permits to bypass the amplification step, as library adapters are ligated to sheared and denatured DNA, after an end-modification step (xGen kit). However, the sonication step might shear ssDNA more efficiently than dsDNA, therefore introducing another bias in virome sequencing. These limitations prompted us to explore an alternative method of DNA preparation for sequencing mixed ssDNA and dsDNA viromes. Using a synthetic mix of viral particles, we made use of the T7 DNA polymerase (T7pol) to convert viral circular ssDNA molecules to dsDNA, while preventing over-replication of such molecules, as is the case with the Phi29 DNA polymerase. Our findings indicate that using  T7pol  and a mix of degenerated primers to convert ssDNA to dsDNA prior library preparation is a good alternative to the currently used methods. It better represents the original synthetic mixtures compared to MDA or direct application of the xGen kit. Furthermore, when applied to two complex virome samples, the T7pol treatment improved both the richness and abundance in the Microviridae fraction. We conclude that T7pol pretreatment is preferable to MDA for the shotgun sequencing of viromes, which is easy to implement and inexpensive.

View more articles