Ecology

Niche complementarity among pollinators increases community-level plant reproductive success

10.24072/pcjournal.1 - Peer Community Journal, Volume 1 (2021), article no. e1.

Get full text PDF Peer reviewed and recommended by PCI
Our understanding of how the structure of species interactions shapes natural communities has increased, particularly regarding plant-pollinator interactions. However, research linking pollinator diversity to reproductive success has focused on pairwise plant-pollinator interactions, largely overlooking community-level dynamics. Here, we present one of the first empirical studies linking pollinator visitation to plant reproduction from a community-wide perspective. We use a well-replicated dataset encompassing 16 plant-pollinator networks and data on reproductive success for 19 plant species from Mediterranean shrub ecosystems. We find that statistical models including simple visitation metrics are sufficient to explain the variability observed. However, a mechanistic understanding of how pollinator diversity affects reproductive success requires additional information on network structure. Specifically, we find positive effects of increasing complementarity in the plant species visited by different pollinators on plant reproductive success. Hence, maintaining communities with a diversity of species but also of functions is paramount to preserving plant diversity.
Published online:
DOI: 10.24072/pcjournal.1
Magrach, Ainhoa 1, 2; Molina, Francisco P. 3; Bartomeus, Ignasi 3

1 Basque Centre for Climate Change-BC3, Edif. Sede 1, 1o, Parque Científico UPV-EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
2 IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
3 Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la Cartuja, 41092, Sevilla, Spain
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_1,
     author = {Magrach, Ainhoa and Molina, Francisco P. and Bartomeus, Ignasi},
     title = {Niche complementarity among pollinators increases community-level plant reproductive success},
     journal = {Peer Community Journal},
     eid = {e1},
     publisher = {Peer Community In},
     volume = {1},
     year = {2021},
     doi = {10.24072/pcjournal.1},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.1/}
}
TY  - JOUR
TI  - Niche complementarity among pollinators increases community-level plant reproductive success
JO  - Peer Community Journal
PY  - 2021
DA  - 2021///
VL  - 1
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.1/
UR  - https://doi.org/10.24072/pcjournal.1
DO  - 10.24072/pcjournal.1
ID  - 10_24072_pcjournal_1
ER  - 
%0 Journal Article
%T Niche complementarity among pollinators increases community-level plant reproductive success
%J Peer Community Journal
%D 2021
%V 1
%I Peer Community In
%U https://doi.org/10.24072/pcjournal.1
%R 10.24072/pcjournal.1
%F 10_24072_pcjournal_1
Magrach, Ainhoa; Molina, Francisco P.; Bartomeus, Ignasi. Niche complementarity among pollinators increases community-level plant reproductive success. Peer Community Journal, Volume 1 (2021), article  no. e1. doi : 10.24072/pcjournal.1. https://peercommunityjournal.org/articles/10.24072/pcjournal.1/

Peer reviewed and recommended by PCI : 10.24072/pci.ecology.100037

[1] Abrams, P. A.; Holt, R. D.; Roth, J. D. Apparent competition or apparent mutualism? shared predation when populations cycle, Ecology, Volume 79 (1998) no. 1, pp. 201-212 | DOI

[2] Albrecht, M.; Schmid, B.; Hautier, Y.; Müller, C. B. Diverse pollinator communities enhance plant reproductive success, Proceedings of the Royal Society B: Biological Sciences, Volume 279 (2012) no. 1748, pp. 4845-4852 | DOI

[3] Almeida-Neto, M.; Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices, Environmental Modelling & Software, Volume 26 (2011) no. 2, pp. 173-178 | DOI

[4] Arceo-Gómez, G.; Schroeder, A.; Albor, C.; Ashman, T.-L.; Knight, T. M.; Bennett, J. M.; Suarez, B.; Parra-Tabla, V. Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide, Scientific Reports, Volume 9 (2019) no. 1 | DOI

[5] Bagchi, R.; Swinfield, T.; Gallery, R. E.; Lewis, O. T.; Gripenberg, S.; Narayan, L.; Freckleton, R. P. Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree, Ecology Letters, Volume 13 (2010) no. 10, pp. 1262-1269 | DOI

[6] Bartomeus, I.; Stavert, J. R.; Ward, D.; Aguado, O. Historical collections as a tool for assessing the global pollination crisis, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 374 (2018) no. 1763 | DOI

[7] Bascompte, J.; Jordano, P. Plant-Animal Mutualistic Networks: The Architecture of Biodiversity, Annual Review of Ecology, Evolution, and Systematics, Volume 38 (2007) no. 1, pp. 567-593 | DOI

[8] Bascompte, J.; Jordano, P.; Melian, C. J.; Olesen, J. M. The nested assembly of plant-animal mutualistic networks, Proceedings of the National Academy of Sciences, Volume 100 (2003) no. 16, pp. 9383-9387 | DOI

[9] Bastolla, U.; Fortuna, M. A.; Pascual-García, A.; Ferrera, A.; Luque, B.; Bascompte, J. The architecture of mutualistic networks minimizes competition and increases biodiversity, Nature, Volume 458 (2009) no. 7241, pp. 1018-1020 | DOI

[10] Benadi, G.; Blüthgen, N.; Hovestadt, T.; Poethke, H.-J. When Can Plant-Pollinator Interactions Promote Plant Diversity?, The American Naturalist, Volume 182 (2013) no. 2, pp. 131-146 | DOI

[11] Benadi, G.; Pauw, A. Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence, Journal of Ecology, Volume 106 (2018) no. 5, pp. 1892-1901 | DOI

[12] Bennett, J. M.; Thompson, A.; Goia, I.; Feldmann, R.; Ştefan, V.; Bogdan, A.; Rakosy, D.; Beloiu, M.; Biro, I.-B.; Bluemel, S.; Filip, M.; Madaj, A.-M.; Martin, A.; Passonneau, S.; Kalisch, D. P.; Scherer, G.; Knight, T. M. A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap, AoB PLANTS, Volume 10 (2018) no. 6 | DOI

[13] Biesmeijer, J. C.; Roberts, S. P. M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A. P.; Potts, S. G.; Kleukers, R.; Thomas, C. D.; Settele, J.; Kunin, W. E. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands, Science, Volume 313 (2006) no. 5785, pp. 351-354 | DOI

[14] Blüthgen, N. Why network analysis is often disconnected from community ecology: A critique and an ecologist's guide, Basic and Applied Ecology, Volume 11 (2010) no. 3, pp. 185-195 | DOI

[15] Blüthgen, N.; Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions, Basic and Applied Ecology, Volume 12 (2011) no. 4, pp. 282-291 | DOI

[16] Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring specialization in species interaction networks, BMC Ecology, Volume 6 (2006) | DOI

[17] Bommarco, R.; Marini, L.; Vaissière, B. E. Insect pollination enhances seed yield, quality, and market value in oilseed rape, Oecologia, Volume 169 (2012) no. 4, pp. 1025-1032 | DOI

[18] Bruno, J. F.; Stachowicz, J. J.; Bertness, M. D. Inclusion of facilitation into ecological theory, Trends in Ecology & Evolution, Volume 18 (2003) no. 3, pp. 119-125 | DOI

[19] Burnham, K. P.; Anderson, D. L. Model selection and multi-model inference: A practical information-theoretic approach, Springer, New York, USA, 2002

[20] Burnham, K. P.; Anderson, D. R.; Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons, Behavioral Ecology and Sociobiology, Volume 65 (2010) no. 1, pp. 23-35 | DOI

[21] Byrnes, J. E. K.; Gamfeldt, L.; Isbell, F.; Lefcheck, J. S.; Griffin, J. N.; Hector, A.; Cardinale, B. J.; Hooper, D. U.; Dee, L. E.; Emmett Duffy, J. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions, Methods in Ecology and Evolution, Volume 5 (2014) no. 2, pp. 111-124 | DOI

[22] Carvalheiro, L. G.; Biesmeijer, J. C.; Benadi, G.; Fründ, J.; Stang, M.; Bartomeus, I.; Kaiser-Bunbury, C. N.; Baude, M.; Gomes, S. I. F.; Merckx, V.; Baldock, K. C. R.; Bennett, A. T. D.; Boada, R.; Bommarco, R.; Cartar, R.; Chacoff, N.; Dänhardt, J.; Dicks, L. V.; Dormann, C. F.; Ekroos, J.; Henson, K. S.; Holzschuh, A.; Junker, R. R.; Lopezaraiza-Mikel, M.; Memmott, J.; Montero-Castaño, A.; Nelson, I. L.; Petanidou, T.; Power, E. F.; Rundlöf, M.; Smith, H. G.; Stout, J. C.; Temitope, K.; Tscharntke, T.; Tscheulin, T.; Vilà, M.; Kunin, W. E. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness, Ecology Letters, Volume 17 (2014) no. 11, pp. 1389-1399 | DOI

[23] Chacoff, N. P.; Vázquez, D. P.; Lomáscolo, S. B.; Stevani, E. L.; Dorado, J.; Padrón, B. Evaluating sampling completeness in a desert plant-pollinator network, Journal of Animal Ecology, Volume 81 (2011) no. 1, pp. 190-200 | DOI

[24] Chao, A.; Colwell, R. K.; Lin, C.-W.; Gotelli, N. J. Sufficient sampling for asymptotic minimum species richness estimators, Ecology, Volume 90 (2009) no. 4, pp. 1125-1133 | DOI

[25] Delmas, E.; Besson, M.; Brice, M.-H.; Burkle, L. A.; Dalla Riva, G. V.; Fortin, M.-J.; Gravel, D.; Guimarães, P. R.; Hembry, D. H.; Newman, E. A.; Olesen, J. M.; Pires, M. M.; Yeakel, J. D.; Poisot, T. Analysing ecological networks of species interactions, Biological Reviews, Volume 94 (2018) no. 1, pp. 16-36 | DOI

[26] Devoto, M.; Bailey, S.; Craze, P.; Memmott, J. Understanding and planning ecological restoration of plant-pollinator networks, Ecology Letters, Volume 15 (2012) no. 4, pp. 319-328 | DOI

[27] Dormann, C. F.; Frund, J.; Bluthgen, N.; Gruber, B. Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks, The Open Ecology Journal, Volume 2 (2009) no. 1, pp. 7-24 | DOI

[28] European Commission. Directorate General for the Environment., I. (. U. f. C. o. N. European red list of bees, Publications Office, LU, 2014 | DOI

[29] Flanagan, R. J.; Mitchell, R. J.; Knutowski, D.; Karron, J. D. Interspecific pollinator movements reduce pollen deposition and seed production in Mimulus ringens (Phrymaceae), American Journal of Botany, Volume 96 (2009) no. 4, pp. 809-815 | DOI

[30] Fontaine, C.; Dajoz, I.; Meriguet, J.; Loreau, M. Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities, PLoS Biology, Volume 4 (2005) no. 1 | DOI

[31] Fründ, J.; Dormann, C. F.; Holzschuh, A.; Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts, Ecology, Volume 94 (2013) no. 9, pp. 2042-2054 | DOI

[32] Garibaldi, L. A.; Carvalheiro, L. G.; Leonhardt, S. D.; Aizen, M. A.; Blaauw, B. R.; Isaacs, R.; Kuhlmann, M.; Kleijn, D.; Klein, A. M.; Kremen, C.; Morandin, L.; Scheper, J.; Winfree, R. From research to action: enhancing crop yield through wild pollinators, Frontiers in Ecology and the Environment, Volume 12 (2014) no. 8, pp. 439-447 | DOI

[33] Garibaldi, L. A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M. A.; Bommarco, R.; Cunningham, S. A.; Kremen, C.; Carvalheiro, L. G.; Harder, L. D.; Afik, O.; Bartomeus, I.; Benjamin, F.; Boreux, V.; Cariveau, D.; Chacoff, N. P.; Dudenhoffer, J. H.; Freitas, B. M.; Ghazoul, J.; Greenleaf, S.; Hipolito, J.; Holzschuh, A.; Howlett, B.; Isaacs, R.; Javorek, S. K.; Kennedy, C. M.; Krewenka, K. M.; Krishnan, S.; Mandelik, Y.; Mayfield, M. M.; Motzke, I.; Munyuli, T.; Nault, B. A.; Otieno, M.; Petersen, J.; Pisanty, G.; Potts, S. G.; Rader, R.; Ricketts, T. H.; Rundlof, M.; Seymour, C. L.; Schuepp, C.; Szentgyorgyi, H.; Taki, H.; Tscharntke, T.; Vergara, C. H.; Viana, B. F.; Wanger, T. C.; Westphal, C.; Williams, N.; Klein, A. M. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance, Science, Volume 339 (2013) no. 6127, pp. 1608-1611 | DOI

[34] Godoy, O.; Bartomeus, I.; Rohr, R. P.; Saavedra, S. Towards the Integration of Niche and Network Theories, Trends in Ecology & Evolution, Volume 33 (2018) no. 4, pp. 287-300 | DOI

[35] Godoy, O.; Kraft, N. J. B.; Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes, Ecology Letters, Volume 17 (2014) no. 7, pp. 836-844 | DOI

[36] Goldberg, D. E.; Barton, A. M. Patterns and Consequences of Interspecific Competition in Natural Communities: A Review of Field Experiments with Plants, The American Naturalist, Volume 139 (1992) no. 4, pp. 771-801 | DOI

[37] Holt, R. D. Predation, apparent competition, and the structure of prey communities, Theoretical Population Biology, Volume 12 (1977) no. 2, pp. 197-229 | DOI

[38] Hsieh, T. C.; Ma, K. H.; Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity ( H ill numbers), Methods in Ecology and Evolution, Volume 7 (2016) no. 12, pp. 1451-1456 | DOI

[39] James, A.; Pitchford, J. W.; Plank, M. J. Disentangling nestedness from models of ecological complexity, Nature, Volume 487 (2012) no. 7406, pp. 227-230 | DOI

[40] Johnson, C. A.; Bronstein, J. L. Coexistence and competitive exclusion in mutualism, Ecology, Volume 100 (2019) | DOI

[41] Kaiser-Bunbury, C. N.; Mougal, J.; Whittington, A. E.; Valentin, T.; Gabriel, R.; Olesen, J. M.; Blüthgen, N. Ecosystem restoration strengthens pollination network resilience and function, Nature, Volume 542 (2017) no. 7640, pp. 223-227 | DOI

[42] Lanuza, J. B.; Bartomeus, I.; Godoy, O. Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes, Ecology Letters, Volume 21 (2018) no. 6, pp. 865-874 | DOI

[43] Lázaro, A.; Gómez‐Martínez, C.; Alomar, D.; González‐Estévez, M. A.; Traveset, A. Linking species‐level network metrics to flower traits and plant fitness, Journal of Ecology, Volume 108 (2020) no. 4, pp. 1287-1298 | DOI

[44] Lázaro, A.; Lundgren, R.; Totland, Ø. Experimental reduction of pollinator visitation modifies plant-plant interactions for pollination, Oikos, Volume 123 (2014) no. 9, pp. 1037-1048 | DOI

[45] Macarthur, R.; Levins, R. The Limiting Similarity, Convergence, and Divergence of Coexisting Species, The American Naturalist, Volume 101 (1967) no. 921, pp. 377-385 | DOI

[46] May, R. M.; Arthur, R. H. M. Niche Overlap as a Function of Environmental Variability, Proceedings of the National Academy of Sciences, Volume 69 (1972) no. 5, pp. 1109-1113 | DOI

[47] Mayfield, M. M.; Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities, Nature Ecology & Evolution, Volume 1 (2017) no. 3 | DOI

[48] Memmott, J.; Waser, N. M.; Price, M. V. Tolerance of pollination networks to species extinctions, Proceedings of the Royal Society of London. Series B: Biological Sciences, Volume 271 (2004) no. 1557, pp. 2605-2611 | DOI

[49] Morales, C. L.; Traveset, A. Interspecific Pollen Transfer: Magnitude, Prevalence and Consequences for Plant Fitness, Critical Reviews in Plant Sciences, Volume 27 (2008) no. 4, pp. 221-238 | DOI

[50] Nakagawa, S.; Johnson, P. C. D.; Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded, Journal of The Royal Society Interface, Volume 14 (2017) no. 134 | DOI

[51] Pauw, A. Can pollination niches facilitate plant coexistence?, Trends in Ecology & Evolution, Volume 28 (2013) no. 1, pp. 30-37 | DOI

[52] Poisot, T.; Mouquet, N.; Gravel, D. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs, Ecology Letters, Volume 16 (2013) no. 7, pp. 853-861 | DOI

[53] Potts, S. G.; Biesmeijer, J. C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W. E. Global pollinator declines: trends, impacts and drivers, Trends in Ecology & Evolution, Volume 25 (2010) no. 6, pp. 345-353 | DOI

[54] R Development Core Team, R. R: A Language and Environment for Statistical Computing. R foundation for statistical computing, 2011

[55] Saavedra, S.; Stouffer, D. B.; Uzzi, B.; Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction, Nature, Volume 478 (2011) no. 7368, pp. 233-235 | DOI

[56] Simmons, B. I.; Hoeppke, C.; Sutherland, W. J. Beware greedy algorithms, Journal of Animal Ecology, Volume 88 (2019) no. 5, pp. 804-807 | DOI

[57] Song, C.; Rohr, R. P.; Saavedra, S. Why are some plant–pollinator networks more nested than others?, Journal of Animal Ecology, Volume 86 (2017) no. 6, pp. 1417-1424 | DOI

[58] Stavert, J. R.; Bartomeus, I.; Beggs, J. R.; Gaskett, A. C.; Pattemore, D. E. Plant species dominance increases pollination complementarity and plant reproductive function, Ecology, Volume 100 (2019) no. 9 | DOI

[59] Thébault, E.; Fontaine, C. Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks, Science, Volume 329 (2010) no. 5993, pp. 853-856 | DOI

[60] Thompson, R. M.; Brose, U.; Dunne, J. A.; Hall, R. O.; Hladyz, S.; Kitching, R. L.; Martinez, N. D.; Rantala, H.; Romanuk, T. N.; Stouffer, D. B.; Tylianakis, J. M. Food webs: reconciling the structure and function of biodiversity, Trends in Ecology & Evolution, Volume 27 (2012) no. 12, pp. 689-697 | DOI

[61] Thomson, D. M. Effects of long‐term variation in pollinator abundance and diversity on reproduction of a generalist plant, Journal of Ecology, Volume 107 (2018) no. 1, pp. 491-502 | DOI

[62] Tilman, D. Resource competition and community structure, Princeton University Press, 1982

[63] Valdovinos, F. S.; Brosi, B. J.; Briggs, H. M.; Moisset de Espanés, P.; Ramos-Jiliberto, R.; Martinez, N. D. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability, Ecology Letters, Volume 19 (2016) no. 10, pp. 1277-1286 | DOI

[64] Vanbergen, A. J.; Woodcock, B. A.; Gray, A.; Grant, F.; Telford, A.; Lambdon, P.; Chapman, D. S.; Pywell, R. F.; Heard, M. S.; Cavers, S. Grazing alters insect visitation networks and plant mating systems, Functional Ecology, Volume 28 (2013) no. 1, pp. 178-189 | DOI

[65] Winfree, R. Global change, biodiversity, and ecosystem services: What can we learn from studies of pollination?, Basic and Applied Ecology, Volume 14 (2013) no. 6, pp. 453-460 | DOI

[66] Woodward, G.; Hildrew, A. G. Body-size determinants of niche overlap and intraguild predation within a complex food web, Journal of Animal Ecology, Volume 71 (2002) no. 6, pp. 1063-1074 | DOI

[67] Zhang, J. Package spaa: SPecies Association Analysis., 2016

Cited by Sources: