Section: Neuroscience
Topic: Neuroscience

Power Pixels: a turnkey pipeline for processing of Neuropixel recordings

Corresponding author(s): Meijer, Guido T. (guido.meijer@donders.ru.nl)

10.24072/pcjournal.679 - Peer Community Journal, Volume 6 (2026), article no. e12

Get full text PDF Peer reviewed and recommended by PCI

There are many open-source tools available for the processing of neuronal data acquired using Neuropixels probes. Each of these tools, focuses on a part of the process from raw data to single neuron activity. For example, SpikeInterface is an incredibly useful Python module for pre-processing and spike sorting of individual recordings. However, there are more steps in between raw data and spikes, such as synchronization of spike times between probes and histological reconstruction of probe insertions. Therefore, we developed Power Pixels, combining the functionality of several packages into one integrated pipeline, which may be run in any lab workflow. It includes pre-processing, spike sorting, neuron-level quality control metrics, synchronization between multiple probes, compression of raw data, and ephys-to-histology alignment. Integrating all these steps into one pipeline greatly simplifies Neuropixels data processing, especially for novel users who might struggle to find their way around all the available code and tools.

Published online:
DOI: 10.24072/pcjournal.679
Type: Research article
Keywords: Neuropixel, silicon probe, pipeline, pre-processing, standardization

Meijer, Guido T.  1 ; Battaglia, Francesco P.  1

1 Donders Centre for Neuroscience, Radboud University, Nijmegen, The Netherlands
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{10_24072_pcjournal_679,
     author = {Meijer, Guido T. and Battaglia, Francesco P.},
     title = {Power {Pixels:} a turnkey pipeline for processing of {Neuropixel} recordings
},
     journal = {Peer Community Journal},
     eid = {e12},
     year = {2026},
     publisher = {Peer Community In},
     volume = {6},
     doi = {10.24072/pcjournal.679},
     language = {en},
     url = {https://peercommunityjournal.org/articles/10.24072/pcjournal.679/}
}
TY  - JOUR
AU  - Meijer, Guido T.
AU  - Battaglia, Francesco P.
TI  - Power Pixels: a turnkey pipeline for processing of Neuropixel recordings

JO  - Peer Community Journal
PY  - 2026
VL  - 6
PB  - Peer Community In
UR  - https://peercommunityjournal.org/articles/10.24072/pcjournal.679/
DO  - 10.24072/pcjournal.679
LA  - en
ID  - 10_24072_pcjournal_679
ER  - 
%0 Journal Article
%A Meijer, Guido T.
%A Battaglia, Francesco P.
%T Power Pixels: a turnkey pipeline for processing of Neuropixel recordings

%J Peer Community Journal
%] e12
%D 2026
%V 6
%I Peer Community In
%U https://peercommunityjournal.org/articles/10.24072/pcjournal.679/
%R 10.24072/pcjournal.679
%G en
%F 10_24072_pcjournal_679
Meijer, G. T.; Battaglia, F. P. Power Pixels: a turnkey pipeline for processing of Neuropixel recordings. Peer Community Journal, Volume 6 (2026), article  no. e12. https://doi.org/10.24072/pcjournal.679

PCI peer reviews and recommendation, and links to data, scripts, code and supplementary information: 10.24072/pci.neuro.100228

Conflict of interest of the recommender and peer reviewers:
The recommender in charge of the evaluation of the article and the reviewers declared that they have no conflict of interest (as defined in the code of conduct of PCI) with the authors or with the content of the article.

[1] Angotzi, G. N.; Boi, F.; Lecomte, A.; Miele, E.; Malerba, M.; Zucca, S.; Casile, A.; Berdondini, L. SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings, Biosensors and Bioelectronics, Volume 126 (2019), pp. 355-364 | DOI

[2] Beau, M. Power Pixels: An end-to-end Pipeline for Neuropixels Data Processing, Peer Community in Neuroscience (2025), p. 100228 | DOI

[3] Buccino, A. P.; Hurwitz, C. L.; Garcia, S.; Magland, J.; Siegle, J. H.; Hurwitz, R.; Hennig, M. H. SpikeInterface, a unified framework for spike sorting, eLife, Volume 9 (2020), p. e61834 | DOI

[4] Fabre, J. M. J.; van Beest, E. H.; Peters, A. J.; Carandini, M.; Harris, K. D. Bombcell: automated curation and cell classification of spike-sorted electrophysiology data, 2023 | DOI

[5] International Brain Laboratory, T.; Banga, K.; Boussard, J.; Chapius, G.; Faulkner, M.; Harris, K. D.; Huntenburg, J.; Hurwitz, C.; Dong Lee, H.; Paninski, L.; Rossant, C.; Roth, N.; Steinmetz, N. A.; Windolf, C.; Winter, O. Spike sorting pipeline for the International Brain Laboratory, 2022 | DOI

[6] Jain, A.; Greene, R.; Halcrow, C.; Swann, J. A.; Kleinjohann, A.; Spurio, F.; Graff, S.; Kampa, B.; Gall, J.; Grün, S.; Buccino, A.; Hennig, M. H.; Musall, S. UnitRefine: A Community Toolbox for Automated Spike Sorting Curation, bioRxiv (2025), p. 645770 | DOI

[7] Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydın, Ç.; Barbic, M.; Blanche, T. J.; Bonin, V.; Couto, J.; Dutta, B.; Gratiy, S. L.; Gutnisky, D. A.; Häusser, M.; Karsh, B.; Ledochowitsch, P.; Lopez, C. M.; Mitelut, C.; Musa, S.; Okun, M.; Pachitariu, M.; Putzeys, J.; Rich, P. D.; Rossant, C.; Sun, W.-l.; Svoboda, K.; Carandini, M.; Harris, K. D.; Koch, C.; O’Keefe, J.; Harris, T. D. Fully integrated silicon probes for high-density recording of neural activity, Nature, Volume 551 (2017) no. 7679, pp. 232-236 | DOI

[8] Meijer, G.; Battaglia, F. Power Pixels: A turnkey pipeline for processing of Neuropixel recordings, Zenodo, 2025 | DOI

[9] Montijn, J. S.; Heimel, J. A. A universal pipeline for the alignment of electrode tracks with slice histology and electrophysiological data, bioRxiv (2022), p. 496782 | DOI

[10] Pachitariu, M.; Sridhar, S.; Pennington, J.; Stringer, C. Spike sorting with Kilosort4, Nature Methods, Volume 21 (2024) no. 5, pp. 914-921 | DOI

[11] Pachitariu, M.; Steinmetz, N.; Kadir, S.; Carandini, M.; D, H. K. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels, bioRxiv (2016), p. 061481 | DOI

Cited by Sources: