Evolutionary Biology

The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions

10.24072/pcjournal.51 - Peer Community Journal, Volume 1 (2021), article no. e44.

Get full text PDF Peer reviewed and recommended by PCI
Understanding the relationships between host range and pathogenicity for parasites, and between the efficiency and scope of immunity for hosts are essential to implement efficient disease control strategies. In the case of plant parasites, most studies have focused on describing qualitative interactions and a variety of genetic and evolutionary models has been proposed in this context. Although plant quantitative resistance benefits from advantages in terms of durability, we presently lack models that account for quantitative interactions between plants and their parasites and the evolution of these interactions. Nestedness and modularity are important features to unravel the overall structure of host-parasite interaction matrices. Here, we analysed these two features on 32 matrices of quantitative pathogenicity trait data gathered from 15 plant-parasite pathosystems consisting of either annual or perennial plants along with fungi or oomycetes, bacteria, nematodes, insects and viruses. The performance of several nestedness and modularity algorithms was evaluated through a simulation approach, which helped interpretation of the results. We observed significant modularity in only six of the 32 matrices, with two or three modules detected. For three of these matrices, modules could be related to resistance quantitative trait loci present in the host. In contrast, we found high and significant nestedness in 30 of the 32 matrices. Nestedness was linked to other properties of plant-parasite interactions. First, pathogenicity trait values were explained in majority by a parasite strain effect and a plant accession effect, with no or minor parasite-plant interaction term. Second, correlations between the efficiency and scope of the resistance of plant genotypes, and between the host range breadth and pathogenicity level of parasite strains were overall positive. This latter result questions the efficiency of strategies based on the deployment of several genetically-differentiated cultivars of a given crop species in the case of quantitative plant immunity.
Published online:
DOI: 10.24072/pcjournal.51
Moury, Benoît 1; Audergon, Jean-Marc 2; Baudracco-Arnas, Sylvie 3; Ben Krima, Safa 4; Bertrand, François 5; Boissot, Nathalie 2; Buisson, Mireille 6; Caffier, Valérie 7; Cantet, Mélissa 2; Chanéac, Sylvia 8; Constant, Carole 9; Delmotte, François 10; Dogimont, Catherine 2; Doumayrou, Juliette 1; Fabre, Frédéric 10; Fournet, Sylvain 11; Grimault, Valérie 12; Jaunet, Thierry 13; Justafré, Isabelle 14; Lefebvre, Véronique 2; Losdat, Denis 15; Marcel, Thierry C. 4; Montarry, Josselin 11; Morris, Cindy E. 1; Omrani, Mariem 1, 2; Paineau, Manon 10; Perrot, Sophie 12; Pilet-Nayel, Marie-Laure 11; Ruellan, Youna 2

1 Pathologie Végétale, INRAE, 84140 Montfavet, France
2 GAFL, INRAE, 84140, Montfavet, France
3 Laboratoires ASL, 755 chemin de Meinajaries, 84140 Montfavet, France
4 University of Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850 Thiverval-Grignon, France
5 Bayer Seeds SAS, Chemin de Roquemartine Mas Lamy, 13670, Saint-Andiol, France
6 GAUTIER SEMENCES, Route d’Avignon, 13630 Eyragues, France
7 Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000 Angers, France
8 TAKII FRANCE SAS, 660 Chemin de la Crau, 13630 EYRAGUES, France
9 Sakata Vegetables Europe, Domaine de Sablas, rue du moulin, 30620 Uchaud, France
10 SAVE, INRAE, Bordeaux Sciences Agro, ISVV, 33140 Villenave d’Ornon, France
11 IGEPP, INRAE, Institut Agro, Univ. Rennes, 35653 Le Rheu, France
12 GEVES, 25 rue Georges Morel, CS 900024, 49071 Beaucouzé, France
13 HM.Clause, 1 chemin du Moulin des Ronzières, 49800 La Bohalle, France
14 Vilmorin & Cie, Mas Pazac, 30210 Ledenon, France
15 RIJK ZWAAN France, La Vernède, 30390 Aramon, France
     author = {Moury, Beno{\^\i}t and Audergon, Jean-Marc and Baudracco-Arnas, Sylvie and Ben Krima, Safa and Bertrand, Fran\c{c}ois and Boissot, Nathalie and Buisson, Mireille and Caffier, Val\'erie and Cantet, M\'elissa and Chan\'eac, Sylvia and Constant, Carole and Delmotte, Fran\c{c}ois and Dogimont, Catherine and Doumayrou, Juliette and Fabre, Fr\'ed\'eric and Fournet, Sylvain and Grimault, Val\'erie and Jaunet, Thierry and Justafr\'e, Isabelle and Lefebvre, V\'eronique and Losdat, Denis and Marcel, Thierry C. and Montarry, Josselin and Morris, Cindy E. and Omrani, Mariem and Paineau, Manon and Perrot, Sophie and Pilet-Nayel, Marie-Laure and Ruellan, Youna},
     title = {The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions},
     journal = {Peer Community Journal},
     eid = {e44},
     publisher = {Peer Community In},
     volume = {1},
     year = {2021},
     doi = {10.24072/pcjournal.51},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.51/}
TI  - The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions
JO  - Peer Community Journal
PY  - 2021
DA  - 2021///
VL  - 1
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.51/
UR  - https://doi.org/10.24072/pcjournal.51
DO  - 10.24072/pcjournal.51
ID  - 10_24072_pcjournal_51
ER  - 
%0 Journal Article
%T The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions
%J Peer Community Journal
%D 2021
%V 1
%I Peer Community In
%U https://doi.org/10.24072/pcjournal.51
%R 10.24072/pcjournal.51
%F 10_24072_pcjournal_51
Moury, Benoît; Audergon, Jean-Marc; Baudracco-Arnas, Sylvie; Ben Krima, Safa; Bertrand, François; Boissot, Nathalie; Buisson, Mireille; Caffier, Valérie; Cantet, Mélissa; Chanéac, Sylvia; Constant, Carole; Delmotte, François; Dogimont, Catherine; Doumayrou, Juliette; Fabre, Frédéric; Fournet, Sylvain; Grimault, Valérie; Jaunet, Thierry; Justafré, Isabelle; Lefebvre, Véronique; Losdat, Denis; Marcel, Thierry C.; Montarry, Josselin; Morris, Cindy E.; Omrani, Mariem; Paineau, Manon; Perrot, Sophie; Pilet-Nayel, Marie-Laure; Ruellan, Youna. The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions. Peer Community Journal, Volume 1 (2021), article  no. e44. doi : 10.24072/pcjournal.51. https://peercommunityjournal.org/articles/10.24072/pcjournal.51/

Peer reviewed and recommended by PCI : 10.24072/pci.evolbiol.100132

[1] Aldecoa, R.; Marín, I. Exploring the limits of community detection strategies in complex networks, Scientific Reports, Volume 3 (2013) no. 1 | Article

[2] Almeida-Neto, M.; Guimarães, P.; Guimarães, P. R.; Loyola, R. D.; Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement, Oikos, Volume 117 (2008) no. 8, pp. 1227-1239 | Article

[3] Almeida-Neto, M.; Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices, Environmental Modelling & Software, Volume 26 (2011) no. 2, pp. 173-178 | Article

[4] Bahri, B.; Kaltz, O.; Leconte, M.; de Vallavieille-Pope, C.; Enjalbert, J. Tracking costs of virulence in natural populations of the wheat pathogen, Puccinia striiformis f.sp.tritici, BMC Evolutionary Biology, Volume 9 (2009) no. 1 | Article

[5] Barrett, L. G.; Encinas-Viso, F.; Burdon, J. J.; Thrall, P. H. Specialization for resistance in wild host-pathogen interaction networks, Frontiers in Plant Science, Volume 6 (2015) | Article

[6] Bartoli, C.; Roux, F. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach, Frontiers in Plant Science, Volume 8 | Article

[7] Bascompte, J.; Jordano, P.; Melian, C. J.; Olesen, J. M. The nested assembly of plant-animal mutualistic networks, Proceedings of the National Academy of Sciences, Volume 100 (2003) no. 16, pp. 9383-9387 | Article

[8] Benabdelkader, M.; Guechi, A.; M eacute zaache Aichour, S. Susceptibility of Algerian pepper cultivars (Capsicum annuum L) to Phytophthora capsici strains from different geographic areas, African Journal of Biotechnology, Volume 14 (2015) no. 44, pp. 3011-3018 | Article

[9] Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, Volume 2008 no. 10 | Article

[10] Boissot, N.; Thomas, S.; Chovelon, V.; Lecoq, H. NBS-LRR-mediated resistance triggered by aphids: viruses do not adapt; aphids adapt via different mechanisms, BMC Plant Biology, Volume 16 (2016) no. 1 | Article

[11] Boots, M.; White, A.; Best, A.; Bowers, R. How specificity and epidemiology drive the coevolution of static trait diversity in hosts and parasites, Evolution, Volume 68 (2014) no. 6, pp. 1594-1606 | Article

[12] Brown, J. K. Durable Resistance of Crops to Disease: A Darwinian Perspective, Annual Review of Phytopathology, Volume 53 (2015) no. 1, pp. 513-539 | Article

[13] Brown, J. K. M.; Tellier, A. Plant-Parasite Coevolution: Bridging the Gap between Genetics and Ecology, Annual Review of Phytopathology, Volume 49 (2011) no. 1, pp. 345-367 | Article

[14] Brualdi, R. A.; Sanderson, J. G. Nested species subsets, gaps, and discrepancy, Oecologia, Volume 119 (1999) no. 2, pp. 256-264 | Article

[15] Bruns, E.; Carson, M. L.; May, G. The jack of all trades is master of none: a pathogen's ability to infect a greater number of host genotypes comes at a cost of delayed reproduction, Evolution, Volume 68 (2014) no. 9, pp. 2453-2466 | Article

[16] Caffier, V.; Didelot, F.; Pumo, B.; Causeur, D.; Durel, C. E.; Parisi, L. Aggressiveness of eight Venturia inaequalis isolates virulent or avirulent to the major resistance gene Rvi6 on a non-Rvi6 apple cultivar, Plant Pathology, Volume 59 (2010) no. 6, pp. 1072-1080 | Article

[17] Caffier, V.; Lasserre-Zuber, P.; Giraud, M.; Lascostes, M.; Stievenard, R.; Lemarquand, A.; van de Weg, E.; Expert, P.; Denancé, C.; Didelot, F.; Le Cam, B.; Durel, C.-E. Erosion of quantitative host resistance in the apple ×Venturia inaequalis pathosystem, Infection, Genetics and Evolution, Volume 27 (2014), pp. 481-489 | Article

[18] Caffier, V.; Le Cam, B.; Al Rifaï, M.; Bellanger, M.-N.; Comby, M.; Denancé, C.; Didelot, F.; Expert, P.; Kerdraon, T.; Lemarquand, A.; Ravon, E.; Durel, C.-E. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus, Infection, Genetics and Evolution, Volume 44 (2016), pp. 541-548 | Article

[19] Castagnone-Sereno, P.; Bongiovanni, M.; Wajnberg, E. Selection and parasite evolution: a reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita, Evolutionary Ecology, Volume 21 (2006) no. 2, pp. 259-270 | Article

[20] Clauset, A.; Newman, M. E. J.; Moore, C. Finding community structure in very large networks, Physical Review E, Volume 70 (2004) no. 6 | Article

[21] Delmas, C. E. L.; Fabre, F.; Jolivet, J.; Mazet, I. D.; Richart Cervera, S.; Delière, L.; Delmotte, F. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew, Evolutionary Applications, Volume 9 (2016) no. 5, pp. 709-725 | Article

[22] Desbiez, C.; Gal-On, A.; Girard, M.; Wipf-Scheibel, C.; Lecoq, H. Increase in Zucchini yellow mosaic virus Symptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants, Phytopathology, Volume 93 (2003) no. 12, pp. 1478-1484 | Article

[23] Dormann, C. F.; Fründ, J.; Schaefer, H. M. Identifying Causes of Patterns in Ecological Networks: Opportunities and Limitations, Annual Review of Ecology, Evolution, and Systematics, Volume 48 (2017) no. 1, pp. 559-584 | Article

[24] Dybdahl, M. F.; Jenkins, C. E.; Nuismer, S. L. Identifying the Molecular Basis of Host-Parasite Coevolution: Merging Models and Mechanisms, The American Naturalist, Volume 184 (2014) no. 1, pp. 1-13 | Article

[25] Feng, W.; Takemoto, K. Heterogeneity in ecological mutualistic networks dominantly determines community stability, Scientific Reports, Volume 4 (2014) no. 1 | Article

[26] Fenton, A.; Antonovics, J.; Brockhurst, M. A. Inverse‐Gene‐for‐Gene Infection Genetics and Coevolutionary Dynamics, The American Naturalist, Volume 174 (2009) no. 6 | Article

[27] Fenton, A.; Antonovics, J.; Brockhurst, M. A. Two-step infection processes can lead to coevolution between functionally independent infection and resistance pathways, Evolution, Volume 66 (2012) no. 7, pp. 2030-2041 | Article

[28] Flor, H. The Complementary Genic Systems in Flax and Flax Rust, Advances in Genetics, Elsevier, 1956, pp. 29-54 | Article

[29] Flores, C. O.; Meyer, J. R.; Valverde, S.; Farr, L.; Weitz, J. S. Statistical structure of host-phage interactions, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 28 | Article

[30] Flores, C. O.; Valverde, S.; Weitz, J. S. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages, The ISME Journal, Volume 7 (2013) no. 3, pp. 520-532 | Article

[31] Fournet, S.; Eoche-Bosy, D.; Renault, L.; Hamelin, F. M.; Montarry, J. Adaptation to resistant hosts increases fitness on susceptible hosts in the plant parasitic nematodeGlobodera pallida, Ecology and Evolution, Volume 6 (2016) no. 8, pp. 2559-2568 | Article

[32] Fraile, A.; Pagan, I.; Anastasio, G.; Saez, E.; Garcia-Arenal, F. Rapid Genetic Diversification and High Fitness Penalties Associated with Pathogenicity Evolution in a Plant Virus, Molecular Biology and Evolution, Volume 28 (2011) no. 4, pp. 1425-1437 | Article

[33] Galeano, J.; Pastor, J. M.; Iriondo, J. M. Weighted-Interaction Nestedness Estimator (WINE): A new estimator to calculate over frequency matrices, Environmental Modelling & Software, Volume 24 (2009) no. 11, pp. 1342-1346 | Article

[34] Gallet, R.; Fontaine, C.; Bonnot, F.; Milazzo, J.; Tertois, C.; Adreit, H.; Ravigné, V.; Fournier, E.; Tharreau, D. Evolution of Compatibility Range in the Rice−Magnaporthe oryzae System: An Uneven Distribution of R Genes Between Rice Subspecies, Phytopathology, Volume 106 (2016) no. 4, pp. 348-354 | Article

[35] Gallois, J.-L.; Moury, B.; German-Retana, S. Role of the Genetic Background in Resistance to Plant Viruses, International Journal of Molecular Sciences, Volume 19 (2018) no. 10 | Article

[36] Gautier, C.; Fournet, S.; Piriou, C.; Renault, L.; Yvin, J.; Nguema‐Ona, E.; Grenier, E.; Montarry, J. Plant–parasite coevolution: A weak signature of local adaptation between Peruvian Globodera pallida populations and wild potatoes, Ecology and Evolution, Volume 10 (2020) no. 9, pp. 4156-4163 | Article

[37] González, A. M.; Marcel, T. C.; Niks, R. E. Evidence for a Minor Gene–for–Minor Gene Interaction Explaining Nonhypersensitive Polygenic Partial Disease Resistance, Phytopathology, Volume 102 (2012) no. 11, pp. 1086-1093 | Article

[38] Gotelli, N.; Graves, G. Null models in ecology, Smithsonian Institution Press, Washington D.C., (1996)

[39] Grosberg, R. K.; Hart, M. W. Mate Selection and the Evolution of Highly Polymorphic Self/Nonself Recognition Genes, Science, Volume 289 (2000) no. 5487, pp. 2111-2114 | Article

[40] Huang, Y.-J.; Balesdent, M.-H.; Li, Z.-Q.; Evans, N.; Rouxel, T.; Fitt, B. D. L. Fitness cost of virulence differs between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape), European Journal of Plant Pathology, Volume 126 (2010) no. 2, pp. 279-291 | Article

[41] Ishibashi, K.; Mawatari, N.; Miyashita, S.; Kishino, H.; Meshi, T.; Ishikawa, M. Coevolution and Hierarchical Interactions of Tomato mosaic virus and the Resistance Gene Tm-1, PLoS Pathogens, Volume 8 (2012) no. 10 | Article

[42] Janzac, B.; Montarry, J.; Palloix, A.; Navaud, O.; Moury, B. A Point Mutation in the Polymerase ofPotato virus YConfers Virulence Toward thePvr4Resistance of Pepper and a High Competitiveness Cost in Susceptible Cultivar, Molecular Plant-Microbe Interactions®, Volume 23 (2010) no. 6, pp. 823-830 | Article

[43] Jenner, C. E.; Wang, X.; Ponz, F.; Walsh, J. A. A fitness cost for Turnip mosaic virus to overcome host resistance, Virus Research, Volume 86 (2002) no. 1-2, pp. 1-6 | Article

[44] Jonhson, S.; Domínguez-García, V.; Muñoz, M. A. Factors Determining Nestedness in Complex Networks, PLoS ONE, Volume 8 (2013) no. 9 | Article

[45] Joppa, L. N.; Bascompte, J.; Montoya, J. M.; Solé, R. V.; Sanderson, J.; Pimm, S. L. Reciprocal specialization in ecological networks, Ecology Letters, Volume 12 (2009) no. 9, pp. 961-969 | Article

[46] Khatabi, B.; Wen, R.-H.; Hajimorad, M. R. Fitness penalty in susceptible host is associated with virulence ofSoybean mosaic virusonRsv1-genotype soybean: a consequence of perturbation of HC-Pro and not P3, Molecular Plant Pathology, Volume 14 (2013) no. 9, pp. 885-897 | Article

[47] Kidner, J.; Moritz, R. A. F. The Red Queen Process does not Select for High Recombination Rates in Haplodiploid Hosts, Evolutionary Biology, Volume 40 (2013) no. 3, pp. 377-384 | Article

[48] Kirk, R. Experimental design: Procedures for the behavioral sciences (2nd ed.), Brooks/Cole, Belmont, CA, (1982)

[49] Laloi, G.; Vergne, E.; Durel, C. E.; Le Cam, B.; Caffier, V. Efficiency of pyramiding of three quantitative resistance loci to apple scab, Plant Pathology, Volume 66 (2016) no. 3, pp. 412-422 | Article

[50] Lambrechts, L. Dissecting the Genetic Architecture of Host–Pathogen Specificity, PLoS Pathogens, Volume 6 (2010) no. 8 | Article

[51] Leach, J. E.; Vera Cruz, C. M.; Bai, J.; Leung, H. Pathogen fitness penalty as a predictor of durability of disease resistance genes, Annual Review of Phytopathology, Volume 39 (2001) no. 1, pp. 187-224 | Article

[52] Marcel, T. C.; Gorguet, B.; Ta, M. T.; Kohutova, Z.; Vels, A.; Niks, R. E. Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near‐isogenic lines, New Phytologist, Volume 177 (2008) no. 3, pp. 743-755 | Article

[53] Montarry, J.; Cartier, E.; Jacquemond, M.; Palloix, A.; Moury, B. Virus adaptation to quantitative plant resistance: erosion or breakdown?, Journal of Evolutionary Biology, Volume 25 (2012) no. 11, pp. 2242-2252 | Article

[54] Montarry, J.; Hamelin, F. M.; Glais, I.; Corbi, R.; Andrivon, D. Fitness costs associated with unnecessary virulence factors and life history traits: evolutionary insights from the potato late blight pathogen Phytophthora infestans, BMC Evolutionary Biology, Volume 10 (2010) no. 1 | Article

[55] Morris, C. E.; Glaux, C.; Latour, X.; Gardan, L.; Samson, R.; Pitrat, M. The Relationship of Host Range, Physiology, and Genotype to Virulence on Cantaloupe in Pseudomonas syringae from Cantaloupe Blight Epidemics in France, Phytopathology, Volume 90 (2000) no. 6, pp. 636-646 | Article

[56] Morris, C. E.; Lamichhane, J. R.; Nikolić, I.; Stanković, S.; Moury, B. The overlapping continuum of host range among strains in the Pseudomonas syringae complex, Phytopathology Research, Volume 1 (2019) no. 1 | Article

[57] Morris, C. E.; Moury, B. Revisiting the Concept of Host Range of Plant Pathogens, Annual Review of Phytopathology, Volume 57 (2019) no. 1, pp. 63-90 | Article

[58] Morris, C. E.; Sands, D. C.; Vanneste, J. L.; Montarry, J.; Oakley, B.; Guilbaud, C.; Glaux, C. Inferring the Evolutionary History of the Plant Pathogen Pseudomonas syringae from Its Biogeography in Headwaters of Rivers in North America, Europe, and New Zealand, mBio, Volume 1 (2010) no. 3 | Article

[59] Newman, M. E. J. Finding community structure in networks using the eigenvectors of matrices, Physical Review E, Volume 74 (2006) no. 3 | Article

[60] Newman, M. E. J.; Girvan, M. Finding and evaluating community structure in networks, Physical Review E, Volume 69 (2004) no. 2 | Article

[61] Parlevliet, J. E. Evidence of Differential Interaction in the Polygenic Hordeum vulgare-Puccinia hordei Relation during Epidemic Development, Phytopathology, Volume 77 (1977) no. 6 | Article

[62] Patefield, W. M. Algorithm AS 159: An Efficient Method of Generating Random R × C Tables with Given Row and Column Totals, Applied Statistics, Volume 30 (1981) no. 1 | Article

[63] Patterson, B. D.; Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos, Biological Journal of the Linnean Society, Volume 28 (1986) no. 1-2, pp. 65-82 | Article

[64] Peters Haugrud, A. R.; Zhang, Z.; Richards, J. K.; Friesen, T. L.; Faris, J. D. Genetics of Variable Disease Expression Conferred by Inverse Gene-For-Gene Interactions in the Wheat-Parastagonospora nodorum Pathosystem, Plant Physiology, Volume 180 (2019) no. 1, pp. 420-434 | Article

[65] Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks, Journal of Graph Algorithms and Applications, Volume 10 (2006) no. 2, pp. 191-218 | Article

[66] Poulicard, N.; Pinel-Galzi, A.; Hebrard, E.; Fargette, D. WhyRice yellow mottle virus, a rapidly evolving RNA plant virus, is not efficient at breakingrymv1-2resistance, Molecular Plant Pathology, Volume 11 (2010) no. 1, pp. 145-154 | Article

[67] Quillévéré-Hamard, A.; Le Roy, G.; Lesné, A.; Le May, C.; Pilet-Nayel, M.-L. Aggressiveness of Diverse French Aphanomyces euteiches Isolates on Pea Near Isogenic Lines Differing in Resistance Quantitative Trait Loci, Phytopathology, Volume 111 (2021) no. 4, pp. 695-702 | Article

[68] Quillévéré-Hamard, A.; Le Roy, G.; Moussart, A.; Baranger, A.; Andrivon, D.; Pilet-Nayel, M.-L.; Le May, C. Genetic and Pathogenicity Diversity of Aphanomyces euteiches Populations From Pea-Growing Regions in France, Frontiers in Plant Science, Volume 9 (2018) | Article

[69] Raghavan, U. N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in large-scale networks, Physical Review E, Volume 76 (2007) no. 3 | Article

[70] Reichardt, J.; Bornholdt, S. Statistical mechanics of community detection, Physical Review E, Volume 74 (2006) no. 1 | Article

[71] Sacristan, S.; Garcia‐Arenal, F. The evolution of virulence and pathogenicity in plant pathogen populations, Molecular Plant Pathology, Volume 9 (2008) no. 3, pp. 369-384 | Article

[72] Saintenac, C.; Lee, W.-S.; Cambon, F.; Rudd, J. J.; King, R. C.; Marande, W.; Powers, S. J.; Bergès, H.; Phillips, A. L.; Uauy, C.; Hammond-Kosack, K. E.; Langin, T.; Kanyuka, K. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici, Nature Genetics, Volume 50 (2018) no. 3, pp. 368-374 | Article

[73] Sasaki, A. Host-parasite coevolution in a multilocus gene-for-gene system, Proceedings of the Royal Society of London. Series B: Biological Sciences, Volume 267 (2000) no. 1458, pp. 2183-2188 | Article

[74] Soltis, N. E.; Atwell, S.; Shi, G.; Fordyce, R.; Gwinner, R.; Gao, D.; Shafi, A.; Kliebenstein, D. J. Interactions of Tomato and Botrytis cinerea Genetic Diversity: Parsing the Contributions of Host Differentiation, Domestication, and Pathogen Variation, The Plant Cell, Volume 31 (2019) no. 2, pp. 502-519 | Article

[75] Staniczenko, P. P. A.; Kopp, J. C.; Allesina, S. The ghost of nestedness in ecological networks, Nature Communications, Volume 4 (2013) no. 1 | Article

[76] Suweis, S.; Simini, F.; Banavar, J. R.; Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks, Nature, Volume 500 (2013) no. 7463, pp. 449-452 | Article

[77] Tellier, A.; Brown, J. K. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions, BMC Evolutionary Biology, Volume 11 (2011) no. 1 | Article

[78] Thrall, P. H.; Barrett, L. G.; Dodds, P. N.; Burdon, J. J. Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models, Frontiers in Plant Science, Volume 6 (2016) | Article

[79] Traag, V. A.; Bruggeman, J. Community detection in networks with positive and negative links, Physical Review E, Volume 80 (2009) no. 3 | Article

[80] Valverde, S.; Elena, S. F.; Solé, R. Spatially induced nestedness in a neutral model of phage-bacteria networks, Virus Evolution, Volume 3 (2017) no. 2 | Article

[81] Valverde, S.; Piñero, J.; Corominas-Murtra, B.; Montoya, J.; Joppa, L.; Solé, R. The architecture of mutualistic networks as an evolutionary spandrel, Nature Ecology & Evolution, Volume 2 (2018) no. 1, pp. 94-99 | Article

[82] Vera Cruz, C. M.; Bai, J.; Ona, I.; Leung, H.; Nelson, R. J.; Mew, T.-W.; Leach, J. E. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation, Proceedings of the National Academy of Sciences, Volume 97 (2000) no. 25, pp. 13500-13505 | Article

[83] Wang, M.; Roux, F.; Bartoli, C.; Huard-Chauveau, C.; Meyer, C.; Lee, H.; Roby, D.; McPeek, M. S.; Bergelson, J. Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes, Proceedings of the National Academy of Sciences, Volume 115 (2018) no. 24 | Article

[84] Weitz, J. S.; Poisot, T.; Meyer, J. R.; Flores, C. O.; Valverde, S.; Sullivan, M. B.; Hochberg, M. E. Phage–bacteria infection networks, Trends in Microbiology, Volume 21 (2013) no. 2, pp. 82-91 | Article

[85] Wichmann, G.; Bergelson, J. Effector Genes ofXanthamonas axonopodispv.vesicatoriaPromote Transmission and Enhance Other Fitness Traits in the Field, Genetics, Volume 166 (2004) no. 2, pp. 693-706 | Article

[86] Zhong, Z.; Marcel, T. C.; Hartmann, F. E.; Ma, X.; Plissonneau, C.; Zala, M.; Ducasse, A.; Confais, J.; Compain, J.; Lapalu, N.; Amselem, J.; McDonald, B. A.; Croll, D.; Palma‐Guerrero, J. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene, New Phytologist, Volume 214 (2017) no. 2, pp. 619-631 | Article

Cited by Sources: