Section: Animal Science
Topic: Agricultural sciences, Biophysics and computational biology, Systems biology

Individual or collective treatments: how to target antimicrobial use to limit the spread of Mannheimia haemolytica among beef cattle?

Corresponding author(s): Sorin-Dupont, Baptiste (baptiste.sorin@outlook.com)

10.24072/pcjournal.629 - Peer Community Journal, Volume 5 (2025), article no. e104

Get full text PDF Peer reviewed and recommended by PCI

The overuse of antibiotics has become a major global concern due to its role in diminishing treatment effectiveness and positively selecting antibiotic-resistant bacterial strains. This issue is particularly important in the beef cattle sector, where Bovine Respiratory Diseases (BRD) impose significant economic and welfare burdens. BRD are complex, multifactorial conditions primarily affecting young calves and feedlot cattle, caused by a combination of viral and bacterial pathogens, environmental factors, and stressors. Despite efforts to reduce antimicrobial use (AMU), the cattle production system remains heavily reliant on antibiotics to control BRD, often through the implementation of collective treatments to prevent outbreaks. This study aimed at evaluating the impact of various strategies of collective treatments with antimicrobials on the spread of a BRD pathogen, Mannheimia haemolytica, specifically focusing on criteria for implementing collective treatments. Using a mechanistic stochastic model, we simulated the spread of M. haemolytica in a multi-pen fattening operation under sixteen different scenarios, considering pen composition, individual risk levels, and treatment strategies. Our findings suggest that an alternative criterion for collective treatments based on the speed of the disease spread, could reduce BRD incidence and AMU more effectively than conventional methods. This research highlights the importance of responsible collective treatment strategies and the potential benefits of novel criteria for collective treatment in improving animal health. Moreover, it emphasizes the need for transparency on the exposure to risk factors along the production chain.

Published online:
DOI: 10.24072/pcjournal.629
Type: Research article
Keywords: Stochastic modeling, Epidemiology, Bovine Respiratory Disease, Collective treatment, Stochastic modeling, Epidemiology, Bovine Respiratory Disease, Collective treatment, Stochastic modeling, Epidemiology, Bovine Respiratory Disease, Collective treatment, Stochastic modeling, Epidemiology, Bovine Respiratory Disease, Collective treatment, Stochastic modeling, Epidemiology, Bovine Respiratory Disease, Collective treatment, Stochastic modeling, Epidemiology, Bovine Respiratory Disease, Collective treatment

Sorin-Dupont, Baptiste 1; Poyard, Antoine  1; Assié, Sebastien 1; Picault, Sebastien  1; Ezanno, Pauline 1

1 Oniris, INRAE, BIOEPAR, 44300, Nantes, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_629,
     author = {Sorin-Dupont, Baptiste and Poyard, Antoine  and Assi\'e, Sebastien and Picault, Sebastien  and Ezanno, Pauline},
     title = {Individual or collective treatments: how to target antimicrobial use to limit the spread of {\protect\emph{Mannheimia} haemolytica} among beef cattle?},
     journal = {Peer Community Journal},
     eid = {e104},
     publisher = {Peer Community In},
     volume = {5},
     year = {2025},
     doi = {10.24072/pcjournal.629},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.629/}
}
TY  - JOUR
AU  - Sorin-Dupont, Baptiste
AU  - Poyard, Antoine 
AU  - Assié, Sebastien
AU  - Picault, Sebastien 
AU  - Ezanno, Pauline
TI  - Individual or collective treatments: how to target antimicrobial use to limit the spread of Mannheimia haemolytica among beef cattle?
JO  - Peer Community Journal
PY  - 2025
VL  - 5
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.629/
DO  - 10.24072/pcjournal.629
LA  - en
ID  - 10_24072_pcjournal_629
ER  - 
%0 Journal Article
%A Sorin-Dupont, Baptiste
%A Poyard, Antoine 
%A Assié, Sebastien
%A Picault, Sebastien 
%A Ezanno, Pauline
%T Individual or collective treatments: how to target antimicrobial use to limit the spread of Mannheimia haemolytica among beef cattle?
%J Peer Community Journal
%D 2025
%V 5
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.629/
%R 10.24072/pcjournal.629
%G en
%F 10_24072_pcjournal_629
Sorin-Dupont, B.; Poyard, A.; Assié, S.; Picault, S.; Ezanno, P. Individual or collective treatments: how to target antimicrobial use to limit the spread of Mannheimia haemolytica among beef cattle?. Peer Community Journal, Volume 5 (2025), article  no. e104. https://doi.org/10.24072/pcjournal.629

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.animsci.100345

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Abell, K. M.; Theurer, M. E.; Larson, R. L.; White, B. J.; Apley, M. A mixed treatment comparison meta-analysis of metaphylaxis treatments for bovine respiratory disease in beef cattle, Journal of Animal Science, Volume 95 (2017) no. 2, pp. 626-635 | DOI

[2] Ackermann, M. R.; Brogden, K. A. Response of the ruminant respiratory tract to Mannheimia (Pasteurella) haemolytica, Microbes and Infection, Volume 2 (2000) no. 9, pp. 1079-1088 | DOI

[3] Amrine, D. E.; McLellan, J. G.; White, B. J.; Larson, R. L.; Renter, D. G.; Sanderson, M. Evaluation of three classification models to predict risk class of cattle cohorts developing bovine respiratory disease within the first 14 days on feed using on-arrival and/or pre-arrival information, Computers and Electronics in Agriculture, Volume 156 (2019), pp. 439-446 | DOI

[4] Assié, S.; Seegers, H.; Makoschey, B.; Désiré-Bousquié, L.; Bareille, N. Exposure to pathogens and incidence of respiratory disease in young bulls on their arrival at fattening operations in France, Veterinary Record, Volume 165 (2009) no. 7, pp. 195-199 | DOI

[5] Baggott, D.; Casartelli, A.; Fraisse, F.; Manavella, C.; Marteau, R.; Rehbein, S.; Wiedemann, M.; Yoon, S. Demonstration of the metaphylactic use of gamithromycin against bacterial pathogens associated with bovine respiratory disease in a multicentre farm trial, Veterinary Record, Volume 168 (2011) no. 9, p. 241-241 | DOI

[6] Baptiste, K. E.; Kyvsgaard, N. C. Do antimicrobial mass medications work? A systematic review and meta-analysis of randomised clinical trials investigating antimicrobial prophylaxis or metaphylaxis against naturally occurring bovine respiratory disease, Pathogens and Disease, Volume 75 (2017) no. 7, p. ftx083 | DOI

[7] Bateman, K. G.; Martin, S. W.; Shewen, P. E.; Menzies, P. I. An evaluation of antimicrobial therapy for undifferentiated bovine respiratory disease, The Canadian Veterinary Journal, Volume 31 (1990) no. 10, pp. 689-696

[8] Blakebrough-Hall, C.; Hick, P.; Mahony, T. J.; González, L. A. Factors associated with bovine respiratory disease case fatality in feedlot cattle, Journal of Animal Science, Volume 100 (2022) no. 1, p. skab361 | DOI

[9] Booker CW; Abutarbush SM; Morley PS; Jim GK; Pittman TJ; Schunicht OC; Perrett T; Wildman BK; Fenton RK; Guichon PT; Janzen ED Microbiological and histopathological findings in cases of fatal bovine respiratory disease of feedlot cattle in Western Canada, The Canadian Veterinary Journal, Volume 49 (2008)

[10] Caswell, J. L.; Bateman, K. G.; Cai, H. Y.; Castillo-Alcala, F. Mycoplasma bovis in Respiratory Disease of Feedlot Cattle, Veterinary Clinics: Food Animal Practice, Volume 26 (2010) no. 2, pp. 365-379 | DOI

[11] Chen, S.-Y.; Negri Bernardino, P.; Fausak, E.; Van Noord, M.; Maier, G. Scoping Review on Risk Factors and Methods for the Prevention of Bovine Respiratory Disease Applicable to Cow–Calf Operations, Animals, Volume 12 (2022) no. 3, p. 334 | DOI

[12] Coetzee, J. F.; Magstadt, D. R.; Sidhu, P. K.; Follett, L.; Schuler, A. M.; Krull, A. C.; Cooper, V. L.; Engelken, T. J.; Kleinhenz, M. D.; O’Connor, A. M. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples, PLOS One, Volume 14 (2019) no. 12, p. e0219104 | DOI

[13] DeDonder, K. D.; Apley, M. D. A Review of the Expected Effects of Antimicrobials in Bovine Respiratory Disease Treatment and Control Using Outcomes from Published Randomized Clinical Trials with Negative Controls, Veterinary Clinics of North America: Food Animal Practice (Bovine Clinical Pharmacology), Volume 31 (2015) no. 1, pp. 97-111 | DOI

[14] Delabouglise, A.; James, A.; Valarcher, J.-F.; Hagglünd, S.; Raboisson, D.; Rushton, J. Linking disease epidemiology and livestock productivity: The case of bovine respiratory disease in France, PLOS One, Volume 12 (2017) no. 12, p. e0189090 | DOI

[15] Edwards, T. Control methods for bovine respiratory disease for feedlot cattle, Veterinary clinics: Food animal practice, Volume 26 (2010) no. 2, pp. 273-284 | DOI

[16] Ezanno, P.; Andraud, M.; Beaunée, G.; Hoch, T.; Krebs, S.; Rault, A.; Touzeau, S.; Vergu, E.; Widgren, S. How mechanistic modelling supports decision making for the control of enzootic infectious diseases, Epidemics, Volume 32 (2020), p. 100398 | DOI

[17] Frank, G. H.; Briggs, R. E.; Gillette, K. G. Colonization of the nasal passages of calves with Pasteurella haemolytica serotype 1 and regeneration of colonization after experimentally induced viral infection of the respiratory tract, American Journal of Veterinary Research, Volume 47 (1986) no. 8 | DOI

[18] Fulton, R. W.; Blood, K. S.; Panciera, R. J.; Payton, M. E.; Ridpath, J. F.; Confer, A. W.; Saliki, J. T.; Burge, L. T.; Welsh, R. D.; Johnson, B. J.; Reck, A. Lung Pathology and Infectious Agents in Fatal Feedlot Pneumonias and Relationship with Mortality, Disease Onset, and Treatments, Journal of Veterinary Diagnostic Investigation, Volume 21 (2009) no. 4, pp. 464-477 | DOI

[19] Gaudino, M.; Nagamine, B.; Ducatez, M. F.; Meyer, G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence, Veterinary Research, Volume 53 (2022) no. 1, p. 70 | DOI

[20] González-Martín, J. V.; Elvira, L.; Cerviño López, M.; Pérez Villalobos, N.; Calvo López-Guerrero, E.; Astiz, S. Reducing antibiotic use: Selective metaphylaxis with florfenicol in commercial feedlots, Livestock Science, Volume 141 (2011) no. 2, pp. 173-181 | DOI

[21] Griffin, D. The monster we don't see: subclinical BRD in beef cattle, Animal health research reviews, Volume 15 (2014) no. 2, pp. 138-141 | DOI

[22] Griffin, D. Bovine Pasteurellosis and Other Bacterial Infections of the Respiratory Tract, Veterinary Clinics of North America: Food Animal Practice, Volume 26 (2010) no. 1, pp. 57-71 | DOI

[23] Grissett, G.; White, B.; Larson, R. Structured Literature Review of Responses of Cattle to Viral and Bacterial Pathogens Causing Bovine Respiratory Disease Complex, Journal of Veterinary Internal Medicine, Volume 29 (2015) no. 3, pp. 770-780 | DOI

[24] Hilton, W. M. BRD in 2014: where have we been, where are we now, and where do we want to go?, Animal Health Research Reviews, Volume 15 (2014) no. 2, pp. 120-122 | DOI

[25] INRAE Migale bioinformatics platform, 2021 | DOI

[26] Ives, S. E.; Richeson, J. T. Use of Antimicrobial Metaphylaxis for the Control of Bovine Respiratory Disease in High-Risk Cattle, The Veterinary Clinics of North America. Food Animal Practice, Volume 31 (2015) no. 3, p. 341 | DOI

[27] Kamel, M. S.; Davidson, J. L.; Verma, M. S. Strategies for Bovine Respiratory Disease (BRD) Diagnosis and Prognosis: A Comprehensive Overview, Animals, Volume 14 (2024) no. 4, p. 627 | DOI

[28] Kayser, W. C.; Carstens, G. E.; Jackson, K. S.; Pinchak, W. E.; Banerjee, A.; Fu, Y. Evaluation of statistical process control procedures to monitor feeding behavior patterns and detect onset of bovine respiratory disease in growing bulls, Journal of Animal Science, Volume 97 (2019) no. 3, pp. 1158-1170 | DOI

[29] Klima CL; Alexander TW; Hendrick S; McAllister TA Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease, Canadian Journal of Veterinary Research, Volume 78 (2014), pp. 38-45

[30] Kudirkiene, E.; Aagaard, A. K.; Schmidt, L. M. B.; Pansri, P.; Krogh, K. M.; Olsen, J. E. Occurrence of major and minor pathogens in calves diagnosed with bovine respiratory disease, Veterinary Microbiology, Volume 259 (2021), p. 109135 | DOI

[31] Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K.; Wertheim, H. F.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; others Antibiotic resistance—the need for global solutions, The Lancet infectious diseases, Volume 13 (2013) no. 12, pp. 1057-1098 | DOI

[32] Lees, P.; Shojaee Aliabadi, F. Rational dosing of antimicrobial drugs: animals versus humans, International Journal of Antimicrobial Agents, Volume 19 (2002) no. 4, pp. 269-284 | DOI

[33] Mornet, P.; Espinasse, J. Le Veau : Anatomie, physiologie, élevage, alimentation, production, Maloine, 23 rue de l’Ecole de Médecine, 75006 Paris, 1977

[34] Nickell, J. S.; White, B. J. Metaphylactic Antimicrobial Therapy for Bovine Respiratory Disease in Stocker and Feedlot Cattle, Veterinary Clinics of North America: Food Animal Practice (Bovine Respiratory Disease), Volume 26 (2010) no. 2, pp. 285-301 | DOI

[35] Noyes, N. R.; Benedict, K. M.; Gow, S. P.; Booker, C. W.; Hannon, S. J.; McAllister, T. A.; Morley, P. S. Mannheimia haemolytica in feedlot cattle: prevalence of recovery and associations with antimicrobial use, resistance, and health outcomes, Journal of Veterinary Internal Medicine, Volume 29 (2015) no. 2, pp. 705-713 | DOI

[36] O’Connor, A. M.; Coetzee, J. F.; da Silva, N.; Wang, C. A mixed treatment comparison meta-analysis of antibiotic treatments for bovine respiratory disease, Preventive Veterinary Medicine, Volume 110 (2013) no. 2, pp. 77-87 | DOI

[37] Ollivett, T. BRD treatment failure: clinical and pathologic considerations, Animal Health Research Reviews, Volume 21 (2020) no. 2, pp. 175-176 | DOI

[38] Picault, S.; Ezanno, P.; Smith, K.; Amrine, D.; White, B.; Assié, S. Modelling the effects of antimicrobial metaphylaxis and pen size on bovine respiratory disease in high and low risk fattening cattle, Veterinary Research, Volume 53 (2022) no. 1, p. 77 | DOI

[39] Picault, S.; Huang, Y.-L.; Sicard, V.; Arnoux, S.; Beaunée, G.; Ezanno, P. EMULSION: transparent and flexible multiscale stochastic models in human, animal and plant epidemiology, PLOS Computational Biology, Volume 15 (2019) no. 9, p. e1007342

[40] Puillet L How to decide when to trigger collective antimicrobial treatments for respiratory pathogens in beef cattle farms : testing criteria with a simulation model, Peer Community in Animal Science (2025) | DOI

[41] Radostits, O. M. Herd health : food animal production medicine, Saunders Philadelphia, Philadelphia, 2001

[42] Rice, J.; Carrasco-Medina, L.; Hodgins, D.; Shewen, P. Mannheimia haemolytica and bovine respiratory disease, Animal Health Research Reviews, Volume 8 (2007) no. 2, pp. 117-128

[43] Sorin-Dupont, B. EMULSION - Bovine Respiratory Diseases (BRD), 2025 | DOI

[44] Sorin-Dupont, B.; Picault, S.; Pardon, B.; Ezanno, P.; Assié, S. Modeling the effects of farming practices on bovine respiratory disease in a multi-batch cattle fattening farm, Preventive Veterinary Medicine, Volume 219 (2023), p. 106009 | DOI

[45] Sudaryatma, P. E.; Nakamura, K.; Mekata, H.; Sekiguchi, S.; Kubo, M.; Kobayashi, I.; Subangkit, M.; Goto, Y.; Okabayashi, T. Bovine respiratory syncytial virus infection enhances Pasteurella multocida adherence on respiratory epithelial cells, Veterinary microbiology, Volume 220 (2018), pp. 33-38 | DOI

[46] Terry, S. A.; Basarab, J. A.; Guan, L. L.; McAllister, T. A. Strategies to improve the efficiency of beef cattle production, Canadian Journal of Animal Science, Volume 101 (2021) no. 1, pp. 1-19 | DOI

[47] Thomas, A. C.; Bailey, M.; Lee, M. R. F.; Mead, A.; Morales-Aza, B.; Reynolds, R.; Vipond, B.; Finn, A.; Eisler, M. C. Insights into Pasteurellaceae carriage dynamics in the nasal passages of healthy beef calves, Scientific Reports, Volume 9 (2019), p. 11943 | DOI

[48] Timsit, E.; Dendukuri, N.; Schiller, I.; Buczinski, S. Diagnostic accuracy of clinical illness for bovine respiratory disease (BRD) diagnosis in beef cattle placed in feedlots: a systematic literature review and hierarchical Bayesian latent-class meta-analysis, Preventive Veterinary Medicine, Volume 135 (2016), pp. 67-73 | DOI

[49] Timsit, E.; Christensen, H.; Bareille, N.; Seegers, H.; Bisgaard, M.; Assié, S. Transmission dynamics of Mannheimia haemolytica in newly-received beef bulls at fattening operations, Veterinary Microbiology, Volume 161 (2013) no. 3-4, pp. 295-304 | DOI

[50] Timsit, E.; Hallewell, J.; Booker, C.; Tison, N.; Amat, S.; Alexander, T. W. Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease, Veterinary Microbiology, Volume 208 (2017), pp. 118-125 | DOI

[51] Van Boeckel, T. P.; Glennon, E. E.; Chen, D.; Gilbert, M.; Robinson, T. P.; Grenfell, B. T.; Levin, S. A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals, Science, Volume 357 (2017) no. 6358, pp. 1350-1352 | DOI

[52] Vanbergue, E.; Assie, S.; Mounaix, B.; Guiadeur, M.; Robert, F.; Andrieu, D.; Cebron, N.; Meyer, G.; Philibert, A.; Foucras, G. Comparison between a complete preconditioning programme and conventional conduct on behaviour, health and performance of young bulls from small cow-calf herds, animal, Volume 18 (2024) no. 6, p. 101169 | DOI

[53] Watts, J. L.; Sweeney, M. T. Antimicrobial Resistance in Bovine Respiratory Disease Pathogens: Measures, Trends, and Impact on Efficacy, Veterinary Clinics of North America: Food Animal Practice, Volume 26 (2010) no. 1, pp. 79-88 | DOI

[54] Welsh, R. D.; Dye, L. B.; Payton, M. E.; Confer, A. W. Isolation and antimicrobial susceptibilities of bacterial pathogens from bovine pneumonia: 1994–2002, Journal of Veterinary Diagnostic Investigation, Volume 16 (2004) no. 5, pp. 426-431 | DOI

[55] Woolums, A. R.; Karisch, B. B.; Frye, J. G.; Epperson, W.; Smith, D. R.; Blanton Jr, J.; Austin, F.; Kaplan, R.; Hiott, L.; Woodley, T.; others Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease, Veterinary Microbiology, Volume 221 (2018), pp. 143-152 | DOI

Cited by Sources: