Section: Genomics
Topic: Genetics/genomics

Bulk-based hypothesis weighing increases power in single-cell differential expression analysis

Corresponding author(s): Germain, Pierre-Luc (pierre-luc.germain@hest.ethz.ch)

10.24072/pcjournal.663 - Peer Community Journal, Volume 5 (2025), article no. e136

Get full text PDF Peer reviewed and recommended by PCI

Due to the costs of single-cell sequencing, sample sizes are often relatively limited, sometimes leading to poorly reproducible results. In many contexts, however, larger bulk RNAseq data is available for the same conditions or experimental paradigm, which can be used as additional evidence of a generalizable differential expression pattern. Here, we show how such data can be used, via bulk-based hypothesis weighing (bbhw), to increase the power and robustness of single-cell differential state analysis. We find that all methods improve performance, with the best results obtained by applying a grouped Benjamini-Hochberg procedure on bins based on proportion-adjusted significance (PAS). These methods are implemented in the muscat package, and should be applicable to a broader range of scenarios.

Published online:
DOI: 10.24072/pcjournal.663
Type: Research article
Keywords: single-cell sequencing; differential analysis; multiple testing correction; false discovery rate; hypothesis weighing; power

Germain, Pierre-Luc 1, 2; Wang, Jiayi 2, 3; Robinson, Mark D. 2, 3

1 D-HEST Institute for Neuroscience, ETH Zurich, Switzerland
2 Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
3 SIB Swiss Institute of Bioinformatics, Switzerland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_663,
     author = {Germain, Pierre-Luc and Wang, Jiayi and Robinson, Mark D.},
     title = {Bulk-based hypothesis weighing increases power in single-cell differential expression analysis
},
     journal = {Peer Community Journal},
     eid = {e136},
     year = {2025},
     publisher = {Peer Community In},
     volume = {5},
     doi = {10.24072/pcjournal.663},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.663/}
}
TY  - JOUR
AU  - Germain, Pierre-Luc
AU  - Wang, Jiayi
AU  - Robinson, Mark D.
TI  - Bulk-based hypothesis weighing increases power in single-cell differential expression analysis

JO  - Peer Community Journal
PY  - 2025
VL  - 5
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.663/
DO  - 10.24072/pcjournal.663
LA  - en
ID  - 10_24072_pcjournal_663
ER  - 
%0 Journal Article
%A Germain, Pierre-Luc
%A Wang, Jiayi
%A Robinson, Mark D.
%T Bulk-based hypothesis weighing increases power in single-cell differential expression analysis

%J Peer Community Journal
%D 2025
%V 5
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.663/
%R 10.24072/pcjournal.663
%G en
%F 10_24072_pcjournal_663
Germain, P.-L.; Wang, J.; Robinson, M. D. Bulk-based hypothesis weighing increases power in single-cell differential expression analysis. Peer Community Journal, Volume 5 (2025), article  no. e136. https://doi.org/10.24072/pcjournal.663

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.genomics.100437

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Benjamini, Y.; Hochberg, Y. On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics, Journal of Educational and Behavioral Statistics, Volume 25 (2000) no. 1, pp. 60-83 | DOI

[2] Benjamini, Y.; Krieger, A. M.; Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate, Biometrika, Volume 93 (2006) no. 3, pp. 491-507 | DOI

[3] Bryois, J.; Calini, D.; Macnair, W.; Foo, L.; Urich, E.; Ortmann, W.; Iglesias, V. A.; Selvaraj, S.; Nutma, E.; Marzin, M.; Amor, S.; Williams, A.; Castelo-Branco, G.; Menon, V.; De Jager, P.; Malhotra, D. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders, Nature Neuroscience, Volume 25 (2022) no. 8, pp. 1104-1112 | DOI

[4] Crowell, H. L.; Soneson, C.; Germain, P.-L.; Calini, D.; Collin, L.; Raposo, C.; Malhotra, D.; Robinson, M. D. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data, Nature Communications, Volume 11 (2020) no. 1, p. 6077 | DOI

[5] Germain, P.-L.; Wang, J. Archived github repositories for the BBHW (Bulk- hypothesis weighing) paper, zenodo, 2025 | DOI

[6] Gerstner, N.; Krontira, A. C.; Cruceanu, C.; Roeh, S.; Pütz, B.; Sauer, S.; Rex-Haffner, M.; Schmidt, M. V.; Binder, E. B.; Knauer-Arloth, J. DiffBrainNet: Differential analyses add new insights into the response to glucocorticoids at the level of genes, networks and brain regions, Neurobiology of Stress, Volume 21 (2022), p. 100496 | DOI

[7] Hu, J. X.; Zhao, H.; Zhou, H. H. False Discovery Rate Control With Groups, Journal of the American Statistical Association, Volume 105 (2010) no. 491, pp. 1215-1227 | DOI

[8] Ignatiadis, N.; Klaus, B.; Zaugg, J. B.; Huber, W. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing, Nature Methods, Volume 13 (2016) no. 7, pp. 577-580 | DOI

[9] Korthauer, K.; Kimes, P. K.; Duvallet, C.; Reyes, A.; Subramanian, A.; Teng, M.; Shukla, C.; Alm, E. J.; Hicks, S. C. A practical guide to methods controlling false discoveries in computational biology, Genome Biology, Volume 20 (2019) no. 1, p. 118 | DOI

[10] Macnair, W.; Calini, D.; Agirre, E.; Bryois, J.; Jäkel, S.; Smith, R. S.; Kukanja, P.; Stokar-Regenscheit, N.; Ott, V.; Foo, L. C.; Collin, L.; Schippling, S.; Urich, E.; Nutma, E.; Marzin, M.; Ansaloni, F.; Amor, S.; Magliozzi, R.; Heidari, E.; Robinson, M. D.; ffrench-Constant, C.; Castelo-Branco, G.; Williams, A.; Malhotra, D. snRNA-seq stratifies multiple sclerosis patients into distinct white matter glial responses, Neuron, Volume 113 (2025) no. 3, p. 396 | DOI

[11] Maleki, F.; Ovens, K.; McQuillan, I.; Kusalik, A. J. Size matters: how sample size affects the reproducibility and specificity of gene set analysis, Human Genomics, Volume 13 (2019) no. 1, p. 42 | DOI

[12] Nakatsuka, N.; Adler, D.; Jiang, L.; Hartman, A.; Cheng, E.; Klann, E.; Satija, R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes, bioRxiv (2025) | DOI

[13] Parse Biosciences Single Cell RNA Sequencing of 1 Million Human Cells in a Single Experiment, https://www.parsebiosciences.com/datasets/single-cell-rna-sequencing-of-1-million-human-cells-in-a-single-experiment/, 2025 (Accessed: 2025-08-29)

[14] Phipson, B. Empirical Bayes modelling of expression profiles and their associations, University of Melbourne, Department of Mathematics and Statistics (2013)

[15] Plass, M. Bulk RNA-seq to the rescue of differential expression analysis in single-cell transcriptomics., Peer Community in Genomics (2025) | DOI

[16] Robinson, M. D.; McCarthy, D. J.; Smyth, G. K. <tt>edgeR</tt> : a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, Volume 26 (2009) no. 1, pp. 139-140 | DOI

[17] Tyssowski, K. M.; DeStefino, N. R.; Cho, J.-H.; Dunn, C. J.; Poston, R. G.; Carty, C. E.; Jones, R. D.; Chang, S. M.; Romeo, P.; Wurzelmann, M. K.; Ward, J. M.; Andermann, M. L.; Saha, R. N.; Dudek, S. M.; Gray, J. M. Different Neuronal Activity Patterns Induce Different Gene Expression Programs, Neuron, Volume 98 (2018) no. 3, p. 530 | DOI

[18] Waag, R.; Ziegler, L. v.; Sturman, O.; Sonder, E.; Leonardi, J.; Frei, S.; Gapp, K.; Germain, P.-L.; Bohacek, J. Distinct molecular mechanisms of stress habituation in the mouse hippocampus, bioRxiv (2025) | DOI

[19] Xiao, Y.; Hsiao, T.-H.; Suresh, U.; Chen, H.-I. H.; Wu, X.; Wolf, S. E.; Chen, Y. A novel significance score for gene selection and ranking, Bioinformatics, Volume 30 (2012) no. 6, pp. 801-807

Cited by Sources: