Latest Articles

  • With frequent host shifts involving the colonization of new hosts across large geographical ranges, crop pests are good models for examining the mechanisms of rapid colonization. The microbial partners of pest insects may also be involved in or affected by colonization processes, which has been little studied so far. We investigated the demographic history of the rosy apple aphid, Dysaphis plantaginea, a major pest of the cultivated apple (Malus domestica) in Europe, North Africa and North America, as well as the diversity of its microbiota. We genotyped a comprehensive sample of 714 colonies from Europe, Morocco and the US using mitochondrial (CytB and CO1), bacterial (16s rRNA and TrnpB), and 30 microsatellite markers. We detected five populations spread across the US, Morocco, Western and Eastern Europe and Spain. Populations showed weak genetic differentiation and high genetic diversity, except the ones from Morocco and North America that are likely the result of recent colonization events. Coalescent-based inferences revealed high levels of gene flow among populations during the colonization but did not allow determining the sequence of colonization of Europe, North America and Morroco by D. plantaginea, likely because of the weak genetic differentiation and the occurrence of gene flow among populations. We found that D. plantaginea rarely hosts other endosymbiotic bacteria than its obligate nutritional symbiont Buchnera aphidicola. This suggests that secondary endosymbionts did not play an important role in the rapid spread of the rosy apple aphid. These findings have fundamental importance for understanding pest colonization processes and implications for sustainable pest control programs.

  • Experiments comparing native to introduced populations or distinct introduced populations to each other show that phenotypic evolution is common and often involves a suit of interacting phenotypic traits. We define such sets of traits that evolve in concert and contribute to the success of invasive populations as an invasion syndrome. The invasive Harlequin ladybird Harmonia axyridis displays such an invasion syndrome with, for instance, females from invasive populations being larger and heavier than individuals from native populations, allocating more resources to reproduction, and spreading reproduction over a longer lifespan. Invasion syndromes could emerge due to selection acting jointly and directly on a multitude of traits, or due to selection on one or a few key traits that drive correlated indirect responses in other traits. Here, we investigated the degree to which the H. axyridis invasion syndrome would emerge in response to artificial selection on either female body mass or on age at first reproduction, two traits involved in their invasion syndrome. To further explore the interaction between environmental context and evolutionary change in molding the phenotypic response, we phenotyped the individuals from the selection experiments in two environments, one with abundant food resources and one with limited resources. The two artificial selection experiments show that the number of traits showing a correlated response depends upon the trait undergoing direct selection. Artificial selection on female body mass resulted in few correlated responses and hence poorly reproduced the invasion syndrome. In contrast, artificial selection on age at first reproduction resulted in more widespread phenotypic changes, which nevertheless corresponded only partly to the invasion syndrome. The artificial selection experiments also revealed a large impact of diet on the traits, with effects dependent on the trait considered and the selection regime. Overall, our results indicate that direct selection on multiple traits was likely necessary in the evolution of the H. axyridis invasion syndrome. Furthermore, they show the strength of using artificial selection to identify the traits that are correlated in different selective contexts, which represents a crucial first step in understanding the evolution of complex phenotypic patterns, including invasion syndromes.

  • The brown alga Fucus serratus forms dense stands on the sheltered low intertidal rocky shores of the Northeast Atlantic coast. In the southern English Channel, these stands have proved to be highly productive, particularly during emersion periods. Here, we studied the dampening effect of the canopy cover, associated with physiological and biochemical acclimation processes, that allows this species to withstand emersion stress. The F. serratus community primary production and the photosynthetic performance of thalli were concurrently followed in situ, throughout the midday emersion period, in different seasons and under various weather conditions. In addition, thallus samples were taken at various tidal stages to determine their content in biochemical compounds involved in photoprotective and antioxidant mechanisms. Under high light and temperature, the F. serratus community exhibited high aerial production rates (sometimes exceeding 1 g C m-2 h-1) that never decreased to less than 59% of the initial value during the emersion period. Under mild weather conditions, photosynthesis in thalli at the top of the canopy (measured as the relative electron transport rate) varied in response to changing incident light. Under harsh weather conditions (i.e. high light and temperature), the effective quantum yield of photosystem II (PSII) dramatically decreased in thalli at the top of the canopy, but remained high in thalli at the bottom of or within the canopy. Due to self-shading, photosynthesis was light-limited in thalli in the lowest layer of the canopy, but was effective in thalli in the intermediate layers. Photoinhibition was observed in thalli at the top of the canopy (as a dramatic decrease in the optimal photosynthetic quantum yield Fv/Fm), but not in thalli beneath the canopy. At the end of the emersion period, Fv/Fm was strongly correlated to the relative water content of thalli. The findings from our simultaneous analysis of biochemical and photosynthetic parameters suggest coordination between the xanthophyll and the ascorbate-glutathione cycles that varies with season. An accumulation of hydrogen peroxide was nevertheless observed once, indicating that oxidative stress is nonetheless possible under particularly harsh conditions.

  • Genomic data allow an in-depth and renewed study of local adaptation. The red coral (Corallium rubrum, Cnidaria) is a highly genetically structured species and a promising model for the study of adaptive processes along an environmental gradient. Here, we used RAD-Sequencing in order to study the vertical genetic structure of this species and to search for signals of local adaptation to depth and thermal regime in the red coral. Previous studies have shown different thermotolerance levels according to depth in this species which could correspond to genetic or environmental differences. We designed a sampling scheme with six pairs of shallow vs deep populations distributed in three geographical regions as replicates. Our results showed significant differentiation among locations and among sites separated by around 20 m depth. The tests of association between genetics and environment allowed the identification of candidate loci under selection but with a potentially high rate of false positive. We discuss the methodological obstacles and biases encountered for the detection of selected loci in such a strongly genetically structured species. On this basis, we also discuss the significance of the candidate loci for local adaptation detected in each geographical region and the evolution of red coral populations along environmental gradients.

View more articles