Ecotoxicology & Environmental Chemistry

Soot and charcoal as reservoirs of extracellular DNA

10.24072/pcjournal.207 - Peer Community Journal, Volume 2 (2022), article no. e80.

Get full text PDF Peer reviewed and recommended by PCI

The vast potential of using sediment adsorbed DNA as a window to past and present biodiversity rely on the ability of solid surfaces to adsorb environmental DNA. However, a comprehensive insight into DNA adsorption at surfaces in general is lacking. Soot and charcoal are carbonaceous materials widespread in the environment where they readily can come in contact with extracellular DNA shed from organisms. Using batch adsorption, we measured DNA adsorption capacity at soot and charcoal as a function of solution composition, time and DNA length. We observed that the adsorption capacity for DNA is highest at low pH, that it increases with solution concentration and cation valency and that the activation energy for DNA adsorption at both soot and charcoal is ~50 kJmol-1, suggesting strong binding. We demonstrate how the interaction between DNA and soot and charcoal partly occurs via terminal base pairs, suggesting that, besides electrostatic forces, hydrophobic interactions play an important role in binding. The large adsorption capacities and strong binding of DNA to soot and charcoal are features important for eDNA research and provide a motivation for use of carbonaceous materials from, e.g., anthropogenic pollution or wildfire as sources of biodiversity information.

Published online:
DOI: 10.24072/pcjournal.207
Jelavić, Stanislav 1, 2; Thygesen, Lisbeth G. 3; Magnin, Valérie 2; Findling, Nathaniel 2; Müller, Sascha 4; Meklesh, Viktoriia 5; Sand, Karina K. 1

1 Centre for Geogenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
2 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, F-38000 Grenoble, France
3 University of Copenhagen, Department of Geoscience and Natural Resource Management, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
4 University of Copenhagen, Department of Geosciences and Natural Resource Management, Øster Voldgade 10, 1350 Copenhagen K, Copenhagen, Denmark
5 Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Jelavi\'c, Stanislav and Thygesen, Lisbeth G. and Magnin, Val\'erie and Findling, Nathaniel and M\"uller, Sascha and Meklesh, Viktoriia and Sand, Karina K.},
     title = {Soot and charcoal as reservoirs of extracellular {DNA}},
     journal = {Peer Community Journal},
     eid = {e80},
     publisher = {Peer Community In},
     volume = {2},
     year = {2022},
     doi = {10.24072/pcjournal.207},
     url = {}
AU  - Jelavić, Stanislav
AU  - Thygesen, Lisbeth G.
AU  - Magnin, Valérie
AU  - Findling, Nathaniel
AU  - Müller, Sascha
AU  - Meklesh, Viktoriia
AU  - Sand, Karina K.
TI  - Soot and charcoal as reservoirs of extracellular DNA
JO  - Peer Community Journal
PY  - 2022
VL  - 2
PB  - Peer Community In
UR  -
UR  -
DO  - 10.24072/pcjournal.207
ID  - 10_24072_pcjournal_207
ER  - 
%0 Journal Article
%A Jelavić, Stanislav
%A Thygesen, Lisbeth G.
%A Magnin, Valérie
%A Findling, Nathaniel
%A Müller, Sascha
%A Meklesh, Viktoriia
%A Sand, Karina K.
%T Soot and charcoal as reservoirs of extracellular DNA
%J Peer Community Journal
%D 2022
%V 2
%I Peer Community In
%R 10.24072/pcjournal.207
%F 10_24072_pcjournal_207
Jelavić, Stanislav; Thygesen, Lisbeth G.; Magnin, Valérie; Findling, Nathaniel; Müller, Sascha; Meklesh, Viktoriia; Sand, Karina K. Soot and charcoal as reservoirs of extracellular DNA. Peer Community Journal, Volume 2 (2022), article  no. e80. doi : 10.24072/pcjournal.207.

Peer reviewed and recommended by PCI : 10.24072/pci.ecotoxenvchem.100003

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Zeitschrift für Physikalische Chemie, Volume 4U (2017) no. 1, pp. 226-248 | DOI

[2] Ballal, D.; Chapman, W. G. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface, The Journal of Chemical Physics, Volume 139 (2013) no. 11 | DOI

[3] Bandosz, T. J.; Jagiello, J.; Schwarz, J. A. Comparison of methods to assess surface acidic groups on activated carbons, Analytical Chemistry, Volume 64 (2002) no. 8, pp. 891-895 | DOI

[4] Beny-Bassez, C.; Rouzaud, J. Characterization of Carbonaceous Materials by Correlated Electron and Optical Microscopy and Raman Microspectroscopy, Scanning Electron Microscopy, Volume 1985 (1984), pp. 119-132

[5] Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: a new geothermometer, Journal of Metamorphic Geology, Volume 20 (2002) no. 9, pp. 859-871 | DOI

[6] Bohmann, K.; Evans, A.; Gilbert, M. T. P.; Carvalho, G. R.; Creer, S.; Knapp, M.; Yu, D. W.; de Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring, Trends in Ecology & Evolution, Volume 29 (2014) no. 6, pp. 358-367 | DOI

[7] Clare, E. L.; Economou, C. K.; Bennett, F. J.; Dyer, C. E.; Adams, K.; McRobie, B.; Drinkwater, R.; Littlefair, J. E. Measuring biodiversity from DNA in the air, Current Biology, Volume 32 (2022) no. 3 | DOI

[8] Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, Advanced Materials, Volume 22 (2010) no. 40, pp. 4467-4472 | DOI

[9] Franchi, M.; Bramanti, E.; Morassi Bonzi, L.; Luigi Orioli, P.; Vettori, C.; Gallori, E. Clay-Nucleic Acid Complexes: Characteristics and Implications for the Preservation of Genetic Material in Primeval Habitats, Origins of Life and Evolution of the Biosphere, Volume 29 (1999) no. 3, pp. 297-315 | DOI

[10] Franklin, R.; Randall, J. Crystallite growth in graphitizing and non-graphitizing carbons, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Volume 209 (1997) no. 1097, pp. 196-218 | DOI

[11] Frederico, L. A.; Kunkel, T. A.; Shaw, B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy, Biochemistry, Volume 29 (2002) no. 10, pp. 2532-2537 | DOI

[12] Freundlich, H. Über die Adsorption in Lösungen, Zeitschrift für Physikalische Chemie, Volume 57U (2017) no. 1, pp. 385-470 | DOI

[13] Grahame, D. C. Diffuse Double Layer Theory for Electrolytes of Unsymmetrical Valence Types, The Journal of Chemical Physics, Volume 21 (1953) no. 6, pp. 1054-1060 | DOI

[14] He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis, Advanced Functional Materials, Volume 20 (2010) no. 3, pp. 453-459 | DOI

[15] Herskovits, T. T. Nonaqueous solutions of DNA: Factors determining the stability of the helical configuration in solution, Archives of Biochemistry and Biophysics, Volume 97 (1962) no. 3, pp. 474-484 | DOI

[16] Huang, P.-J. J.; Liu, J. Molecular Beacon Lighting up on Graphene Oxide, Analytical Chemistry, Volume 84 (2012) no. 9, pp. 4192-4198 | DOI

[17] Impellizzeri, K. J.; Anderson, B.; Burgers, P. M. The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair, Journal of Bacteriology, Volume 173 (1991) no. 21, pp. 6807-6810 | DOI

[18] Jacobson, D. R.; Saleh, O. A. Counting the ions surrounding nucleic acids, Volume 45 (2016), pp. 1596-1605 | DOI

[19] Karanfil, T.; Kilduff, J. E. Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds. 1. Priority Pollutants, Environmental Science & Technology, Volume 33 (1999) no. 18, pp. 3217-3224 | DOI

[20] Khanna, M.; Stotzky, G. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA, Applied and Environmental Microbiology, Volume 58 (1992) no. 6, pp. 1930-1939 | DOI

[21] Knauer, M.; Schuster, M. E.; Su, D.; Schlögl, R.; Niessner, R.; Ivleva, N. P. Soot Structure and Reactivity Analysis by Raman Microspectroscopy, Temperature-Programmed Oxidation, and High-Resolution Transmission Electron Microscopy, The Journal of Physical Chemistry A, Volume 113 (2009) no. 50, pp. 13871-13880 | DOI

[22] Lei, H.; Mi, L.; Zhou, X.; Chen, J.; Hu, J.; Guo, S.; Zhang, Y. Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion, Nanoscale, Volume 3 (2011) no. 9 | DOI

[23] Lindahl, T.; Andersson, A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid, Biochemistry, Volume 11 (2002) no. 19, pp. 3618-3623 | DOI

[24] Lipfert, J.; Doniach, S.; Das, R.; Herschlag, D. Understanding Nucleic Acid–Ion Interactions, Annual Review of Biochemistry, Volume 83 (2014) no. 1, pp. 813-841 | DOI

[25] Liu, Z.; Nørgaard, K.; Overgaard, M. H.; Ceccato, M.; Mackenzie, D. M.; Stenger, N.; Stipp, S. L.; Hassenkam, T. Direct observation of oxygen configuration on individual graphene oxide sheets, Carbon, Volume 127 (2018), pp. 141-148 | DOI

[26] Liu, Z.; Rios-Carvajal, T.; Ceccato, M.; Hassenkam, T. Nanoscale chemical mapping of oxygen functional groups on graphene oxide using atomic force microscopy-coupled infrared spectroscopy, Journal of Colloid and Interface Science, Volume 556 (2019), pp. 458-465 | DOI

[27] Liu, L.; Tan, S. (.; Horikawa, T.; Do, D.; Nicholson, D.; Liu, J. Water adsorption on carbon - A review, Advances in Colloid and Interface Science, Volume 250 (2017), pp. 64-78 | DOI

[28] Lynggaard, C.; Bertelsen, M. F.; Jensen, C. V.; Johnson, M. S.; Frøslev, T. G.; Olsen, M. T.; Bohmann, K. Airborne environmental DNA for terrestrial vertebrate community monitoring, Current Biology, Volume 32 (2022) no. 3 | DOI

[29] Marchetti, S.; Onori, G.; Cametti, C. Ethanol-induced compaction of DNA: a viscosimetry and dynamic light scattering study, Philosophical Magazine, Volume 87 (2007) no. 3-5, pp. 525-534 | DOI

[30] Menéndez, J.; Illán-Gómez, M.; y León, C.; Radovic, L. On the difference between the isoelectric point and the point of zero charge of carbons, Carbon, Volume 33 (1995) no. 11, pp. 1655-1657 | DOI

[31] Müller, J.-O.; Su, D. S.; Wild, U.; Schlögl, R. Bulk and surface structural investigations of diesel engine soot and carbon black, Phys. Chem. Chem. Phys., Volume 9 (2007) no. 30, pp. 4018-4025 | DOI

[32] Noh, J. S.; Schwarz, J. A. Estimation of surface ionization constants for amphoteric solids, Journal of Colloid and Interface Science, Volume 139 (1990) no. 1, pp. 139-148 | DOI

[33] Ogram, A.; Mathot, M.; Harsh, J.; Boyle, J.; Pettigrew, C. Effects of DNA Polymer Length on Its Adsorption to Soils, Applied and Environmental Microbiology, Volume 60 (1994), pp. 393-396 (

[34] Paget, E.; Monrozier, L. J.; Simonet, P. Adsorption of DNA on clay minerals: protection against DNaseI and influence on gene transfer, FEMS Microbiology Letters, Volume 97 (1992) no. 1-2, pp. 31-39 | DOI

[35] Pedersen, M. W.; De Sanctis, B.; Saremi, N. F.; Sikora, M.; Puckett, E. E.; Gu, Z.; Moon, K. L.; Kapp, J. D.; Vinner, L.; Vardanyan, Z.; Ardelean, C. F.; Arroyo-Cabrales, J.; Cahill, J. A.; Heintzman, P. D.; Zazula, G.; MacPhee, R. D.; Shapiro, B.; Durbin, R.; Willerslev, E. Environmental genomics of Late Pleistocene black bears and giant short-faced bears, Current Biology, Volume 31 (2021) no. 12 | DOI

[36] Pedersen, M. W.; Overballe-Petersen, S.; Ermini, L.; Sarkissian, C. D.; Haile, J.; Hellstrom, M.; Spens, J.; Thomsen, P. F.; Bohmann, K.; Cappellini, E.; Schnell, I. B.; Wales, N. A.; Carøe, C.; Campos, P. F.; Schmidt, A. M. Z.; Gilbert, M. T. P.; Hansen, A. J.; Orlando, L.; Willerslev, E. Ancient and modern environmental DNA, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 370 (2015) no. 1660 | DOI

[37] Pietramellara, G.; Franchi, M.; Gallori, E.; Nannipieri, P. Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite, Biology and Fertility of Soils, Volume 33 (2001) no. 5, pp. 402-409 | DOI

[38] Popovicheva, O.; Persiantseva, N. M.; Shonija, N. K.; DeMott, P.; Koehler, K.; Petters, M.; Kreidenweis, S.; Tishkova, V.; Demirdjian, B.; Suzanne, J. Water interaction with hydrophobic and hydrophilic soot particles, Physical Chemistry Chemical Physics, Volume 10 (2008) no. 17 | DOI

[39] Preočanin, T.; Kallay, N. Application of »Mass Titration« to Determination of Surface Charge of Metal Oxides, Croatica Chemica Acta, Volume 71 (1998), pp. 1117-1125

[40] Pursell, C. J.; Hartshorn, H.; Ward, T.; Chandler, B. D.; Boccuzzi, F. Application of the Temkin Model to the Adsorption of CO on Gold, The Journal of Physical Chemistry C, Volume 115 (2011) no. 48, pp. 23880-23892 | DOI

[41] Pyle, L. A.; Hockaday, W. C.; Boutton, T.; Zygourakis, K.; Kinney, T. J.; Masiello, C. A. Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data, Environmental Science & Technology, Volume 49 (2015) no. 24, pp. 14057-14064 | DOI

[42] Romanowski, G.; Lorenz, M. G.; Wackernagel, W. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I, Applied and Environmental Microbiology, Volume 57 (1991) no. 4, pp. 1057-1061 | DOI

[43] Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, Volume 43 (2005) no. 8, pp. 1731-1742 | DOI

[44] Saeki, K.; Kunito, T.; Sakai, M. Effects of pH, ionic strength, and solutes on DNA adsorption by andosols, Biology and Fertility of Soils, Volume 46 (2010) no. 5, pp. 531-535 | DOI

[45] Saeki, K.; Kunito, T.; Sakai, M. Effect of Tris-HCl Buffer on DNA Adsorption by a Variety of Soil Constituents, Microbes and Environments, Volume 26 (2011) no. 1, pp. 88-91 | DOI

[46] Schmidt, M. W. I.; Noack, A. G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges, Global Biogeochemical Cycles, Volume 14 (2000) no. 3, pp. 777-793 | DOI

[47] Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005 | DOI

[48] Sips, R. On the Structure of a Catalyst Surface, The Journal of Chemical Physics, Volume 16 (1948) no. 5, pp. 490-495 | DOI

[49] Slon, V.; Hopfe, C.; Weiß, C. L.; Mafessoni, F.; de la Rasilla, M.; Lalueza-Fox, C.; Rosas, A.; Soressi, M.; Knul, M. V.; Miller, R.; Stewart, J. R.; Derevianko, A. P.; Jacobs, Z.; Li, B.; Roberts, R. G.; Shunkov, M. V.; de Lumley, H.; Perrenoud, C.; Gušić, I.; Kućan, Ž.; Rudan, P.; Aximu-Petri, A.; Essel, E.; Nagel, S.; Nickel, B.; Schmidt, A.; Prüfer, K.; Kelso, J.; Burbano, H. A.; Pääbo, S.; Meyer, M. Neandertal and Denisovan DNA from Pleistocene sediments, Science, Volume 356 (2017) no. 6338, pp. 605-608 | DOI

[50] Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Chemistry of Materials, Volume 18 (2006) no. 11, pp. 2740-2749 | DOI

[51] Sze, S. Raman spectroscopic characterization of carbonaceous aerosols, Atmospheric Environment, Volume 35 (2001) no. 3, pp. 561-568 | DOI

[52] Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA, Oxford Scholarship Online, 1, Oxford University Press, 2018 | DOI

[53] Tang, L.; Chang, H.; Liu, Y.; Li, J. Duplex DNA/Graphene Oxide Biointerface: From Fundamental Understanding to Specific Enzymatic Effects, Advanced Functional Materials, Volume 22 (2012) no. 14, pp. 3083-3088 | DOI

[54] Thomsen, P. F.; Willerslev, E. Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity, Biological Conservation, Volume 183 (2015), pp. 4-18 | DOI

[55] Torti, A.; Lever, M. A.; Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments, Marine Genomics, Volume 24 (2015), pp. 185-196 | DOI

[56] Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite, The Journal of Chemical Physics, Volume 53 (1970) no. 3, pp. 1126-1130 | DOI

[57] Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman spectroscopy of carbon materials: structural basis of observed spectra, Chemistry of Materials, Volume 2 (2002) no. 5, pp. 557-563 | DOI

[58] Wu, M.; Kempaiah, R.; Huang, P.-J. J.; Maheshwari, V.; Liu, J. Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides, Langmuir, Volume 27 (2011) no. 6, pp. 2731-2738 | DOI

[59] Xi, J.; Yang, G.; Cai, J.; Gu, Z. A Review of Recent Research Results on Soot: The Formation of a Kind of Carbon-Based Material in Flames, Frontiers in Materials, Volume 8 (2021) | DOI

[60] Yaacobi, M.; Ben-Naim, A. Hydrophobic interaction in water-ethanol mixtures, Journal of Solution Chemistry, Volume 2 (1973) no. 5, pp. 425-443 | DOI

[61] Ẑalac, S.; Kallay, N. Application of mass titration to the point of zero charge determination, Journal of Colloid and Interface Science, Volume 149 (1992) no. 1, pp. 233-240 | DOI

[62] Zhao, X. Self-Assembly of DNA Segments on Graphene and Carbon Nanotube Arrays in Aqueous Solution: A Molecular Simulation Study, The Journal of Physical Chemistry C, Volume 115 (2011) no. 14, pp. 6181-6189 | DOI

Cited by Sources: